Research Article
BibTex RIS Cite
Year 2021, , 23 - 36, 30.04.2021
https://doi.org/10.30931/jetas.865432

Abstract

References

  • [1] Jain, M., Allin, J., Bull, M.J., “Deep drawing characteristics of automotive aluminum alloys”, Mater Sci Eng A, 256(1-2) (1998) : 69–82.
  • [2] Yu, Z., Lin, Z., Zhao, Y., “Evaluation of fracture limit in automotive aluminium alloy sheet forming”, Materials & design 28(1) (2007) : 203-207.
  • [3] Toros, S., Ozturk, F., Kacar, I., “Review of warm forming of aluminum–magnesium alloys”, Journal of materials processing technology 207(1-3) (2008) : 1-12.
  • [4] Casalino, G., Mortello, M., Leo, P., Benyounis, K.Y., Olabi, A.G., “Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy”, Materials & Design 61 (2014) : 191-198.
  • [5] Liu, P., Li, Y., Geng, H., Wang, J., “Microstructure characteristics in TIG welded joint of Mg/Al dissimilar materials”, Materials Letters 61(6) (2007) : 1288-1291.
  • [6] Ben-Artzy, A., Munitz A., Kohn, G., Bronfin, B., Shtechman, A., “Joining go flight hybrid constructions made of magnesium and aluminum alloys”, Magnesium Technology (2002) : 295–302.
  • [7] Liu, L., Ren, D., Liu, F., “A review of dissimilar welding techniques for magnesium alloys to aluminum alloys”, Materials 7(5) (2014) : 3735–3757.
  • [8] Liu, L., Tan, J., Liu, X., “Reactive brazing of Al alloy to Mg alloy using zinc-based brazing alloy”, Materials Letters 61(11-12) (2007) : 2373–2377.
  • [9] Wang, Z., Wang, H., Liu, L., “Study on low temperature brazing of magnesium alloy to aluminum alloy using Sn–xZn solders”, Materials & Design 39 (2012) : 14–19.
  • [10] Zhao, L.M., Zhang, Z.D., “Effect of Zn alloy inter layer on interface microstructure and strength of diffusion-bonded Mg–Al joints”, Scripta Materialia 58(4) (2008) : 283–286.
  • [11] Liu, L.M., Zhao, L.M., Xu, R.Z., “Effect of inter layer composition on the microstructure and strength of diffusion bonded Mg/Al joint”, Materials & Design 30(10) (2009) : 4548–4551.
  • [12] Shang, J., Wang, K., Zhou, Q., Zhang, D., Huang, J., Li, G., “Microstructure characteristics and mechanical properties of cold metal transfer welding Mg/Al dissimilar metals”, Mater. Des. 34 (2012) : 559–565.
  • [13] Wang, J., Feng, J.C., Wang, Y.X., “Microstructure of Al–Mg dissimilar weld made by cold metal transfer MIG welding”, Materials Science and Technology 24(7) (2008) : 827-831.
  • [14] Xue, P., Xiao, B.L., Zhang, Q., Ma, Z.Y., “Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling”, Scripta Materialia. 64(11) (2011) : 1051–1054.
  • [15] Liu, F., Ren, D., Liu, L., “Effect of Al foils interlayer on microstructures and mechanical properties of Mg–Al butt joints welded by gas tungsten arc welding filling with Zn filler metal”, Mater. Des. 46 (2013) : 419–425.
  • [16] Liu, F., Zhang, Z., Liu, L., “Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal”, Mater. Charact. 69 (2012) : 84–89.
  • [17] Dorbane, A., Mansoor, B., Ayoub, G., Shunmugasamy, V.C. Imad, A., “Mechanical, micro structural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061”, Materials Science & Engineering A 651 (2016) : 720–733.
  • [18] Brandt, U., Lawrence, F.V., Sonsino, C.M., “Fatigue crack initiation and growth in AlMg4. 5Mn butt weldments”, Fatigue & Fracture of Engineering Materials & Structures 24(2) (2001) : 117-126.
  • [19] Sanders Jr., W.W., Lawrence Jr., F.V., “Fatigue behavior of aluminum alloy weldments”, Am. Soc. Test. Mater., Philadelphia, PA, ASTM STP 648 (1978) : 22– 34.
  • [20] Da Cruz, J.P., Costa, J.D.M., Borrego, L.F.P., Ferreira, J.A.M., “Fatigue life prediction in AlMgSi1 lap joint weldments”, International Journal of Fatigue 22(7) (2000) : 601-610.
  • [21] Moreira, P.M.G.P., De Figueiredo, M.A.V., De Castro, P.M.S.T., “Fatigue behaviour of FSW and MIG weldments for two aluminium alloys”, Theoretical and applied fracture mechanics 48(2) (2007) : 169-177.
  • [22] Costa, J.D., Ferreira, J.A.M., Borrego, L.P., Abreu, L.P., “Fatigue behaviour of AA6082 friction stir welds under variable loadings”, International Journal of Fatigue 37 (2012) : 8-16.
  • [23] Ericsson, M., Sandström, R., “Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG”, International Journal of Fatigue 25(12) (2003) : 1379-1387.
  • [24] Da Silva, J., Costa, J.M., Loureiro, A., Ferreira, J.M., “Fatigue behaviour of AA6082-T6 MIG welded butt joints improved by friction stir processing”, Materials & Design 51 (2013) : 315-322.
  • [25] Costa, J.D.M., Jesus, J.S., Loureiro, A., Ferreira, J.A.M., Borrego, L.P., “Fatigue life improvement of mig welded aluminium T-joints by friction stir processing”, International journal of fatigue 61 (2014) : 244-254.
  • [26] Borrego, L.P., Costa, J.D., Jesus, J.S., Loureiro, A.R., Ferreira, J.M., “Fatigue life improvement by friction stir processing of 5083 aluminium alloy MIG butt welds”, Theoretical and Applied Fracture Mechanics 70 (2014) : 68-74.
  • [27] Sato, Y.S., Arkom, P., Kokawa, H., Nelson, T.W., Steel, R.J., “Effect of microstructure on properties of friction stir welded Inconel Alloy 600”, Materials Science and Engineering: A, 477(1-2) (2008) : 250-258.
  • [28] Menzemer, C., Lam, P.C., Srivatsan, T.S., Wittel, C.F., “An investigation of fusion zone microstructures of welded aluminum alloy joints”, Materials Letters 41(4) (1999) : 192-197.
  • [29] Lakshminarayanan, A.K., Balasubramanian, V., Elangovan, K., “Effect of welding processes on tensile properties of AA6061 aluminium alloy joints”, The International Journal of Advanced Manufacturing Technology 40(3-4) (2009) : 286-296.
  • [30] Yang, D., Li, X., He, D., Huang, H., Zhang, L., “Study on microstructure and mechanical properties of Al–Mg–Mn–Er alloy joints welded by TIG and laser beam”, Materials & Design, 40 (2012) : 117-123.
  • [31] Bradstreet, B., “Effect of surface tension and metal flow on weld bead formation”, Welding journal 47(7) (1968) : 314s-322s.
  • [32] Lucas, B., “FCAW, multi wire and gas selection: techniques to enhance MIG productivity”, Welding and metal fabrication 65(5) (1997) : 10-12.
  • [33] Tusek, J., “Raising arc welding productivity”, Weld. Rev. Int. 8 (1996) : 102–105.
  • [34] Ueyama, T., Ohnawa, T., Tanaka, M., Nakata, K., “Effects of torch configuration and welding current on weld bead formation in high speed tandem pulsed gas metal arc welding of steel sheets”, Science and Technology of Welding and Joining 10(6) (2005) : 750-759.
  • [35] Li, K.H., Chen, J.S., Zhang, Y., “Double-electrode GMAW process and control”, Weld. J.-New York, 86(8) (2007) : 231.
  • [36] Meng, X., Qin, G., Zhang, Y., Fu, B., Zou, Z., “High speed TIG–MAG hybrid arc welding of mild steel plate”, Journal of Materials Processing Technology 214(11) (2014) : 2417-2424.
  • [37] Shojaeefard, M.H., Behnagh, R.A., Akbari, M., Givi, M.K.B., Farhani, F., “Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm”, Materials & Design 44 (2013) : 190-198.
  • [38] Karadeniz, E., Ozsarac, U., Yildiz, C., “The effect of process parameters on penetration in gas metal arc welding processes”, Materials & design 28(2) (2007) : 649-656.
  • [39] Pal, K., Pal, S.K., “Study of weld joint strength using sensor signals for various torch angles in pulsed MIG welding”, CIRP Journal of Manufacturing Science and Technology 3(1) (2010) : 55-65.
  • [40] Birol, Y., “Effect of processing on microstructure, texture and mechanical properties of twin roll cast 5754 sheet”, Materials science and technology 22(8) (2006) : 987-994.
  • [41] Liu, A., Tang, X., Lu, F., “Study on welding process and prosperities of AA5754 Al-alloy welded by double pulsed gas metal arc welding”, Materials & design 50 (2013) : 149-155.
  • [42] Preston, R.V., Shercliff, H.R., Withers, P.J., Smith, S., “Physically-based constitutive modelling of residual stress development in welding of aluminium alloy 2024”, Acta Materialia 52(17) (2004) : 4973-4983.

Mechanical and Microstructural Properties of AL 5754 Alloy Joined by GMAW and GTAW

Year 2021, , 23 - 36, 30.04.2021
https://doi.org/10.30931/jetas.865432

Abstract

The purpose of this study is to examine the effect of double pulse Gas Metal Arc Welding (GMAW) and Gas Tungsten Arc Welding (GTAW) on metal droplet transfer, weld bead geometry, weld pool profile and to examine the mechanical properties of the Al 5754 alloy weld joints. Al 5754-Al 5754 aluminum alloy plates were welded with ER 5356 welding wire. No significant defects were found, and full penetration joints were created. The effect of arc welding parameters on the speed and appearance of welding were investigated by means of macrostructure and microstructure characterization of fusion zone. Also, the characters of tensility and micro-hardness being of the welded specimens were measured.

References

  • [1] Jain, M., Allin, J., Bull, M.J., “Deep drawing characteristics of automotive aluminum alloys”, Mater Sci Eng A, 256(1-2) (1998) : 69–82.
  • [2] Yu, Z., Lin, Z., Zhao, Y., “Evaluation of fracture limit in automotive aluminium alloy sheet forming”, Materials & design 28(1) (2007) : 203-207.
  • [3] Toros, S., Ozturk, F., Kacar, I., “Review of warm forming of aluminum–magnesium alloys”, Journal of materials processing technology 207(1-3) (2008) : 1-12.
  • [4] Casalino, G., Mortello, M., Leo, P., Benyounis, K.Y., Olabi, A.G., “Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy”, Materials & Design 61 (2014) : 191-198.
  • [5] Liu, P., Li, Y., Geng, H., Wang, J., “Microstructure characteristics in TIG welded joint of Mg/Al dissimilar materials”, Materials Letters 61(6) (2007) : 1288-1291.
  • [6] Ben-Artzy, A., Munitz A., Kohn, G., Bronfin, B., Shtechman, A., “Joining go flight hybrid constructions made of magnesium and aluminum alloys”, Magnesium Technology (2002) : 295–302.
  • [7] Liu, L., Ren, D., Liu, F., “A review of dissimilar welding techniques for magnesium alloys to aluminum alloys”, Materials 7(5) (2014) : 3735–3757.
  • [8] Liu, L., Tan, J., Liu, X., “Reactive brazing of Al alloy to Mg alloy using zinc-based brazing alloy”, Materials Letters 61(11-12) (2007) : 2373–2377.
  • [9] Wang, Z., Wang, H., Liu, L., “Study on low temperature brazing of magnesium alloy to aluminum alloy using Sn–xZn solders”, Materials & Design 39 (2012) : 14–19.
  • [10] Zhao, L.M., Zhang, Z.D., “Effect of Zn alloy inter layer on interface microstructure and strength of diffusion-bonded Mg–Al joints”, Scripta Materialia 58(4) (2008) : 283–286.
  • [11] Liu, L.M., Zhao, L.M., Xu, R.Z., “Effect of inter layer composition on the microstructure and strength of diffusion bonded Mg/Al joint”, Materials & Design 30(10) (2009) : 4548–4551.
  • [12] Shang, J., Wang, K., Zhou, Q., Zhang, D., Huang, J., Li, G., “Microstructure characteristics and mechanical properties of cold metal transfer welding Mg/Al dissimilar metals”, Mater. Des. 34 (2012) : 559–565.
  • [13] Wang, J., Feng, J.C., Wang, Y.X., “Microstructure of Al–Mg dissimilar weld made by cold metal transfer MIG welding”, Materials Science and Technology 24(7) (2008) : 827-831.
  • [14] Xue, P., Xiao, B.L., Zhang, Q., Ma, Z.Y., “Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling”, Scripta Materialia. 64(11) (2011) : 1051–1054.
  • [15] Liu, F., Ren, D., Liu, L., “Effect of Al foils interlayer on microstructures and mechanical properties of Mg–Al butt joints welded by gas tungsten arc welding filling with Zn filler metal”, Mater. Des. 46 (2013) : 419–425.
  • [16] Liu, F., Zhang, Z., Liu, L., “Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal”, Mater. Charact. 69 (2012) : 84–89.
  • [17] Dorbane, A., Mansoor, B., Ayoub, G., Shunmugasamy, V.C. Imad, A., “Mechanical, micro structural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061”, Materials Science & Engineering A 651 (2016) : 720–733.
  • [18] Brandt, U., Lawrence, F.V., Sonsino, C.M., “Fatigue crack initiation and growth in AlMg4. 5Mn butt weldments”, Fatigue & Fracture of Engineering Materials & Structures 24(2) (2001) : 117-126.
  • [19] Sanders Jr., W.W., Lawrence Jr., F.V., “Fatigue behavior of aluminum alloy weldments”, Am. Soc. Test. Mater., Philadelphia, PA, ASTM STP 648 (1978) : 22– 34.
  • [20] Da Cruz, J.P., Costa, J.D.M., Borrego, L.F.P., Ferreira, J.A.M., “Fatigue life prediction in AlMgSi1 lap joint weldments”, International Journal of Fatigue 22(7) (2000) : 601-610.
  • [21] Moreira, P.M.G.P., De Figueiredo, M.A.V., De Castro, P.M.S.T., “Fatigue behaviour of FSW and MIG weldments for two aluminium alloys”, Theoretical and applied fracture mechanics 48(2) (2007) : 169-177.
  • [22] Costa, J.D., Ferreira, J.A.M., Borrego, L.P., Abreu, L.P., “Fatigue behaviour of AA6082 friction stir welds under variable loadings”, International Journal of Fatigue 37 (2012) : 8-16.
  • [23] Ericsson, M., Sandström, R., “Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG”, International Journal of Fatigue 25(12) (2003) : 1379-1387.
  • [24] Da Silva, J., Costa, J.M., Loureiro, A., Ferreira, J.M., “Fatigue behaviour of AA6082-T6 MIG welded butt joints improved by friction stir processing”, Materials & Design 51 (2013) : 315-322.
  • [25] Costa, J.D.M., Jesus, J.S., Loureiro, A., Ferreira, J.A.M., Borrego, L.P., “Fatigue life improvement of mig welded aluminium T-joints by friction stir processing”, International journal of fatigue 61 (2014) : 244-254.
  • [26] Borrego, L.P., Costa, J.D., Jesus, J.S., Loureiro, A.R., Ferreira, J.M., “Fatigue life improvement by friction stir processing of 5083 aluminium alloy MIG butt welds”, Theoretical and Applied Fracture Mechanics 70 (2014) : 68-74.
  • [27] Sato, Y.S., Arkom, P., Kokawa, H., Nelson, T.W., Steel, R.J., “Effect of microstructure on properties of friction stir welded Inconel Alloy 600”, Materials Science and Engineering: A, 477(1-2) (2008) : 250-258.
  • [28] Menzemer, C., Lam, P.C., Srivatsan, T.S., Wittel, C.F., “An investigation of fusion zone microstructures of welded aluminum alloy joints”, Materials Letters 41(4) (1999) : 192-197.
  • [29] Lakshminarayanan, A.K., Balasubramanian, V., Elangovan, K., “Effect of welding processes on tensile properties of AA6061 aluminium alloy joints”, The International Journal of Advanced Manufacturing Technology 40(3-4) (2009) : 286-296.
  • [30] Yang, D., Li, X., He, D., Huang, H., Zhang, L., “Study on microstructure and mechanical properties of Al–Mg–Mn–Er alloy joints welded by TIG and laser beam”, Materials & Design, 40 (2012) : 117-123.
  • [31] Bradstreet, B., “Effect of surface tension and metal flow on weld bead formation”, Welding journal 47(7) (1968) : 314s-322s.
  • [32] Lucas, B., “FCAW, multi wire and gas selection: techniques to enhance MIG productivity”, Welding and metal fabrication 65(5) (1997) : 10-12.
  • [33] Tusek, J., “Raising arc welding productivity”, Weld. Rev. Int. 8 (1996) : 102–105.
  • [34] Ueyama, T., Ohnawa, T., Tanaka, M., Nakata, K., “Effects of torch configuration and welding current on weld bead formation in high speed tandem pulsed gas metal arc welding of steel sheets”, Science and Technology of Welding and Joining 10(6) (2005) : 750-759.
  • [35] Li, K.H., Chen, J.S., Zhang, Y., “Double-electrode GMAW process and control”, Weld. J.-New York, 86(8) (2007) : 231.
  • [36] Meng, X., Qin, G., Zhang, Y., Fu, B., Zou, Z., “High speed TIG–MAG hybrid arc welding of mild steel plate”, Journal of Materials Processing Technology 214(11) (2014) : 2417-2424.
  • [37] Shojaeefard, M.H., Behnagh, R.A., Akbari, M., Givi, M.K.B., Farhani, F., “Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm”, Materials & Design 44 (2013) : 190-198.
  • [38] Karadeniz, E., Ozsarac, U., Yildiz, C., “The effect of process parameters on penetration in gas metal arc welding processes”, Materials & design 28(2) (2007) : 649-656.
  • [39] Pal, K., Pal, S.K., “Study of weld joint strength using sensor signals for various torch angles in pulsed MIG welding”, CIRP Journal of Manufacturing Science and Technology 3(1) (2010) : 55-65.
  • [40] Birol, Y., “Effect of processing on microstructure, texture and mechanical properties of twin roll cast 5754 sheet”, Materials science and technology 22(8) (2006) : 987-994.
  • [41] Liu, A., Tang, X., Lu, F., “Study on welding process and prosperities of AA5754 Al-alloy welded by double pulsed gas metal arc welding”, Materials & design 50 (2013) : 149-155.
  • [42] Preston, R.V., Shercliff, H.R., Withers, P.J., Smith, S., “Physically-based constitutive modelling of residual stress development in welding of aluminium alloy 2024”, Acta Materialia 52(17) (2004) : 4973-4983.
There are 42 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Nürettin Akçakale 0000-0002-2038-3294

Publication Date April 30, 2021
Published in Issue Year 2021

Cite

APA Akçakale, N. (2021). Mechanical and Microstructural Properties of AL 5754 Alloy Joined by GMAW and GTAW. Journal of Engineering Technology and Applied Sciences, 6(1), 23-36. https://doi.org/10.30931/jetas.865432
AMA Akçakale N. Mechanical and Microstructural Properties of AL 5754 Alloy Joined by GMAW and GTAW. JETAS. April 2021;6(1):23-36. doi:10.30931/jetas.865432
Chicago Akçakale, Nürettin. “Mechanical and Microstructural Properties of AL 5754 Alloy Joined by GMAW and GTAW”. Journal of Engineering Technology and Applied Sciences 6, no. 1 (April 2021): 23-36. https://doi.org/10.30931/jetas.865432.
EndNote Akçakale N (April 1, 2021) Mechanical and Microstructural Properties of AL 5754 Alloy Joined by GMAW and GTAW. Journal of Engineering Technology and Applied Sciences 6 1 23–36.
IEEE N. Akçakale, “Mechanical and Microstructural Properties of AL 5754 Alloy Joined by GMAW and GTAW”, JETAS, vol. 6, no. 1, pp. 23–36, 2021, doi: 10.30931/jetas.865432.
ISNAD Akçakale, Nürettin. “Mechanical and Microstructural Properties of AL 5754 Alloy Joined by GMAW and GTAW”. Journal of Engineering Technology and Applied Sciences 6/1 (April 2021), 23-36. https://doi.org/10.30931/jetas.865432.
JAMA Akçakale N. Mechanical and Microstructural Properties of AL 5754 Alloy Joined by GMAW and GTAW. JETAS. 2021;6:23–36.
MLA Akçakale, Nürettin. “Mechanical and Microstructural Properties of AL 5754 Alloy Joined by GMAW and GTAW”. Journal of Engineering Technology and Applied Sciences, vol. 6, no. 1, 2021, pp. 23-36, doi:10.30931/jetas.865432.
Vancouver Akçakale N. Mechanical and Microstructural Properties of AL 5754 Alloy Joined by GMAW and GTAW. JETAS. 2021;6(1):23-36.

Cited By