Research Article
BibTex RIS Cite
Year 2019, , 95 - 103, 31.08.2019
https://doi.org/10.30931/jetas.598862

Abstract

References

  • [1] Doebelin, E.O., “System dynamics: modeling and response”, Merrill (1972).
  • [2] Çengel, Y.A., Ghajar, A.J., “Heat and mass transfer : fundamentals & applications”, McGraw-Hill Education, 5 edition (2014).
  • [3] Vollmer, M., “Newton’s law of cooling revisited”, Eur. J. Phys. 30 (5) (2009) : 1063-1084.
  • [4] Hireholi, S., Shashishekhar, K.S., Milton, G.S., “Experimental and theoretical study of heat transfer by natural convection of a heat sink used for cooling of electronic chip”, (2013).
  • [5] Himrane, N., Ameziani, D.E., Bennacer, R., “Effect of the weather conditions on natural convection in storage silo”, in 3rd International Symposium on Environmental Friendly Energies and Applications (EFEA) (2014) : 1-6.
  • [6] Bagnall, K.R., Muzychka, Y.S, Wang, E.N., “Application of the kirchhoff transform to thermal spreading problems with convection boundary conditions”, IEEE Trans. Components, Packag. Manuf. Technol. 4 (3) (2014) : 408-420.
  • [7] Yu, L., Liu, D., “Study of the thermal effectiveness of laminar forced convection of nanofluids for liquid cooling applications”, IEEE Trans. Components, Packag. Manuf. Technol. 3 (10) (2013) : 1693-1704.
  • [8] Farahmand, F., Dawson, F.P., Lavers, J.D., “Temperature rise and free-convection heat-transfer coefficient for two-dimensional pot-core inductors and transformers”, IEEE Trans. Ind. Appl. 45 (6) (2009) : 2080-2089.
  • [9] Chang, S.W., “Forced heat convection in a reciprocating duct fitted with 45 degree crossed ribs”, Int. J. Therm. Sci., 41 (3) (2002) : 229-240.
  • [10] Moraga, N.O., Marambio, M.A., Cabrales, R.C., “Geometric multigrid technique for solving heat convection-diffusion and phase change problems”, Int. Commun. Heat Mass Transf. 88 (2017) : 108-119.
  • [11] Wang, C., Qiu, Z., Yang, Y., “Collocation methods for uncertain heat convection-diffusion problem with interval input parameters”, Int. J. Therm. Sci. 107 (2016) : 230-236.
  • [12] Gong, X., Yang, X., Luo, Q., Tang, L., “Effects of convective heat transport in modelling the early evolution of conduits in limestone aquifers”, Geothermics 77 (2019) : 383-394.
  • [13] Castanet, G., Frackowiak, B., Tropea, C., Lemoine, F., “Heat convection within evaporating droplets in strong aerodynamic interactions”, Int. J. Heat Mass Transf. 54 (15-16) (2011) : 3267-3276.
  • [14] Natale, M.F., Santillan Marcus, E.A., “The effect of heat convection on drying of porous semi-infinite space with a heat flux condition on the fixed face x=0”, Appl. Math. Comput. 137 (1) (2003) : 109-129.
  • [15] Belhocine, A., Wan Omar, W.Z., “Numerical study of heat convective mass transfer in a fully developed laminar flow with constant wall temperature” , Case Stud. Therm. Eng. 6 (2015) : 116-127.
  • [16] (Tim) Shih, T.-M., Thamire, C., Zhang, Y., “Heat convection length for boundary-layer flows”, Int. Commun. Heat Mass Transf. 38(4) (2011) : 405-409.
  • [17] Yener, S. C., Yener, T., Mutlu, R., “A process control method for the electric current-activated/assisted sintering system based on the container-consumed power and temperature estimation”, J. Therm. Anal. Calorim. 134 (2) (2018) : 1243-1252.
  • [18] Thellier, F., Monchoux, F., Spagnol, S., Bonnis-Sassi, M., “Measurement of ambient air temperature for evaluation of human heat convective losses”, Measurement 42 (1) (2009) : 62-70.
  • [19] Faraji, M., El Qarnia, H., “Numerical study of free convection dominated melting in an isolated cavity heated by three protruding electronic components”, IEEE Trans. Components Packag. Technol. 33 (1) (2010) : 167-177.
  • [20] Yaacob, Z., Hasan, M.K., “Nonstandard finite difference schemes for natural convection in an inclined porous rectangular cavity”, International Conference on Electrical Engineering and Informatics (ICEEI) (2015) : 665-669.
  • [21] Yang, X., Mao, Z., Wu, Y., Liang, L., Bi, Y., “Numerical simulation on convection heat transfer of pulsating flow in corrugated tube”, International Conference on Materials for Renewable Energy & Environment (2011) : 1882-1884.
  • [22] Shafiq, F., Ullah, A., Chughtai, I., Hamid, A., Nadeem, M., “CFD study of natural convection heat transfer from an enclosed assembly of vertical cylinders”, 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST) (2017) : 519-522.
  • [23] Cardarelli, F., “Materials handbook : a concise desktop reference”, Springer (2008).
  • [24] Wujek, S.S., Staats, W.L., Elbel, S.W., Koplow, J.P., Kariya, H.A., Hrnjak, P.S., “Method for determining air side convective heat transfer coefficient using infrared thermography method for determining air side convective heat transfer coefficient using infrared thermography”, Purdue e-pubs 2587 (2016).
  • [25] Conti, R., Gallitto, A.A., Fiordilino, E., “Measurement of the convective heat-transfer coefficient” arXiv:1401.0270v1 (2014).
  • [26] Garnier, B., Lanzetta, F., Lemasson, P., Virgone, J., “Lecture 5A: Measurements with contact in heat transfer: Principles, implementation and pitfalls”, Eurotherm Seminar 94 Advanced Spring School: Thermal measurements & inverse techniques 5th edition-Station Biologique de Roscoff (13–18 June, 2011).
  • [27] Nakamura, H., “Spatio-temporal measurement of convective heat transfer using infrared thermography”, in Heat Transfer - Theoretical Analysis, Experimental Investigations and Industrial Systems InTech (2011).

Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting

Year 2019, , 95 - 103, 31.08.2019
https://doi.org/10.30931/jetas.598862

Abstract

The convection coefficient is an important thermal property. In this study, using an infrared thermometer, the convection coefficient of still air is estimated. First, the sample is heated in a sintering oven, then placed on a wood table for obtaining an almost adiabatic boundary, finally its temperature is recorded with respect to time using an infrared thermometer. The data is curve-fitted to find the sample temperature as a function of time. Using the sample’s physical dimensions, the specific heat capacity and the mass of the sample, the convection coefficient of still air is estimated.

References

  • [1] Doebelin, E.O., “System dynamics: modeling and response”, Merrill (1972).
  • [2] Çengel, Y.A., Ghajar, A.J., “Heat and mass transfer : fundamentals & applications”, McGraw-Hill Education, 5 edition (2014).
  • [3] Vollmer, M., “Newton’s law of cooling revisited”, Eur. J. Phys. 30 (5) (2009) : 1063-1084.
  • [4] Hireholi, S., Shashishekhar, K.S., Milton, G.S., “Experimental and theoretical study of heat transfer by natural convection of a heat sink used for cooling of electronic chip”, (2013).
  • [5] Himrane, N., Ameziani, D.E., Bennacer, R., “Effect of the weather conditions on natural convection in storage silo”, in 3rd International Symposium on Environmental Friendly Energies and Applications (EFEA) (2014) : 1-6.
  • [6] Bagnall, K.R., Muzychka, Y.S, Wang, E.N., “Application of the kirchhoff transform to thermal spreading problems with convection boundary conditions”, IEEE Trans. Components, Packag. Manuf. Technol. 4 (3) (2014) : 408-420.
  • [7] Yu, L., Liu, D., “Study of the thermal effectiveness of laminar forced convection of nanofluids for liquid cooling applications”, IEEE Trans. Components, Packag. Manuf. Technol. 3 (10) (2013) : 1693-1704.
  • [8] Farahmand, F., Dawson, F.P., Lavers, J.D., “Temperature rise and free-convection heat-transfer coefficient for two-dimensional pot-core inductors and transformers”, IEEE Trans. Ind. Appl. 45 (6) (2009) : 2080-2089.
  • [9] Chang, S.W., “Forced heat convection in a reciprocating duct fitted with 45 degree crossed ribs”, Int. J. Therm. Sci., 41 (3) (2002) : 229-240.
  • [10] Moraga, N.O., Marambio, M.A., Cabrales, R.C., “Geometric multigrid technique for solving heat convection-diffusion and phase change problems”, Int. Commun. Heat Mass Transf. 88 (2017) : 108-119.
  • [11] Wang, C., Qiu, Z., Yang, Y., “Collocation methods for uncertain heat convection-diffusion problem with interval input parameters”, Int. J. Therm. Sci. 107 (2016) : 230-236.
  • [12] Gong, X., Yang, X., Luo, Q., Tang, L., “Effects of convective heat transport in modelling the early evolution of conduits in limestone aquifers”, Geothermics 77 (2019) : 383-394.
  • [13] Castanet, G., Frackowiak, B., Tropea, C., Lemoine, F., “Heat convection within evaporating droplets in strong aerodynamic interactions”, Int. J. Heat Mass Transf. 54 (15-16) (2011) : 3267-3276.
  • [14] Natale, M.F., Santillan Marcus, E.A., “The effect of heat convection on drying of porous semi-infinite space with a heat flux condition on the fixed face x=0”, Appl. Math. Comput. 137 (1) (2003) : 109-129.
  • [15] Belhocine, A., Wan Omar, W.Z., “Numerical study of heat convective mass transfer in a fully developed laminar flow with constant wall temperature” , Case Stud. Therm. Eng. 6 (2015) : 116-127.
  • [16] (Tim) Shih, T.-M., Thamire, C., Zhang, Y., “Heat convection length for boundary-layer flows”, Int. Commun. Heat Mass Transf. 38(4) (2011) : 405-409.
  • [17] Yener, S. C., Yener, T., Mutlu, R., “A process control method for the electric current-activated/assisted sintering system based on the container-consumed power and temperature estimation”, J. Therm. Anal. Calorim. 134 (2) (2018) : 1243-1252.
  • [18] Thellier, F., Monchoux, F., Spagnol, S., Bonnis-Sassi, M., “Measurement of ambient air temperature for evaluation of human heat convective losses”, Measurement 42 (1) (2009) : 62-70.
  • [19] Faraji, M., El Qarnia, H., “Numerical study of free convection dominated melting in an isolated cavity heated by three protruding electronic components”, IEEE Trans. Components Packag. Technol. 33 (1) (2010) : 167-177.
  • [20] Yaacob, Z., Hasan, M.K., “Nonstandard finite difference schemes for natural convection in an inclined porous rectangular cavity”, International Conference on Electrical Engineering and Informatics (ICEEI) (2015) : 665-669.
  • [21] Yang, X., Mao, Z., Wu, Y., Liang, L., Bi, Y., “Numerical simulation on convection heat transfer of pulsating flow in corrugated tube”, International Conference on Materials for Renewable Energy & Environment (2011) : 1882-1884.
  • [22] Shafiq, F., Ullah, A., Chughtai, I., Hamid, A., Nadeem, M., “CFD study of natural convection heat transfer from an enclosed assembly of vertical cylinders”, 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST) (2017) : 519-522.
  • [23] Cardarelli, F., “Materials handbook : a concise desktop reference”, Springer (2008).
  • [24] Wujek, S.S., Staats, W.L., Elbel, S.W., Koplow, J.P., Kariya, H.A., Hrnjak, P.S., “Method for determining air side convective heat transfer coefficient using infrared thermography method for determining air side convective heat transfer coefficient using infrared thermography”, Purdue e-pubs 2587 (2016).
  • [25] Conti, R., Gallitto, A.A., Fiordilino, E., “Measurement of the convective heat-transfer coefficient” arXiv:1401.0270v1 (2014).
  • [26] Garnier, B., Lanzetta, F., Lemasson, P., Virgone, J., “Lecture 5A: Measurements with contact in heat transfer: Principles, implementation and pitfalls”, Eurotherm Seminar 94 Advanced Spring School: Thermal measurements & inverse techniques 5th edition-Station Biologique de Roscoff (13–18 June, 2011).
  • [27] Nakamura, H., “Spatio-temporal measurement of convective heat transfer using infrared thermography”, in Heat Transfer - Theoretical Analysis, Experimental Investigations and Industrial Systems InTech (2011).
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Tuba Yener 0000-0002-2908-8507

Şuayb Çağrı Yener 0000-0002-6211-3751

Reşat Mutlu 0000-0003-0030-7136

Publication Date August 31, 2019
Published in Issue Year 2019

Cite

APA Yener, T., Yener, Ş. Ç., & Mutlu, R. (2019). Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting. Journal of Engineering Technology and Applied Sciences, 4(2), 95-103. https://doi.org/10.30931/jetas.598862
AMA Yener T, Yener ŞÇ, Mutlu R. Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting. JETAS. August 2019;4(2):95-103. doi:10.30931/jetas.598862
Chicago Yener, Tuba, Şuayb Çağrı Yener, and Reşat Mutlu. “Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting”. Journal of Engineering Technology and Applied Sciences 4, no. 2 (August 2019): 95-103. https://doi.org/10.30931/jetas.598862.
EndNote Yener T, Yener ŞÇ, Mutlu R (August 1, 2019) Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting. Journal of Engineering Technology and Applied Sciences 4 2 95–103.
IEEE T. Yener, Ş. Ç. Yener, and R. Mutlu, “Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting”, JETAS, vol. 4, no. 2, pp. 95–103, 2019, doi: 10.30931/jetas.598862.
ISNAD Yener, Tuba et al. “Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting”. Journal of Engineering Technology and Applied Sciences 4/2 (August 2019), 95-103. https://doi.org/10.30931/jetas.598862.
JAMA Yener T, Yener ŞÇ, Mutlu R. Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting. JETAS. 2019;4:95–103.
MLA Yener, Tuba et al. “Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting”. Journal of Engineering Technology and Applied Sciences, vol. 4, no. 2, 2019, pp. 95-103, doi:10.30931/jetas.598862.
Vancouver Yener T, Yener ŞÇ, Mutlu R. Convection Coefficient Estimation of Still Air Using an Infrared Thermometer and Curve-Fitting. JETAS. 2019;4(2):95-103.