Research Article
BibTex RIS Cite

Special Real and Dual Matrices with Hadamard Product

Year 2021, Volume: 6 Issue: 2, 127 - 134, 31.08.2021
https://doi.org/10.30931/jetas.979932

Abstract

In this paper, firstly we will present basic properties of Hadamard matrix product and Dual matrices to built necessary background. Then we will define special real and dual matrices under this matrix product. Finally, some theorems regarding this matrix product will be given.

References

  • [1] Million, E., “The Hadamard product”, Course Notes 3.6 (2007).
  • [2] Horn, R. A., Zai Y., “Rank of a Hadamard product”, Linear Algebra and its Applications 591 (2020) : 87-98.
  • [3] Styan, G. P. H., “Hadamard products and öultivariate statistical analysis”, Linear Algebra Appl. 6 (1973) : 217-240.
  • [4] Horn, R. A., Johnson C. R., “Topics in matrix analysis”, Cambridge University Press, (1994).
  • [5] Bernstein, D. S., “Matrix mathematics”, Princeton University Press, (2009).
  • [6] Liu, S., Gotz T., “Hadamard, Khatri-Rao, Kronecker and other matrix products”, International Journal of Information and Systems Sciences 4(1) (2008) : 160-177.
  • [7] Veldkamp G. R., “On the use of dual numbers, vectors and matrices in instantaneous spatial kinematics”, Mechanism and Machine Theory 11 (1976) : 141-156.
  • [8] Pennestrì, E., Stefanelli R., “Linear algebra and numerical algorithms using dual numbers”, Multibody System Dynamics 18(3) (2007) : 323-344.
  • [9] Fischer, I. S., “Dual-number methods in kinematics, statics and dynamics”, Routledge, (2017).
  • [10] Dagdeviren, A., “Lorentz matris carpimi ve dual matrislerin ozellikleri”, Master’s Thesis, Yildiz Technical University, (2013).
Year 2021, Volume: 6 Issue: 2, 127 - 134, 31.08.2021
https://doi.org/10.30931/jetas.979932

Abstract

References

  • [1] Million, E., “The Hadamard product”, Course Notes 3.6 (2007).
  • [2] Horn, R. A., Zai Y., “Rank of a Hadamard product”, Linear Algebra and its Applications 591 (2020) : 87-98.
  • [3] Styan, G. P. H., “Hadamard products and öultivariate statistical analysis”, Linear Algebra Appl. 6 (1973) : 217-240.
  • [4] Horn, R. A., Johnson C. R., “Topics in matrix analysis”, Cambridge University Press, (1994).
  • [5] Bernstein, D. S., “Matrix mathematics”, Princeton University Press, (2009).
  • [6] Liu, S., Gotz T., “Hadamard, Khatri-Rao, Kronecker and other matrix products”, International Journal of Information and Systems Sciences 4(1) (2008) : 160-177.
  • [7] Veldkamp G. R., “On the use of dual numbers, vectors and matrices in instantaneous spatial kinematics”, Mechanism and Machine Theory 11 (1976) : 141-156.
  • [8] Pennestrì, E., Stefanelli R., “Linear algebra and numerical algorithms using dual numbers”, Multibody System Dynamics 18(3) (2007) : 323-344.
  • [9] Fischer, I. S., “Dual-number methods in kinematics, statics and dynamics”, Routledge, (2017).
  • [10] Dagdeviren, A., “Lorentz matris carpimi ve dual matrislerin ozellikleri”, Master’s Thesis, Yildiz Technical University, (2013).
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Ali Dağdeviren 0000-0003-4887-405X

Ferhat Kürüz 0000-0001-6197-4958

Publication Date August 31, 2021
Published in Issue Year 2021 Volume: 6 Issue: 2

Cite

APA Dağdeviren, A., & Kürüz, F. (2021). Special Real and Dual Matrices with Hadamard Product. Journal of Engineering Technology and Applied Sciences, 6(2), 127-134. https://doi.org/10.30931/jetas.979932
AMA Dağdeviren A, Kürüz F. Special Real and Dual Matrices with Hadamard Product. JETAS. August 2021;6(2):127-134. doi:10.30931/jetas.979932
Chicago Dağdeviren, Ali, and Ferhat Kürüz. “Special Real and Dual Matrices With Hadamard Product”. Journal of Engineering Technology and Applied Sciences 6, no. 2 (August 2021): 127-34. https://doi.org/10.30931/jetas.979932.
EndNote Dağdeviren A, Kürüz F (August 1, 2021) Special Real and Dual Matrices with Hadamard Product. Journal of Engineering Technology and Applied Sciences 6 2 127–134.
IEEE A. Dağdeviren and F. Kürüz, “Special Real and Dual Matrices with Hadamard Product”, JETAS, vol. 6, no. 2, pp. 127–134, 2021, doi: 10.30931/jetas.979932.
ISNAD Dağdeviren, Ali - Kürüz, Ferhat. “Special Real and Dual Matrices With Hadamard Product”. Journal of Engineering Technology and Applied Sciences 6/2 (August 2021), 127-134. https://doi.org/10.30931/jetas.979932.
JAMA Dağdeviren A, Kürüz F. Special Real and Dual Matrices with Hadamard Product. JETAS. 2021;6:127–134.
MLA Dağdeviren, Ali and Ferhat Kürüz. “Special Real and Dual Matrices With Hadamard Product”. Journal of Engineering Technology and Applied Sciences, vol. 6, no. 2, 2021, pp. 127-34, doi:10.30931/jetas.979932.
Vancouver Dağdeviren A, Kürüz F. Special Real and Dual Matrices with Hadamard Product. JETAS. 2021;6(2):127-34.