Research Article
BibTex RIS Cite
Year 2024, Volume: 5 Issue: 1, 22 - 32, 30.06.2024

Abstract

References

  • IEC SRD 62913-1; Generic Smart Grid Requirements—Part 1: Specific Application of the Use Case Methodology for Defining Generic Smart Grid Requirements According to the IEC Systems Approach. IEC: Geneva, Switzerland, 2022.
  • Sarwar, M.; Asad, B. A review on future power systems; technologies and research for smart grids. In Proceedings of the 2016 International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, 18–19 October 2016; pp. 1–6.
  • Agüero, J.R. Applying self-healing schemes to modern power distribution systems. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–4.
  • Estebsari, A.; Barbierato, L.; Bahmanyar, A.; Bottaccioli, L.; Macii, E.; Patti, E. A SGAM-Based Test Platform to Develop a Scheme for Wide Area Measurement-Free Monitoring of Smart Grids under High PV Penetration. Energies 2019, 12, 1417.
  • Haes Alhelou, H.; Hamedani-Golshan, M.E.; Njenda, T.C.; Siano, P. A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges. Energies 2019, 12, 682.
  • Stefanidou-Voziki, P.; Sapountzoglou, N.; Raison, B.; Dominguez-Garcia, J. A review of fault location and classification methods in distribution grids. Electr. Power Syst. Res. 2022, 209, 108031.
  • De La Cruz, J., Gómez-Luna, E., Ali, M., Vasquez, J. C., & Guerrero, J. M. (2023). Fault location for distribution smart grids: Literature overview, challenges, solutions, and future trends. Energies, 16(5), 2280.
  • Jadidi, S.; Badihi, H.; Zhang, Y. Fault Diagnosis in Microgrids with Integration of Solar Photovoltaic Systems:A Review. IFACPapersOnLine 2020, 53, 12091–12096.
  • Baidya, S., & Nandi, C. (2022). A comprehensive review on DC Microgrid protection schemes. Electric Power Systems Research, 210, 108051
  • Annaswamy, A.M.; Amin, M. IEEE Smart Grid Research IEEE Vision for Smart Grid Controls: 2030 and Beyond Reference Model; IEEE Press: Piscataway, NJ, USA, 2013.
  • Andresen, C.A.; Torsaeter, B.N.; Haugdal, H.; Uhlen, K. Fault Detection and Prediction in Smart Grids. In Proceedings of the 2018 IEEE 9th InternationalWorkshop on Applied Measurements for Power Systems (AMPS), Bologna, Italy, 26 28 September 2018; pp. 1–6.
  • Sarathkumar, D.; Srinivasan, M.; Stonier, A.A.; Samikannu, R.; Dasari, N.R.; Raj, R.A. A Technical Review on Self-Healing Control Strategy for Smart Grid Power Systems. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1055, 012153.
  • Mousa, M.; Abdelwahed, S.; Kluss, J. Review of Fault Types, Impacts, and Management Solutions in Smart Grid Systems. Smart Grid Renew. Energy 2019, 10, 98–117.
  • Mahmoud, M. A., Md Nasir, N. R., Gurunathan, M., Raj, P., & Mostafa, S. A. (2021). The current state of the art in research on predictive maintenance in smart grid distribution network: Fault’s types, causes, and prediction methods—A systematic review. Energies, 14(16), 5078.
  • Chai, E.; Zeng, P.; Ma, S.; Xing, H.; Zhao, B. Artificial Intelligence Approaches to Fault Diagnosis in Power Grids: A Review. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019.
  • Furse, C.M.; Kafal, M.; Razzaghi, R.; Shin, Y.-J. Fault Diagnosis for Electrical Systems and Power Networks: A Review. IEEE Sens. J. 2020, 21, 888–906
  • Biswal, C., Sahu, B. K., Mishra, M., & Rout, P. K. (2023). Real-time grid monitoring and protection: A comprehensive survey on the advantages of phasor measurement units. Energies, 16(10), 4054.
  • Al-Hammouri, A. T., Nordström, L., Chenine, M., Vanfretti, L., Honeth, N., & Leelaruji, R. (2012, July). Virtualization of synchronized phasor measurement units within real-time simulators for smart grid applications. In 2012 IEEE Power and Energy Society General Meeting (pp. 1-7). IEEE.
  • Klein, M. E. (2010). Autonomous ultra-low power ELF/VLF receiver systems (Doctoral dissertation, Stanford University).
  • Kiessling, F., Nefzger, P., Nolasco, J. F., & Kaintzyk, U. (2014). Overhead power lines: planning, design, construction. Springer.
  • Cirman, A., Domadenik, P., Koman, M., & Redek, T. (2009). The Kyoto protocol in a global perspective. Economic and business review, 11(1), 3.
  • Hussain, S., Fernandez, J. H., Al-Ali, A. K., & Shikfa, A. (2021). Vulnerabilities and countermeasures in electrical substations. International Journal of Critical Infrastructure Protection, 33, 100406.
  • Horowitz, S. H., Phadke, A. G., & Henville, C. F. (2022). Power system relaying. John Wiley & Sons.
  • Kiliçkiran, H. C., Şengör, İ., Akdemir, H., Kekezoğlu, B., Erdinç, O., & Paterakis, N. G. (2018). Power system protection with digital overcurrent relays: A review of non-standard characteristics. Electric Power Systems Research, 164, 89-102.
  • Tür, M. R., Wadi, M., Shobole, A. A., & Gündüz, H. (2021). Integration problems of photovoltaic systems-wind power, solutions and effects on power quality. European Journal of Technique (EJT), 10(2), 340-353.
  • Shobol, A., Ali, M. H., Wadi, M., & TüR, M. R. (2019, November). Overview of big data in smart grid. In 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 1022-1025). IEEE.
  • Shobole, A. A., & Wadi, M. (2021). Multiagent systems application for the smart grid protection. Renewable and Sustainable Energy Reviews, 149, 111352.
  • Huynh, T. P., Sonar, P., & Haick, H. (2017). Advanced materials for use in soft self‐healing devices. Advanced Materials, 29(19), 1604973.
  • Tur, M. R. (2020). Reliability assessment of distribution power system when considering energy storage configuration technique. IEEE Access, 8, 77962-77971.
  • Arefifar, S. A., Alam, M. S., & Hamadi, A. (2023). A review on self-healing in modern power distribution systems. Journal of Modern Power Systems and Clean Energy, 11(6), 1719-1733.
  • Temiz, R., & Tür, M. R. (2024). Investment technique for ensuring energy supply continuity in ring grids. Turkish Journal of Engineering, 8(2), 186-195.
  • Dashti, R., Daisy, M., Mirshekali, H., Shaker, H. R., & Aliabadi, M. H. (2021). A survey of fault prediction and location methods in electrical energy distribution networks. Measurement, 184, 109947.
  • Chen, K., Huang, C., & He, J. (2016). Fault detection, classification and location for transmission lines and distribution systems: a review on the methods. High voltage, 1(1), 25-33.
  • Chen, K., Huang, C., & He, J. (2016). Fault detection, classification and location for transmission lines and distribution systems: a review on the methods. High voltage, 1(1), 25-33.
  • Theodoro, T. S., Tomim, M. A., Barbosa, P. G., Lima, A. C., & de Barros, M. T. C. (2019). A flexible co-simulation framework for penetration studies of power electronics based renewable sources: A new algorithm for phasor extraction. International Journal of Electrical Power & Energy Systems, 113, 419-435.
  • Ramesh, M., & Laxmi, A. J. (2012, January). Fault identification in HVDC using artificial intelligence—Recent trends and perspective. In 2012 International Conference on Power, Signals, Controls and Computation (pp. 1-6). IEEE.
  • Cao, X., Stephen, B., Abdulhadi, I. F., Booth, C. D., & Burt, G. M. (2015). Switching Markov Gaussian models for dynamic power system inertia estimation. IEEE Transactions on Power Systems, 31(5), 3394-3403.
  • Das, S., Santoso, S., Gaikwad, A., & Patel, M. (2014). Impedance-based fault location in transmission networks: theory and application. IEEE access, 2, 537-557.
  • Ghaderi, A., Ginn III, H. L., & Mohammadpour, H. A. (2017). High impedance fault detection: A review. Electric power systems research, 143, 376-388.
  • Gitau, M. N., & Kala-Konga, C. L. (2010, November). Multilevel switched-capacitor DC-DC converter with reduced capacitor bank. In IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society (pp. 576-581). IEEE.
  • Ali, S. A. (2011). Capacitor banks switching transients in power systems. Energy Science and Technology, 2(2), 62-73.
  • Mehranbod, N., Soroush, M., & Panjapornpon, C. (2005). A method of sensor fault detection and identification. Journal of Process Control, 15(3), 321-339.

Providing Uninterrupted Energy with Fault Detection and Storage Method in Smart Grids

Year 2024, Volume: 5 Issue: 1, 22 - 32, 30.06.2024

Abstract

The use of smart grids requires an updated protection system to increase reliability. When a malfunction occurs in the electricity network, transmission or distribution systems, a large area is left without electricity and this situation is solved by eliminating the fault. Identifying and eliminating the root cause of the malfunction is a time-consuming process. One of the most important and critical factors for energy companies is fault localization and network repair time. Fast troubleshooting reduces the effects of manpower and economic losses. In this study, an updated protection system is proposed. This protection system provides very fast protection responses and repair operations during external or internal faults with storage support. The application of smart grid technology brings about a two-way power system and grid transformation that facilitates power transmission and rapid recovery of the fault area. Constant power outages are a major concern for energy companies and consumers. When faults occur, voltage drops in the fault region. Faults in power systems are temporary signals that are the result of various disturbances in transmission and distribution lines. As a result, failures in smart grids will provide uninterrupted energy with the storage method with the support of electric vehicles.

References

  • IEC SRD 62913-1; Generic Smart Grid Requirements—Part 1: Specific Application of the Use Case Methodology for Defining Generic Smart Grid Requirements According to the IEC Systems Approach. IEC: Geneva, Switzerland, 2022.
  • Sarwar, M.; Asad, B. A review on future power systems; technologies and research for smart grids. In Proceedings of the 2016 International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, 18–19 October 2016; pp. 1–6.
  • Agüero, J.R. Applying self-healing schemes to modern power distribution systems. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–4.
  • Estebsari, A.; Barbierato, L.; Bahmanyar, A.; Bottaccioli, L.; Macii, E.; Patti, E. A SGAM-Based Test Platform to Develop a Scheme for Wide Area Measurement-Free Monitoring of Smart Grids under High PV Penetration. Energies 2019, 12, 1417.
  • Haes Alhelou, H.; Hamedani-Golshan, M.E.; Njenda, T.C.; Siano, P. A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges. Energies 2019, 12, 682.
  • Stefanidou-Voziki, P.; Sapountzoglou, N.; Raison, B.; Dominguez-Garcia, J. A review of fault location and classification methods in distribution grids. Electr. Power Syst. Res. 2022, 209, 108031.
  • De La Cruz, J., Gómez-Luna, E., Ali, M., Vasquez, J. C., & Guerrero, J. M. (2023). Fault location for distribution smart grids: Literature overview, challenges, solutions, and future trends. Energies, 16(5), 2280.
  • Jadidi, S.; Badihi, H.; Zhang, Y. Fault Diagnosis in Microgrids with Integration of Solar Photovoltaic Systems:A Review. IFACPapersOnLine 2020, 53, 12091–12096.
  • Baidya, S., & Nandi, C. (2022). A comprehensive review on DC Microgrid protection schemes. Electric Power Systems Research, 210, 108051
  • Annaswamy, A.M.; Amin, M. IEEE Smart Grid Research IEEE Vision for Smart Grid Controls: 2030 and Beyond Reference Model; IEEE Press: Piscataway, NJ, USA, 2013.
  • Andresen, C.A.; Torsaeter, B.N.; Haugdal, H.; Uhlen, K. Fault Detection and Prediction in Smart Grids. In Proceedings of the 2018 IEEE 9th InternationalWorkshop on Applied Measurements for Power Systems (AMPS), Bologna, Italy, 26 28 September 2018; pp. 1–6.
  • Sarathkumar, D.; Srinivasan, M.; Stonier, A.A.; Samikannu, R.; Dasari, N.R.; Raj, R.A. A Technical Review on Self-Healing Control Strategy for Smart Grid Power Systems. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1055, 012153.
  • Mousa, M.; Abdelwahed, S.; Kluss, J. Review of Fault Types, Impacts, and Management Solutions in Smart Grid Systems. Smart Grid Renew. Energy 2019, 10, 98–117.
  • Mahmoud, M. A., Md Nasir, N. R., Gurunathan, M., Raj, P., & Mostafa, S. A. (2021). The current state of the art in research on predictive maintenance in smart grid distribution network: Fault’s types, causes, and prediction methods—A systematic review. Energies, 14(16), 5078.
  • Chai, E.; Zeng, P.; Ma, S.; Xing, H.; Zhao, B. Artificial Intelligence Approaches to Fault Diagnosis in Power Grids: A Review. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019.
  • Furse, C.M.; Kafal, M.; Razzaghi, R.; Shin, Y.-J. Fault Diagnosis for Electrical Systems and Power Networks: A Review. IEEE Sens. J. 2020, 21, 888–906
  • Biswal, C., Sahu, B. K., Mishra, M., & Rout, P. K. (2023). Real-time grid monitoring and protection: A comprehensive survey on the advantages of phasor measurement units. Energies, 16(10), 4054.
  • Al-Hammouri, A. T., Nordström, L., Chenine, M., Vanfretti, L., Honeth, N., & Leelaruji, R. (2012, July). Virtualization of synchronized phasor measurement units within real-time simulators for smart grid applications. In 2012 IEEE Power and Energy Society General Meeting (pp. 1-7). IEEE.
  • Klein, M. E. (2010). Autonomous ultra-low power ELF/VLF receiver systems (Doctoral dissertation, Stanford University).
  • Kiessling, F., Nefzger, P., Nolasco, J. F., & Kaintzyk, U. (2014). Overhead power lines: planning, design, construction. Springer.
  • Cirman, A., Domadenik, P., Koman, M., & Redek, T. (2009). The Kyoto protocol in a global perspective. Economic and business review, 11(1), 3.
  • Hussain, S., Fernandez, J. H., Al-Ali, A. K., & Shikfa, A. (2021). Vulnerabilities and countermeasures in electrical substations. International Journal of Critical Infrastructure Protection, 33, 100406.
  • Horowitz, S. H., Phadke, A. G., & Henville, C. F. (2022). Power system relaying. John Wiley & Sons.
  • Kiliçkiran, H. C., Şengör, İ., Akdemir, H., Kekezoğlu, B., Erdinç, O., & Paterakis, N. G. (2018). Power system protection with digital overcurrent relays: A review of non-standard characteristics. Electric Power Systems Research, 164, 89-102.
  • Tür, M. R., Wadi, M., Shobole, A. A., & Gündüz, H. (2021). Integration problems of photovoltaic systems-wind power, solutions and effects on power quality. European Journal of Technique (EJT), 10(2), 340-353.
  • Shobol, A., Ali, M. H., Wadi, M., & TüR, M. R. (2019, November). Overview of big data in smart grid. In 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 1022-1025). IEEE.
  • Shobole, A. A., & Wadi, M. (2021). Multiagent systems application for the smart grid protection. Renewable and Sustainable Energy Reviews, 149, 111352.
  • Huynh, T. P., Sonar, P., & Haick, H. (2017). Advanced materials for use in soft self‐healing devices. Advanced Materials, 29(19), 1604973.
  • Tur, M. R. (2020). Reliability assessment of distribution power system when considering energy storage configuration technique. IEEE Access, 8, 77962-77971.
  • Arefifar, S. A., Alam, M. S., & Hamadi, A. (2023). A review on self-healing in modern power distribution systems. Journal of Modern Power Systems and Clean Energy, 11(6), 1719-1733.
  • Temiz, R., & Tür, M. R. (2024). Investment technique for ensuring energy supply continuity in ring grids. Turkish Journal of Engineering, 8(2), 186-195.
  • Dashti, R., Daisy, M., Mirshekali, H., Shaker, H. R., & Aliabadi, M. H. (2021). A survey of fault prediction and location methods in electrical energy distribution networks. Measurement, 184, 109947.
  • Chen, K., Huang, C., & He, J. (2016). Fault detection, classification and location for transmission lines and distribution systems: a review on the methods. High voltage, 1(1), 25-33.
  • Chen, K., Huang, C., & He, J. (2016). Fault detection, classification and location for transmission lines and distribution systems: a review on the methods. High voltage, 1(1), 25-33.
  • Theodoro, T. S., Tomim, M. A., Barbosa, P. G., Lima, A. C., & de Barros, M. T. C. (2019). A flexible co-simulation framework for penetration studies of power electronics based renewable sources: A new algorithm for phasor extraction. International Journal of Electrical Power & Energy Systems, 113, 419-435.
  • Ramesh, M., & Laxmi, A. J. (2012, January). Fault identification in HVDC using artificial intelligence—Recent trends and perspective. In 2012 International Conference on Power, Signals, Controls and Computation (pp. 1-6). IEEE.
  • Cao, X., Stephen, B., Abdulhadi, I. F., Booth, C. D., & Burt, G. M. (2015). Switching Markov Gaussian models for dynamic power system inertia estimation. IEEE Transactions on Power Systems, 31(5), 3394-3403.
  • Das, S., Santoso, S., Gaikwad, A., & Patel, M. (2014). Impedance-based fault location in transmission networks: theory and application. IEEE access, 2, 537-557.
  • Ghaderi, A., Ginn III, H. L., & Mohammadpour, H. A. (2017). High impedance fault detection: A review. Electric power systems research, 143, 376-388.
  • Gitau, M. N., & Kala-Konga, C. L. (2010, November). Multilevel switched-capacitor DC-DC converter with reduced capacitor bank. In IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society (pp. 576-581). IEEE.
  • Ali, S. A. (2011). Capacitor banks switching transients in power systems. Energy Science and Technology, 2(2), 62-73.
  • Mehranbod, N., Soroush, M., & Panjapornpon, C. (2005). A method of sensor fault detection and identification. Journal of Process Control, 15(3), 321-339.
There are 42 citations in total.

Details

Primary Language English
Subjects Electrical Energy Storage, Electrical Energy Transmission, Networks and Systems
Journal Section Articles
Authors

Medine İzgi 0009-0003-9165-9467

Mehmet Rıda Tür 0000-0001-5688-4624

Publication Date June 30, 2024
Submission Date June 15, 2024
Acceptance Date June 29, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA İzgi, M., & Tür, M. R. (2024). Providing Uninterrupted Energy with Fault Detection and Storage Method in Smart Grids. Journal of Engineering and Technology, 5(1), 22-32.