In this note we first derive integral representations for Mersenne numbers $M_{kn}$ and Horadam-Fermat numbers $\mathcal{F}_{kn}$, then we use those to provide integral representations for Mersenne numbers $M_{kn+r}$ and Horadam-Fermat numbers $\mathcal{F}_{kn+r}$, where $n\in\mathbb{Z}_{>0}=\{1,2,3,\ldots\}$ is a non-negative integer, $k\in\mathbb{Z}_{>0}=$ $\{1,2,3,\ldots\}$ is an arbitrary but fixed positive integer, while $r\in\mathbb{Z}_{\geqslant0}$ is an arbitrary but fixed non-negative integer.
| Primary Language | English |
|---|---|
| Subjects | Algebra and Number Theory |
| Journal Section | Research Article |
| Authors | |
| Submission Date | September 19, 2024 |
| Acceptance Date | November 29, 2024 |
| Publication Date | December 31, 2024 |
| Published in Issue | Year 2024 Volume: 9 Issue: 3 |