Research Article
BibTex RIS Cite
Year 2023, Volume: 8 Issue: 3, 119 - 130, 31.12.2023
https://doi.org/10.30931/jetas.1338660

Abstract

References

  • [1] Bharathi, K., Nagaraj, M., "Quaternion valued function of a real variable Serret–Frenet formulae", Indian J. Pure Appl. Math. 16 (1985) : 741–756.
  • [2] Coken, A.C., Tuna, A., "On the quaternionic inclined curves in the semi-Euclidean space ", Appl. Math. Comput. 155 (2004) : 373-389.
  • [3] Dağdeviren, A., Yüce, S., "Dual quaternions and dual quaternionic curves", Filomat 33(4) (2019) : 1037–1046.
  • [4] Ohashi, M., "G 2-Congruence theorem for curves in purely imaginary octonions and its application", Geom Dedicata 163 (2013) : 1–17.
  • [5] Özdemir, M., "Introduction to Hybrid Numbers", Adv. Appl. Clifford Algebras 28(11) (2018).
  • [6] Özdemir, M., "Finding Roots of a 2×2 real matrix using De Moivre’s formula", Advances in Applied Clifford Algebras 29(2) (2019).
  • [7] Öztürk, İ., Özdemir, M., "Similarity of hybrid numbers", Mathematical Methods in Applied Sciences 43(15) (2020): 8867-8881.
  • [8] Akbıyık, M., S. Yamaç Akbıyık, E. Karaca, F. Yılmaz, "De Moivre’s and Euler Formulas for matrices of hybrid numbers", Axioms 2021, 10, 213.
  • [9] Szynal-Liana, A., "The Horadam Hybrid Numbers", Discussiones Mathematicae General Algebra and Applications 38 (2018) : 91–98.
  • [10] Kızılateş, C., "A new generalization of Fibonacci hybrid and Lucas hybrid numbers", Chaos, Solitons & Fractals 130 (2020) : 109449.

On Hybrid Curves

Year 2023, Volume: 8 Issue: 3, 119 - 130, 31.12.2023
https://doi.org/10.30931/jetas.1338660

Abstract

In this paper, we first define the vector product in a special analog Minkowski Geometry (R^3,<>) which is identified with the space of spatial hybrids. Next, we derive the Frenet-Serret frame formulae for a three dimensional non-parabolic curve by using the spatial hybrids and the vector product. However, we present the Frenet-Serret frame formulae of a non-lightlike hybrid curve in R^4 and an illustrative example for all theorems of the paper with MATLAB 2016a codes.

References

  • [1] Bharathi, K., Nagaraj, M., "Quaternion valued function of a real variable Serret–Frenet formulae", Indian J. Pure Appl. Math. 16 (1985) : 741–756.
  • [2] Coken, A.C., Tuna, A., "On the quaternionic inclined curves in the semi-Euclidean space ", Appl. Math. Comput. 155 (2004) : 373-389.
  • [3] Dağdeviren, A., Yüce, S., "Dual quaternions and dual quaternionic curves", Filomat 33(4) (2019) : 1037–1046.
  • [4] Ohashi, M., "G 2-Congruence theorem for curves in purely imaginary octonions and its application", Geom Dedicata 163 (2013) : 1–17.
  • [5] Özdemir, M., "Introduction to Hybrid Numbers", Adv. Appl. Clifford Algebras 28(11) (2018).
  • [6] Özdemir, M., "Finding Roots of a 2×2 real matrix using De Moivre’s formula", Advances in Applied Clifford Algebras 29(2) (2019).
  • [7] Öztürk, İ., Özdemir, M., "Similarity of hybrid numbers", Mathematical Methods in Applied Sciences 43(15) (2020): 8867-8881.
  • [8] Akbıyık, M., S. Yamaç Akbıyık, E. Karaca, F. Yılmaz, "De Moivre’s and Euler Formulas for matrices of hybrid numbers", Axioms 2021, 10, 213.
  • [9] Szynal-Liana, A., "The Horadam Hybrid Numbers", Discussiones Mathematicae General Algebra and Applications 38 (2018) : 91–98.
  • [10] Kızılateş, C., "A new generalization of Fibonacci hybrid and Lucas hybrid numbers", Chaos, Solitons & Fractals 130 (2020) : 109449.
There are 10 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Mücahit Akbıyık 0000-0002-0256-1472

Early Pub Date December 30, 2023
Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 8 Issue: 3

Cite

APA Akbıyık, M. (2023). On Hybrid Curves. Journal of Engineering Technology and Applied Sciences, 8(3), 119-130. https://doi.org/10.30931/jetas.1338660
AMA Akbıyık M. On Hybrid Curves. JETAS. December 2023;8(3):119-130. doi:10.30931/jetas.1338660
Chicago Akbıyık, Mücahit. “On Hybrid Curves”. Journal of Engineering Technology and Applied Sciences 8, no. 3 (December 2023): 119-30. https://doi.org/10.30931/jetas.1338660.
EndNote Akbıyık M (December 1, 2023) On Hybrid Curves. Journal of Engineering Technology and Applied Sciences 8 3 119–130.
IEEE M. Akbıyık, “On Hybrid Curves”, JETAS, vol. 8, no. 3, pp. 119–130, 2023, doi: 10.30931/jetas.1338660.
ISNAD Akbıyık, Mücahit. “On Hybrid Curves”. Journal of Engineering Technology and Applied Sciences 8/3 (December 2023), 119-130. https://doi.org/10.30931/jetas.1338660.
JAMA Akbıyık M. On Hybrid Curves. JETAS. 2023;8:119–130.
MLA Akbıyık, Mücahit. “On Hybrid Curves”. Journal of Engineering Technology and Applied Sciences, vol. 8, no. 3, 2023, pp. 119-30, doi:10.30931/jetas.1338660.
Vancouver Akbıyık M. On Hybrid Curves. JETAS. 2023;8(3):119-30.