Research Article
BibTex RIS Cite
Year 2016, Volume: 1 Issue: 1, 34 - 50, 01.05.2016
https://doi.org/10.30931/jetas.281381

Abstract

References

  • [1] Y. Xie, F. Chen, J. He, J. Zhao and H. Wang, “Photoassisted degradation of dyes in the presence of Fe3+ and H2O2 under visible irradiation”, J. of Photochem. and Photobio. A: Chem., 2000, 136, 235-240.
  • [2] C.A. Martínez-Huitle and E. Brillas, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review”, App. Cat. B: Environ., 2009, 87, 105-145.
  • [3] V.K. Gupta, D. Pathania, S. Agarwal and S. Sharma, “De-coloration of hazardous dye from water system using chemically modified Ficus carica adsorbent”, J.of Molec. Liquid., 2012, 174, 86-94.
  • [4] A. Guevara-Lara, R. Bacaud and M. Vrinat, “Highly active NiMo/TiO2–Al2O3 catalysts: Influence of the preparation and the activation conditions on the catalytic activity”, App. Cat. A: Gen.l, 2007, 328, 99-108.
  • [5] B. Mounir, M.-N. Pons, O. Zahraa, A. Yaacoubi and A. Benhammou, “Discoloration of a red cationic dye by supported TiO2 photocatalysis”, J. of Hazard. Mater., 2007, 148, 513-520.
  • [6] S. Mozia, M. Tomaszewska and A.W. Morawski, “Photocatalytic membrane reactor (PMR) coupling photocatalysis and membrane distillation—effectiveness of removal of three azo dyes from water”, Catal. Today, 2007, 129, 3-8.
  • [7] S.F. Villanueva and S.S. Martínez, “TiO2-assisted degradation of acid orange 7 textile dye under solar light”, Solar en. Mat. and solar cells, 2007, 91, 1492-1495.
  • [8] X.H. Xia, Y. Liang, Z. Wang, J. Fan, Y.S. Luo and Z.J. Jia, “Synthesis and photocatalytic properties of TiO2 nanostructures”, Mat. Res. Bull., 2008, 43, 2187-2195.
  • [9] M.A. Fox and M.T. Dulay, “Heterogeneous photocatalysis”, Chem. reviews, 1993, 93, 341-357.
  • [10] O. Legrini, E. Oliveros and A. Braun, “Photochemical processes for water treatment”, Chem. Reviews, 1993, 93, 671-698.
  • [11] M.I. Litter, “Heterogeneous photocatalysis: transition metal ions in photocatalytic systems”, App. Cat. B: Environ., 1999, 23, 89-114.
  • [12] O. Carp, C.L. Huisman and A. Reller, “Photoinduced reactivity of titanium dioxide”, Prog. in solid state chem., 2004, 32, 33-177.
  • [13] H. Yamashita, M. Honda, M. Harada, Y. Ichihashi, M. Anpo, T. Hirao, N. Itoh and N. Iwamoto, “Preparation of titanium oxide photocatalysts anchored on porous silica glass by a metal ion-implantation method and their photocatalytic reactivities for the degradation of 2-propanol diluted in water”, The J. of Phys. Chem. B, 1998, 102, 10707-10711.
  • [14] A. Di Paola, G. Marci, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda and B. Ohtani, “Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol”, The J. of Phys. Chem. B, 2002, 106, 637-645.
  • [15] D. Chatterjee and S. Dasgupta, “Visible light induced photocatalytic degradation of organic pollutants”, J. of Photochem. and Photobiol. C: Photochemi. Reviews, 2005, 6, 186-205.
  • [16] W. Su, Y. Zhang, Z. Li, L. Wu, X. Wang, J. Li and X. Fu, “Multivalency iodine doped TiO2: preparation, characterization, theoretical studies, and visible-light photocatalysis”, Langmuir, 2008, 24, 3422-3428.
  • [17] G. Mele, R. Del Sole, G. Vasapollo, E. Garcı́a-López, L. Palmisano and M. Schiavello, “Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)–porphyrin or Cu(II)–phthalocyanine”, J.l of Catalysis, 2003, 217, 334-342.
  • [18] C. Wang, J. Li, G. Mele, G.-M. Yang, F.-X. Zhang, L. Palmisano and G. Vasapollo, “Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation”, App. Cat. B: Environ., 2007,76, 218-226.
  • [19] T.-V. Nguyen, J.C. Wu and C.-H. Chiou, “Photoreduction of CO2 over Ruthenium dyesensitized TiO2-based catalysts under concentrated natural sunlight”, Cat. Commun., 2008, 9(10), 2073-2076.
  • [20] Y. Li, M. Guo, S. Peng, G. Lu, S. Li, Formation of multilayer-Eosin Y-sensitized TiO2 via Fe3+ coupling for efficient visible-light photocatalytic hydrogen evolution”, int. J. of hydrogen energy, 2009, 34, 5629-5636.
  • [21] H.M. Sung-Suh, J.R. Choi, H.J. Hah, S.M. Koo and Y.C. Bae, “Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation”, J. of Photochem. and Photobiol. A: Chem., 2004,163, 37-44.
  • [22] X. You, F. Chen, J. Zhang and M. Anpo, “A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide”, Cat. Letters, 2005, 102, 247-250.
  • [23] H.-Y. Chuang and D.-H. Chen, “Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles”, Nanotechnology, 2009, 20, 105704.
  • [24] S. Feng, M. Wang, Y. Zhou, P. Li, W. Tu and Z. Zou, “Double-shelled plasmonic AgTiO2 hollow spheres toward visible light-active photocatalytic conversion of CO2 into solar fuel”, APL Mater., 2015, 3, 104416.
  • [25] W.J. Tseng, S.-M. Kao and J.H. Hsieh, “Photocatalytic and bactericidal activity of mesoporous TiO2–Ag nanocomposite particles”, Cer. Inter., 2015, 41, 10494-10500.
  • [26] I.H. Chowdhury, S. Ghosh and M.K. Naskar, “Aqueous-based synthesis of mesoporous TiO2 and Ag–TiO2 nanopowders for efficient photodegradation of methylene blue”, Cer.Inter.2016, 42, 2488-2496.
  • [27] Y. Tian and T. Tatsuma, “Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2”, Chem. Commun., 2004, 16, 1810-1811.
  • [28] M.S. Lee, S.-S. Hong and M. Mohseni, Synthesis of photocatalytic nanosized TiO2–Ag particles with sol–gel method using reduction agent”, J. of Molec. Cat. A: Chem., 2005, 242, 135-140.
  • [29] Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles”, J. of ACS, 2005, 127, 7632- 7637.
  • [30] A. Kubacka, M. Ferrer, A. Martínez-Arias and M. Fernández-García, “Ag promotion of TiO2-anatase disinfection capability: study of Escherichia coli inactivation”, App. Cat. B: Environ., 2008, 84, 87-93.
  • [31] J. Yu, J. Xiong, B. Cheng and S. Liu, “Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity”, App. Cat. B: Environ., 2005, 60, 211-221.
  • [32] M.K. Seery, R. George, P. Floris and S.C. Pillai, “Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis”, J. of Photochem. and Photobiol.A: Chem.2007, 189, 258-263.
  • [33] C. Suwanchawalit, S. Wongnawa, P. Sriprang and P. Meanha, “Enhancement of the photocatalytic performance of Ag-modified TiO2 photocatalyst under visible light”, Cer. Inter.l, 2012, 38, 5201-5207.
  • [34] K. Shiba, H. Hinode and M. Wakihara, “Catalytic reduction of nitric monoxide by ethene over Ag/TiO2 in the presence of excess oxygen”, Reac. Kin. and Cat. Letters, 1998, 64, 281-288.
  • [35] I. Ilisz, Z. László and A. Dombi, “Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. I: Effect of charge-trapping species on the degradation kinetics”, Appl.Cat. A: General, 1999,180, 25-33.
  • [36] M. Sökmen and A. Özkan, “Decolourising textile wastewater with modified titania: the effects of inorganic anions on the photocatalysis”, J. of Photochem. and Photobiol.y A: Chem.2002,147, 77-81.
  • [37] N. Salami, M.R. Bayati, F. Golestani-Fard and H.R. Zargar, “UV and visible photodecomposition of organic pollutants over micro arc oxidized Ag-activated TiO2 nanocrystalline layers”, Mat. Res. Bull., 2012,47, 1080-1088.
  • [38] Y. Li, M. Ma, W. Chen, L. Li and M. Zen, “Preparation of Ag-doped TiO2 nanoparticles by a miniemulsion method and their photoactivity in visible light illuminations”, Mat. Chem. and Phys., 2011, 129, 501-505.
  • [39] H. Guan, X. Wang, Y. Guo, C. Shao, X. Zhang, Y. Liu and R.-F. Louh, “Controlled synthesis of Ag-coated TiO2 nanofibers and their enhanced effect in photocatalytic applications”, Appl Surf Sci, 2013, 280, 720-725.
  • [40] D. Geetha, S. Kavitha and P.S. Ramesh, “A novel bio-degradable polymer stabilized Ag/TiO2 nanocomposites and their catalytic activity on reduction of methylene blue under natural sun light”, Ecotox. and environm. Saf., 2015, 12, 126-34.
  • [41] I. Arabatzis, T. Stergiopoulos, M. Bernard, D. Labou, S. Neophytides and P. Falaras, “Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange”, App. Cat. B: Environ., 2003, 42, 187-201.
  • [42] X. Wang, D.R. Mitchell, K. Prince, A.J. Atanacio and R.A. Caruso, “Gold nanoparticle incorporation into porous titania networks using an agarose gel templating technique for photocatalytic applications”, Chem. of Mat., 2008, 20, 3917-3926.
  • [43] A.A. Ismail, D.W. Bahnemann, I. Bannat and M. Wark, “Gold nanoparticles on mesoporous interparticle networks of titanium dioxide nanocrystals for enhanced photonic efficiencies”, The J. of Phys. Chem. C, 2009, 113, 7429-7435.
  • [44] F. Şahin, O, Avcıata, İ. Erden and U. Avcıata, “ Hydrothermal Preparation and Characterization of Nanocristaline TİO2 powder and İts photocatalytic Degradation Of Alizarin Salt Dye Under UV-light” Asi. J. Chemistry, 2010, 22, 2953-2958.
  • [45] Z. Xiong, J. Ma, W.J. Ng, T.D. Waite and X.S. Zhao, “ Silver - modified mesoporous TiO2 photocatalyst for water purification”, Wat. Res., 2011, 45, 2095-103.
  • [46] A. Pandey, S. Kalal, C. Ameta, R. Ameta, S. Kumar and P.B. Punjabi, “Synthesis, characterization and application of naïve and nano-sized titanium dioxide as a photocatalyst for degradation of methylene blue”, J. of Saudi Chem.Soc., 2015, 19, 528- 536.
  • [47] H. Chao, Y. Yun, H. Xingfang and A. Larbot, “Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder”, J. of the Euro. Cer. Soc., 2003, 23, 1457-1464.
  • [48] M. Asilturk, F. Sayilkan, S. Erdemoglu, M. Akarsu, H. Sayilkan, M. Erdemoglu and E. Arpac, “Characterization of the hydrothermally synthesized nano-TiO2 crystallite and the photocatalytic degradation of Rhodamine B”, J Hazard Mater, 2006, 129, 164-70.
  • [49] U. Schubert and A. Pierre, “Introduction to Sol-Gel Processing”, Angew. Chemie-Inter. Edition, 1998, 37, 3324-3325.
  • [50] C.J. Brinker and G.W. Scherer, “Sol-gel science: the physics and chemistry of sol-gel processing”, Academic press, San diego, 2013.
  • [51] H. Sayılkan, “Improved photocatalytic activity of Sn4+ -doped and undoped TiO2 thin film coated stainless steel under UV-and VIS-irradiation”, Appl.Cat. A: General, 2007, 319, 230-236.
  • [52] J. Wang, W. Sun, Z. Zhang, Z. Xing, R. Xu, R. Li, Y. Li and X. Zhang, “Treatment of nano-sized rutile phase TiO2 powder under ultrasonic irradiation in hydrogen peroxide solution and investigation of its sonocatalytic activity”, Ultrason Sonochem, 2008, 15, 301-307.
  • [53] S.-M. Chiu, Z.-S. Chen, K.-Y. Yang, Y.-L. Hsu and D. Gan, “Photocatalytic activity of doped TiO2 coatings prepared by sputtering deposition”, J. of mat. Process. Tech., 2007, 192, 60-67.
  • [54] L. Zhang, L. Chen, L. Chen and G. Zhu, “A facile synthesis of flower-shaped TiO2/Ag microspheres and their application in photocatalysts”, RSC Advances, 2014, 4, 54463- 54468.
  • [55] K. Thamaphat, P. Limsuwan and B. Ngotawornchai, Phase characterization of TiO2 powder by XRD and TEM”, Kasetsart J.(Nat. Sci.), 2008, 42, 357-361.
  • [56] M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff and K. Sopian, “Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation”, Int. J. Electrochem. Sci, 2012, 7, 4871-4888.
  • [57] C. So, M.Y. Cheng, J. Yu and P. Wong, “Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation”, Chemosphere, 2002, 46, 905-912.
  • [58] A. Henglein, “Reactions of organic free radicals at colloidal silver in aqueous solution. Electron pool effect and water decomposition”, J.l of Phys. Chem., 1979, 83, 2209- 2216.
  • [59] J.M. Herrmann, J. Disdier and P. Pichat, “Photoassisted platinum deposition on TiO2 powder using various platinum complexes”, The J. of Phys. Chem., 1986, 90, 6028- 6034.
  • [60] N. Sobana, M. Muruganadham and M. Swaminathan, “Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes”, J. of Molec.r Cat. A: Chem.l, 2006, 258, 124-132.
  • [61] S. Anandan, P.S. Kumar, N. Pugazhenthiran, J. Madhavan and P. Maruthamuthu, “Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88”, Sol. Energy Mat. and Solar Cells, 2008, 92, 929-937.
  • [62] C.S. Turchi and D.F. Ollis, “Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack”, J. of catalysis, 1990, 122, 178-192. [63] G.Al-Sayyed, J.-C. D' Oliveira and P. Pichat, “Semiconductor-sensitized photodegradation of 4-chlorophenol in water”, J.of Photochem. and Photobiol. A: Chem., 1991, 58, 99-114.

Ag doped TiO2 nanoparticles prepared by hydrothermal method and coating of the nanoparticles on the ceramic pellets for photocatalytic study: Surface properties and photoactivity

Year 2016, Volume: 1 Issue: 1, 34 - 50, 01.05.2016
https://doi.org/10.30931/jetas.281381

Abstract

In this work, Ag doped nano TiO2 photocatalysts were synthesized in powder form by hydrothermal method at 180 ºC in 120 min using different reduction agents. The synthesized powders were characterized by powder X-ray diffraction (XRD), Energydispersive X-ray spectroscopy (EDS), Surface area measurements (BET), Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. The effect of reduction agents on the morphological properties of Ag doped nano TiO2 has been studied. We have been observed that the use of different reduction agents affects the particle size and surface area. Ag doped nano TiO2 photocatalysts were coated to the ceramic pellets by dip coating technique for photocatalytic study. Photocatalytic properties of the synthesized powder were examined in a circulating aquarium filled with indigo blue (IB) solution under UV irradiation. Periodical UV spectrophotometric analysis showed that indigo blue (IB) has been degraded and its concentration has decreased under UV irradiation by time.

References

  • [1] Y. Xie, F. Chen, J. He, J. Zhao and H. Wang, “Photoassisted degradation of dyes in the presence of Fe3+ and H2O2 under visible irradiation”, J. of Photochem. and Photobio. A: Chem., 2000, 136, 235-240.
  • [2] C.A. Martínez-Huitle and E. Brillas, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review”, App. Cat. B: Environ., 2009, 87, 105-145.
  • [3] V.K. Gupta, D. Pathania, S. Agarwal and S. Sharma, “De-coloration of hazardous dye from water system using chemically modified Ficus carica adsorbent”, J.of Molec. Liquid., 2012, 174, 86-94.
  • [4] A. Guevara-Lara, R. Bacaud and M. Vrinat, “Highly active NiMo/TiO2–Al2O3 catalysts: Influence of the preparation and the activation conditions on the catalytic activity”, App. Cat. A: Gen.l, 2007, 328, 99-108.
  • [5] B. Mounir, M.-N. Pons, O. Zahraa, A. Yaacoubi and A. Benhammou, “Discoloration of a red cationic dye by supported TiO2 photocatalysis”, J. of Hazard. Mater., 2007, 148, 513-520.
  • [6] S. Mozia, M. Tomaszewska and A.W. Morawski, “Photocatalytic membrane reactor (PMR) coupling photocatalysis and membrane distillation—effectiveness of removal of three azo dyes from water”, Catal. Today, 2007, 129, 3-8.
  • [7] S.F. Villanueva and S.S. Martínez, “TiO2-assisted degradation of acid orange 7 textile dye under solar light”, Solar en. Mat. and solar cells, 2007, 91, 1492-1495.
  • [8] X.H. Xia, Y. Liang, Z. Wang, J. Fan, Y.S. Luo and Z.J. Jia, “Synthesis and photocatalytic properties of TiO2 nanostructures”, Mat. Res. Bull., 2008, 43, 2187-2195.
  • [9] M.A. Fox and M.T. Dulay, “Heterogeneous photocatalysis”, Chem. reviews, 1993, 93, 341-357.
  • [10] O. Legrini, E. Oliveros and A. Braun, “Photochemical processes for water treatment”, Chem. Reviews, 1993, 93, 671-698.
  • [11] M.I. Litter, “Heterogeneous photocatalysis: transition metal ions in photocatalytic systems”, App. Cat. B: Environ., 1999, 23, 89-114.
  • [12] O. Carp, C.L. Huisman and A. Reller, “Photoinduced reactivity of titanium dioxide”, Prog. in solid state chem., 2004, 32, 33-177.
  • [13] H. Yamashita, M. Honda, M. Harada, Y. Ichihashi, M. Anpo, T. Hirao, N. Itoh and N. Iwamoto, “Preparation of titanium oxide photocatalysts anchored on porous silica glass by a metal ion-implantation method and their photocatalytic reactivities for the degradation of 2-propanol diluted in water”, The J. of Phys. Chem. B, 1998, 102, 10707-10711.
  • [14] A. Di Paola, G. Marci, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda and B. Ohtani, “Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol”, The J. of Phys. Chem. B, 2002, 106, 637-645.
  • [15] D. Chatterjee and S. Dasgupta, “Visible light induced photocatalytic degradation of organic pollutants”, J. of Photochem. and Photobiol. C: Photochemi. Reviews, 2005, 6, 186-205.
  • [16] W. Su, Y. Zhang, Z. Li, L. Wu, X. Wang, J. Li and X. Fu, “Multivalency iodine doped TiO2: preparation, characterization, theoretical studies, and visible-light photocatalysis”, Langmuir, 2008, 24, 3422-3428.
  • [17] G. Mele, R. Del Sole, G. Vasapollo, E. Garcı́a-López, L. Palmisano and M. Schiavello, “Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)–porphyrin or Cu(II)–phthalocyanine”, J.l of Catalysis, 2003, 217, 334-342.
  • [18] C. Wang, J. Li, G. Mele, G.-M. Yang, F.-X. Zhang, L. Palmisano and G. Vasapollo, “Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation”, App. Cat. B: Environ., 2007,76, 218-226.
  • [19] T.-V. Nguyen, J.C. Wu and C.-H. Chiou, “Photoreduction of CO2 over Ruthenium dyesensitized TiO2-based catalysts under concentrated natural sunlight”, Cat. Commun., 2008, 9(10), 2073-2076.
  • [20] Y. Li, M. Guo, S. Peng, G. Lu, S. Li, Formation of multilayer-Eosin Y-sensitized TiO2 via Fe3+ coupling for efficient visible-light photocatalytic hydrogen evolution”, int. J. of hydrogen energy, 2009, 34, 5629-5636.
  • [21] H.M. Sung-Suh, J.R. Choi, H.J. Hah, S.M. Koo and Y.C. Bae, “Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation”, J. of Photochem. and Photobiol. A: Chem., 2004,163, 37-44.
  • [22] X. You, F. Chen, J. Zhang and M. Anpo, “A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide”, Cat. Letters, 2005, 102, 247-250.
  • [23] H.-Y. Chuang and D.-H. Chen, “Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles”, Nanotechnology, 2009, 20, 105704.
  • [24] S. Feng, M. Wang, Y. Zhou, P. Li, W. Tu and Z. Zou, “Double-shelled plasmonic AgTiO2 hollow spheres toward visible light-active photocatalytic conversion of CO2 into solar fuel”, APL Mater., 2015, 3, 104416.
  • [25] W.J. Tseng, S.-M. Kao and J.H. Hsieh, “Photocatalytic and bactericidal activity of mesoporous TiO2–Ag nanocomposite particles”, Cer. Inter., 2015, 41, 10494-10500.
  • [26] I.H. Chowdhury, S. Ghosh and M.K. Naskar, “Aqueous-based synthesis of mesoporous TiO2 and Ag–TiO2 nanopowders for efficient photodegradation of methylene blue”, Cer.Inter.2016, 42, 2488-2496.
  • [27] Y. Tian and T. Tatsuma, “Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2”, Chem. Commun., 2004, 16, 1810-1811.
  • [28] M.S. Lee, S.-S. Hong and M. Mohseni, Synthesis of photocatalytic nanosized TiO2–Ag particles with sol–gel method using reduction agent”, J. of Molec. Cat. A: Chem., 2005, 242, 135-140.
  • [29] Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles”, J. of ACS, 2005, 127, 7632- 7637.
  • [30] A. Kubacka, M. Ferrer, A. Martínez-Arias and M. Fernández-García, “Ag promotion of TiO2-anatase disinfection capability: study of Escherichia coli inactivation”, App. Cat. B: Environ., 2008, 84, 87-93.
  • [31] J. Yu, J. Xiong, B. Cheng and S. Liu, “Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity”, App. Cat. B: Environ., 2005, 60, 211-221.
  • [32] M.K. Seery, R. George, P. Floris and S.C. Pillai, “Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis”, J. of Photochem. and Photobiol.A: Chem.2007, 189, 258-263.
  • [33] C. Suwanchawalit, S. Wongnawa, P. Sriprang and P. Meanha, “Enhancement of the photocatalytic performance of Ag-modified TiO2 photocatalyst under visible light”, Cer. Inter.l, 2012, 38, 5201-5207.
  • [34] K. Shiba, H. Hinode and M. Wakihara, “Catalytic reduction of nitric monoxide by ethene over Ag/TiO2 in the presence of excess oxygen”, Reac. Kin. and Cat. Letters, 1998, 64, 281-288.
  • [35] I. Ilisz, Z. László and A. Dombi, “Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. I: Effect of charge-trapping species on the degradation kinetics”, Appl.Cat. A: General, 1999,180, 25-33.
  • [36] M. Sökmen and A. Özkan, “Decolourising textile wastewater with modified titania: the effects of inorganic anions on the photocatalysis”, J. of Photochem. and Photobiol.y A: Chem.2002,147, 77-81.
  • [37] N. Salami, M.R. Bayati, F. Golestani-Fard and H.R. Zargar, “UV and visible photodecomposition of organic pollutants over micro arc oxidized Ag-activated TiO2 nanocrystalline layers”, Mat. Res. Bull., 2012,47, 1080-1088.
  • [38] Y. Li, M. Ma, W. Chen, L. Li and M. Zen, “Preparation of Ag-doped TiO2 nanoparticles by a miniemulsion method and their photoactivity in visible light illuminations”, Mat. Chem. and Phys., 2011, 129, 501-505.
  • [39] H. Guan, X. Wang, Y. Guo, C. Shao, X. Zhang, Y. Liu and R.-F. Louh, “Controlled synthesis of Ag-coated TiO2 nanofibers and their enhanced effect in photocatalytic applications”, Appl Surf Sci, 2013, 280, 720-725.
  • [40] D. Geetha, S. Kavitha and P.S. Ramesh, “A novel bio-degradable polymer stabilized Ag/TiO2 nanocomposites and their catalytic activity on reduction of methylene blue under natural sun light”, Ecotox. and environm. Saf., 2015, 12, 126-34.
  • [41] I. Arabatzis, T. Stergiopoulos, M. Bernard, D. Labou, S. Neophytides and P. Falaras, “Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange”, App. Cat. B: Environ., 2003, 42, 187-201.
  • [42] X. Wang, D.R. Mitchell, K. Prince, A.J. Atanacio and R.A. Caruso, “Gold nanoparticle incorporation into porous titania networks using an agarose gel templating technique for photocatalytic applications”, Chem. of Mat., 2008, 20, 3917-3926.
  • [43] A.A. Ismail, D.W. Bahnemann, I. Bannat and M. Wark, “Gold nanoparticles on mesoporous interparticle networks of titanium dioxide nanocrystals for enhanced photonic efficiencies”, The J. of Phys. Chem. C, 2009, 113, 7429-7435.
  • [44] F. Şahin, O, Avcıata, İ. Erden and U. Avcıata, “ Hydrothermal Preparation and Characterization of Nanocristaline TİO2 powder and İts photocatalytic Degradation Of Alizarin Salt Dye Under UV-light” Asi. J. Chemistry, 2010, 22, 2953-2958.
  • [45] Z. Xiong, J. Ma, W.J. Ng, T.D. Waite and X.S. Zhao, “ Silver - modified mesoporous TiO2 photocatalyst for water purification”, Wat. Res., 2011, 45, 2095-103.
  • [46] A. Pandey, S. Kalal, C. Ameta, R. Ameta, S. Kumar and P.B. Punjabi, “Synthesis, characterization and application of naïve and nano-sized titanium dioxide as a photocatalyst for degradation of methylene blue”, J. of Saudi Chem.Soc., 2015, 19, 528- 536.
  • [47] H. Chao, Y. Yun, H. Xingfang and A. Larbot, “Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder”, J. of the Euro. Cer. Soc., 2003, 23, 1457-1464.
  • [48] M. Asilturk, F. Sayilkan, S. Erdemoglu, M. Akarsu, H. Sayilkan, M. Erdemoglu and E. Arpac, “Characterization of the hydrothermally synthesized nano-TiO2 crystallite and the photocatalytic degradation of Rhodamine B”, J Hazard Mater, 2006, 129, 164-70.
  • [49] U. Schubert and A. Pierre, “Introduction to Sol-Gel Processing”, Angew. Chemie-Inter. Edition, 1998, 37, 3324-3325.
  • [50] C.J. Brinker and G.W. Scherer, “Sol-gel science: the physics and chemistry of sol-gel processing”, Academic press, San diego, 2013.
  • [51] H. Sayılkan, “Improved photocatalytic activity of Sn4+ -doped and undoped TiO2 thin film coated stainless steel under UV-and VIS-irradiation”, Appl.Cat. A: General, 2007, 319, 230-236.
  • [52] J. Wang, W. Sun, Z. Zhang, Z. Xing, R. Xu, R. Li, Y. Li and X. Zhang, “Treatment of nano-sized rutile phase TiO2 powder under ultrasonic irradiation in hydrogen peroxide solution and investigation of its sonocatalytic activity”, Ultrason Sonochem, 2008, 15, 301-307.
  • [53] S.-M. Chiu, Z.-S. Chen, K.-Y. Yang, Y.-L. Hsu and D. Gan, “Photocatalytic activity of doped TiO2 coatings prepared by sputtering deposition”, J. of mat. Process. Tech., 2007, 192, 60-67.
  • [54] L. Zhang, L. Chen, L. Chen and G. Zhu, “A facile synthesis of flower-shaped TiO2/Ag microspheres and their application in photocatalysts”, RSC Advances, 2014, 4, 54463- 54468.
  • [55] K. Thamaphat, P. Limsuwan and B. Ngotawornchai, Phase characterization of TiO2 powder by XRD and TEM”, Kasetsart J.(Nat. Sci.), 2008, 42, 357-361.
  • [56] M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff and K. Sopian, “Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation”, Int. J. Electrochem. Sci, 2012, 7, 4871-4888.
  • [57] C. So, M.Y. Cheng, J. Yu and P. Wong, “Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation”, Chemosphere, 2002, 46, 905-912.
  • [58] A. Henglein, “Reactions of organic free radicals at colloidal silver in aqueous solution. Electron pool effect and water decomposition”, J.l of Phys. Chem., 1979, 83, 2209- 2216.
  • [59] J.M. Herrmann, J. Disdier and P. Pichat, “Photoassisted platinum deposition on TiO2 powder using various platinum complexes”, The J. of Phys. Chem., 1986, 90, 6028- 6034.
  • [60] N. Sobana, M. Muruganadham and M. Swaminathan, “Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes”, J. of Molec.r Cat. A: Chem.l, 2006, 258, 124-132.
  • [61] S. Anandan, P.S. Kumar, N. Pugazhenthiran, J. Madhavan and P. Maruthamuthu, “Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88”, Sol. Energy Mat. and Solar Cells, 2008, 92, 929-937.
  • [62] C.S. Turchi and D.F. Ollis, “Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack”, J. of catalysis, 1990, 122, 178-192. [63] G.Al-Sayyed, J.-C. D' Oliveira and P. Pichat, “Semiconductor-sensitized photodegradation of 4-chlorophenol in water”, J.of Photochem. and Photobiol. A: Chem., 1991, 58, 99-114.
There are 62 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences, Engineering
Journal Section Research Article
Authors

Oguzhan Avciata This is me

Yildiz Benli This is me

Semih Gorduk

Ozge Koyun This is me

Publication Date May 1, 2016
Published in Issue Year 2016 Volume: 1 Issue: 1

Cite

APA Avciata, O., Benli, Y., Gorduk, S., Koyun, O. (2016). Ag doped TiO2 nanoparticles prepared by hydrothermal method and coating of the nanoparticles on the ceramic pellets for photocatalytic study: Surface properties and photoactivity. Journal of Engineering Technology and Applied Sciences, 1(1), 34-50. https://doi.org/10.30931/jetas.281381
AMA Avciata O, Benli Y, Gorduk S, Koyun O. Ag doped TiO2 nanoparticles prepared by hydrothermal method and coating of the nanoparticles on the ceramic pellets for photocatalytic study: Surface properties and photoactivity. JETAS. May 2016;1(1):34-50. doi:10.30931/jetas.281381
Chicago Avciata, Oguzhan, Yildiz Benli, Semih Gorduk, and Ozge Koyun. “Ag Doped TiO2 Nanoparticles Prepared by Hydrothermal Method and Coating of the Nanoparticles on the Ceramic Pellets for Photocatalytic Study: Surface Properties and Photoactivity”. Journal of Engineering Technology and Applied Sciences 1, no. 1 (May 2016): 34-50. https://doi.org/10.30931/jetas.281381.
EndNote Avciata O, Benli Y, Gorduk S, Koyun O (May 1, 2016) Ag doped TiO2 nanoparticles prepared by hydrothermal method and coating of the nanoparticles on the ceramic pellets for photocatalytic study: Surface properties and photoactivity. Journal of Engineering Technology and Applied Sciences 1 1 34–50.
IEEE O. Avciata, Y. Benli, S. Gorduk, and O. Koyun, “Ag doped TiO2 nanoparticles prepared by hydrothermal method and coating of the nanoparticles on the ceramic pellets for photocatalytic study: Surface properties and photoactivity”, JETAS, vol. 1, no. 1, pp. 34–50, 2016, doi: 10.30931/jetas.281381.
ISNAD Avciata, Oguzhan et al. “Ag Doped TiO2 Nanoparticles Prepared by Hydrothermal Method and Coating of the Nanoparticles on the Ceramic Pellets for Photocatalytic Study: Surface Properties and Photoactivity”. Journal of Engineering Technology and Applied Sciences 1/1 (May 2016), 34-50. https://doi.org/10.30931/jetas.281381.
JAMA Avciata O, Benli Y, Gorduk S, Koyun O. Ag doped TiO2 nanoparticles prepared by hydrothermal method and coating of the nanoparticles on the ceramic pellets for photocatalytic study: Surface properties and photoactivity. JETAS. 2016;1:34–50.
MLA Avciata, Oguzhan et al. “Ag Doped TiO2 Nanoparticles Prepared by Hydrothermal Method and Coating of the Nanoparticles on the Ceramic Pellets for Photocatalytic Study: Surface Properties and Photoactivity”. Journal of Engineering Technology and Applied Sciences, vol. 1, no. 1, 2016, pp. 34-50, doi:10.30931/jetas.281381.
Vancouver Avciata O, Benli Y, Gorduk S, Koyun O. Ag doped TiO2 nanoparticles prepared by hydrothermal method and coating of the nanoparticles on the ceramic pellets for photocatalytic study: Surface properties and photoactivity. JETAS. 2016;1(1):34-50.

Cited By