Research Article
BibTex RIS Cite

Integral representations for Mersenne and Horadam-Fermat numbers

Year 2024, , 185 - 200, 31.12.2024
https://doi.org/10.30931/jetas.1553048

Abstract

In this note we first derive integral representations for Mersenne numbers $M_{kn}$ and Horadam-Fermat numbers $\mathcal{F}_{kn}$, then we use those to provide integral representations for Mersenne numbers $M_{kn+r}$ and Horadam-Fermat numbers $\mathcal{F}_{kn+r}$, where $n\in\mathbb{Z}_{>0}=\{1,2,3,\ldots\}$ is a non-negative integer, $k\in\mathbb{Z}_{>0}=$ $\{1,2,3,\ldots\}$ is an arbitrary but fixed positive integer, while $r\in\mathbb{Z}_{\geqslant0}$ is an arbitrary but fixed non-negative integer.

References

  • [1] Andrica, D., Bagdasar, O., "Recurrent Sequences", 2020, Springer, Berlin.
  • [2] Bernhart, F., "Catalan, Motzkin, and Riordan numbers", Discrete Math. 204 (1999) : 73-112.
  • [3] Dana-Picard, T., "Parametric integrals and Catalan numbers", International Journal of Mathematical Education in Science and Technology 36(4) (2005) : 410-414.
  • [4] Dana-Picard, T., Zeitoun., D.G., "Closed forms for 4-parameter families of integrals", International Journal of Mathematical Education in Science and Technology 40(6) (2009) : 828-837.
  • [5] Dana-Picard, T., "Integral presentations of Catalan numbers", International Journal of Mathematical Education in Science and Technology 41(1) (2010) : 63-69.
  • [6] Dana-Picard, T., "Integral presentations of Catalan numbers and Wallis formula", International Journal of Mathematical Education in Science and Technology 42(1) (2011) : 122-129.
  • [7] Dana-Picard, T., Zeitoun, D.G., "Parametric improper integrals, Wallis formula and Catalan numbers", International Journal of Mathematical Education in Science and Technology 43(4) (2012) : 515-520.
  • [8] Deza, E., "Mersenne numbers and Fermat numbers (Vol. 1)", World Scientific, Singapore, 2021.
  • [9] Glasser, M.L., Zhou, Y., "An integral representation for the Fibonacci numbers and their generalization", Fibonacci Quart. 53( 4) (2015) : 313-318.
  • [10] Grimaldi, R., "Fibonacci and Catalan Numbers: an introduction", John Wiley Sons, 2012.
  • [11] Horadam, A.F., "Generating functions for powers of a certain generalised sequence of numbers", Duke Mathematical Journal 32(3) (1965) : 437-446.
  • [12] Horadam, A.F., "Basic properties of a certain generalized sequence of numbers", The Fibonacci Quarterly 3 (1965) : 161-176.
  • [13] Horadam, A.F., "Special properties of the sequence Wn(a; b; p; q)", The Fibonacci Quarterly 5 (1967) : 424-434.
  • [14] Mccalla, P., Nkwanta, A., "Catalan and Motzkin integral representations. in The Golden Anniversary Celebration of the National Association of Mathematicians, Contemporary Mathematics", American Mathematical Society 759 (2020) : 125134.
  • [15] Li, W., Cao, J., Niu, D., Zhao, J., Qi, F., "A brief survey and an analytic generalization of the Catalan numbers and their integral representations", Mathematics 11(8) (2023) : 1870.
  • [16] Keskin, R., Siar, Z., "Some new identities concerning the Horadam sequence and its companion sequence", Communications of the Korean Mathematical Society 34(1) (2019) : 1-16.
  • [17] Koshy, T., "Catalan numbers with applications", Oxford University Press, 2008.
  • [18] Penson, K.A., Sixdeniers, J.M., "Integral representations of Catalan and related numbers", J. Integer Seq. 4(2) (2001) : Article 01.2.5.
  • [19] Gi, F., Guo, B.N., "Integral representations of the Catalan numbers and their applications", Mathematics 5(3) (2017) : 40.
  • [20]Stewart, S.M., "Simple integral representations for the Fibonacci and Lucas Numbers", Aust. J. Math. Anal. Appl. 19(2) (2022) : 2-5.
Year 2024, , 185 - 200, 31.12.2024
https://doi.org/10.30931/jetas.1553048

Abstract

References

  • [1] Andrica, D., Bagdasar, O., "Recurrent Sequences", 2020, Springer, Berlin.
  • [2] Bernhart, F., "Catalan, Motzkin, and Riordan numbers", Discrete Math. 204 (1999) : 73-112.
  • [3] Dana-Picard, T., "Parametric integrals and Catalan numbers", International Journal of Mathematical Education in Science and Technology 36(4) (2005) : 410-414.
  • [4] Dana-Picard, T., Zeitoun., D.G., "Closed forms for 4-parameter families of integrals", International Journal of Mathematical Education in Science and Technology 40(6) (2009) : 828-837.
  • [5] Dana-Picard, T., "Integral presentations of Catalan numbers", International Journal of Mathematical Education in Science and Technology 41(1) (2010) : 63-69.
  • [6] Dana-Picard, T., "Integral presentations of Catalan numbers and Wallis formula", International Journal of Mathematical Education in Science and Technology 42(1) (2011) : 122-129.
  • [7] Dana-Picard, T., Zeitoun, D.G., "Parametric improper integrals, Wallis formula and Catalan numbers", International Journal of Mathematical Education in Science and Technology 43(4) (2012) : 515-520.
  • [8] Deza, E., "Mersenne numbers and Fermat numbers (Vol. 1)", World Scientific, Singapore, 2021.
  • [9] Glasser, M.L., Zhou, Y., "An integral representation for the Fibonacci numbers and their generalization", Fibonacci Quart. 53( 4) (2015) : 313-318.
  • [10] Grimaldi, R., "Fibonacci and Catalan Numbers: an introduction", John Wiley Sons, 2012.
  • [11] Horadam, A.F., "Generating functions for powers of a certain generalised sequence of numbers", Duke Mathematical Journal 32(3) (1965) : 437-446.
  • [12] Horadam, A.F., "Basic properties of a certain generalized sequence of numbers", The Fibonacci Quarterly 3 (1965) : 161-176.
  • [13] Horadam, A.F., "Special properties of the sequence Wn(a; b; p; q)", The Fibonacci Quarterly 5 (1967) : 424-434.
  • [14] Mccalla, P., Nkwanta, A., "Catalan and Motzkin integral representations. in The Golden Anniversary Celebration of the National Association of Mathematicians, Contemporary Mathematics", American Mathematical Society 759 (2020) : 125134.
  • [15] Li, W., Cao, J., Niu, D., Zhao, J., Qi, F., "A brief survey and an analytic generalization of the Catalan numbers and their integral representations", Mathematics 11(8) (2023) : 1870.
  • [16] Keskin, R., Siar, Z., "Some new identities concerning the Horadam sequence and its companion sequence", Communications of the Korean Mathematical Society 34(1) (2019) : 1-16.
  • [17] Koshy, T., "Catalan numbers with applications", Oxford University Press, 2008.
  • [18] Penson, K.A., Sixdeniers, J.M., "Integral representations of Catalan and related numbers", J. Integer Seq. 4(2) (2001) : Article 01.2.5.
  • [19] Gi, F., Guo, B.N., "Integral representations of the Catalan numbers and their applications", Mathematics 5(3) (2017) : 40.
  • [20]Stewart, S.M., "Simple integral representations for the Fibonacci and Lucas Numbers", Aust. J. Math. Anal. Appl. 19(2) (2022) : 2-5.
There are 20 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Ahmet İpek 0000-0001-5821-2426

Publication Date December 31, 2024
Submission Date September 19, 2024
Acceptance Date November 29, 2024
Published in Issue Year 2024

Cite

APA İpek, A. (2024). Integral representations for Mersenne and Horadam-Fermat numbers. Journal of Engineering Technology and Applied Sciences, 9(3), 185-200. https://doi.org/10.30931/jetas.1553048
AMA İpek A. Integral representations for Mersenne and Horadam-Fermat numbers. JETAS. December 2024;9(3):185-200. doi:10.30931/jetas.1553048
Chicago İpek, Ahmet. “Integral Representations for Mersenne and Horadam-Fermat Numbers”. Journal of Engineering Technology and Applied Sciences 9, no. 3 (December 2024): 185-200. https://doi.org/10.30931/jetas.1553048.
EndNote İpek A (December 1, 2024) Integral representations for Mersenne and Horadam-Fermat numbers. Journal of Engineering Technology and Applied Sciences 9 3 185–200.
IEEE A. İpek, “Integral representations for Mersenne and Horadam-Fermat numbers”, JETAS, vol. 9, no. 3, pp. 185–200, 2024, doi: 10.30931/jetas.1553048.
ISNAD İpek, Ahmet. “Integral Representations for Mersenne and Horadam-Fermat Numbers”. Journal of Engineering Technology and Applied Sciences 9/3 (December 2024), 185-200. https://doi.org/10.30931/jetas.1553048.
JAMA İpek A. Integral representations for Mersenne and Horadam-Fermat numbers. JETAS. 2024;9:185–200.
MLA İpek, Ahmet. “Integral Representations for Mersenne and Horadam-Fermat Numbers”. Journal of Engineering Technology and Applied Sciences, vol. 9, no. 3, 2024, pp. 185-00, doi:10.30931/jetas.1553048.
Vancouver İpek A. Integral representations for Mersenne and Horadam-Fermat numbers. JETAS. 2024;9(3):185-200.