Research Article
BibTex RIS Cite

Adolesan İdiopatik Skolyozlu Bireylerde Korsenin Pedobarografik Parametreler Üzerine Etkisi

Year 2021, Volume: 8 Issue: 1, 44 - 53, 07.05.2021

Abstract

Amaç: Çalışmanın amacı, adolesan idiopatik skolyozlu (AİS) bireylerde skolyoz ortezinin statik, dinamik ve stabilometrik değişimleri üzerine anlık etkilerini değerlendirmekti.
Yöntem: Çalışmamıza 10-19 yaş aralığında ve orta derecede eğriliğe (20-45°) sahip olan 29 birey (24 kız, 5 erkek) dahil edildi. DIASU (Diasu Company, Rome, Italy 4024 sensor, 300 MHz frequency) pedobarografi cihazı ile bireylerin statik, stabilometrik ve dinamik verileri kaydedildi. Değerlendirmeler aynı bireylerde ortezil ve ortezsiz durumlarda gerçekleştirildi. Veriler Milletrix yazılımı (Diagnostic support, Rome, Italy) ile kayıt altına alındı ve bilgisayar sistemine aktarıldı.
Bulgular: Ortezli ve ortezsiz durumda yapılan analizlerde statik ve stabilometrik değerler arasında değişiklik saptanmadı (p>0,05). Bununla birlikte, Ortezin sol ayak adım uzunluğu ve sol ayak ivme gibi dinamik değerleri etkilediği bulundu (p<0,05). Ortez kullanımıyla beraber bu değerlerde azalma görüldü.
Sonuç: Skolyoz ortezinin anlık etkileri ivme ve adım uzunluğu gibi dinamik pedobarografik değerleri değiştirebilmektedir. Ortotist ve fizyoterapistlerin, skolyoz ortezinin dinamik parametreler üzerindeki kısa dönem etkilerini dikkate alarak, rehabilitasyon süresince ortezin kompansatuar etkilerini göz önünde bulundurmaları gerekmektedir.

Supporting Institution

İSTANBUL MEDİPOL ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ (BAP)

Project Number

2019-22

Thanks

Çalışmamıza verdikleri destekten dolayı İstanbul Medipol Üniversitesi Bilimsel Araştırma Projeleri'ne teşekkür ederiz.

References

  • 1. Grivas TB, de Mauroy JC, Negrini S, et al. Terminology-glossary including acronyms and quotations in use for the conservative spinal deformities treatment: 8th SOSORT consensus paper. Scoliosis. 2010;5:23.
  • 2. Negrini S, Aulisa GA, Aulisa L, et al. 2011 SOSORT guidelines: Orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis J. 2012;7:1-35.
  • 3. Veldhuizen AG, Wever DJ, Webb PJ. The aetiology of idiopathic scoliosis: biomechanical and neuromuscular factors. Eur Spine J. 2000;9:178-184.
  • 4. Kubat O, Ovadia D. Frontal and sagittal imbalance in patients with adolescent idiopathic deformity. Ann Transl Med. 2020;8:29-29.
  • 5. Basmajian JV. Muscles alive. Their functions revealed by electromyography. Acad Med. 1962;37:802.
  • 6. Gauchard GC, Lascombes P, Kuhnast M, et al. Influence of different types of progressive idiopathic scoliosis on static and dynamic postural control. Spine. 2001;26:1052-1058.
  • 7. Thorstensson A, Nilsson J, Carlson H, et al. Trunk movements in human locomotion. Acta Physiol Scand. 1984;121:9-22.
  • 8. Cole A, Burwell RG, Jacobs KJ. Hip rotation, knee rotation and femoral anteversion in healthy subjects and in children with adolescent idiopathic scoliosis: relation of hip rotation to lateral spinal curves. Clin Anat. 1990;3:65.
  • 9. Saji MJ, Upadhyay SS, Leong JC. Increased femoral neck-shaft angles in adolescent idiopathic scoliosis. Spine. 1995;20:303-311.
  • 10. Daryabor A, Arazpour M, Samadian M, et al. Efficacy of corrective spinal orthoses on gait and energy consumption in scoliosis subjects: a literature review. Disabil Rehabil Assist Technol. 2017;12:324-332.
  • 11. Kotwicki T, Walczak A, Szulc A. Trunk rotation and hip joint range of rotation in adolescent girls with idiopathic scoliosis: Does the” dinner plate” turn asymmetrically? Scoliosis. 2008;3:1.
  • 12. Mahaudens P, Banse X, Mousny M, et al. Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis. Eur Spine J. 2009;18:512-521.
  • 13. Schizas CG, Kramers-de Quervain IA, Stussi E, et al. Gait asymmetries in patients with idiopathic scoliosis using vertical forces measurement only. Eur Spine J. 1998;7:95-98.
  • 14. Chockalingam N, Dangerfield PH, Rahmatalla A, et al. Assessment of ground reaction force during scoliotic gait. Eur Spine J. 2014;13:750-754.
  • 15. Giakas G, Baltzopoulos V, Dangerfield PH, et al. Comparison of gait patterns between healthy and scoliotic patients using time and frequency domain analysis of ground reaction forces. Spine (Phila Pa 1976). 1996;21:2235-2242.
  • 16. Riddle HF, Roaf R. Muscle imbalance in the causation of scoliosis. Lancet. 1955;268:1245-1247.
  • 17. Kramers-de Quervain IA, Müller R, Stacoff A, et al. Gait analysis in patients with idiopathic scoliosis. Eur Spine J. 2004;13:449-456.
  • 18. Ma Q, Lin H, Wang L, et al. Correlation between spinal coronal balance and static baropodometry in children with adolescent idiopathic scoliosis. Gait Posture. 2020;75:93-97.
  • 19. Yang JH, Suh SW, Sung PS, et al. Asymmetrical gait in adolescents with idiopathic scoliosis. Eur Spine J. 2013;22:2407-2413.
  • 20. Weinstein SL, Dolan LA, Wright JG, et al. Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med. 2013;369:1512-1521.
  • 21. Havey RM, Gavin TM, Patwardhan AG. Stability of the scoliotic spine: Effect of scoliosis braces. Spine. 2016;41:S18-19.
  • 22. Carr WA, Moe JH, Winter RB, et al. Treatment of idiopathic scoliosis in the Milwaukee brace. J Bone Joint Surg Am. 1980;62:599-612.
  • 23. Maruyama T. Bracing adolescent idiopathic scoliosis: A systematic review of the literature of effective conservative treatment looking for end results 5 years after weaning. Disabil Rehabil. 2008;30:786-791.
  • 24. Cinnella P, Muratore M, Testa E, et al. The treatment of adolescent idiopathic scoliosis with Cheneau brace: long term outcome. Scoliosis. 2009;4:1-1.
  • 25. Zaborowska-Sapeta K, Kowalski IM, Kotwicki T, et al. Effectiveness of Chêneau brace treatment for idiopathic scoliosis: Prospective study in 79 patients followed to skeletal maturity. Scoliosis. 2011;6:2.
  • 26. Rigo M, Jelačić M. Brace technology thematic series: the 3D Rigo Chêneau-type brace. Scoliosis Spinal Disord. 2017;12:1-46.
  • 27. Chase AP, Bader DL, Houghton GR. The biomechanical effectiveness of the Boston brace in the management of adolescent idiopathic scoliosis. Spine. 1989;14:636-642.
  • 28. Gür G, Yakut Y. Effects of a spinal brace on the functional profile of the feet in adolescent idiopathic scoliosis. ACU Sağlık Bil Derg. 2018;9:282-288.
  • 29. Paolucci T, Morone G, Di Cesare A. Effect of Chêneau brace on postural balance in adolescent idiopathic scoliosis: a pilot study. Eur J Phys Rehab Med. 2013;49:649-657.
  • 30. Song HN, Kim YM, Kim K. Comparison of spatiotemporal gait parameters with a spinal orthosis and without a spinal orthosis on level ground and stairs. J Phys Ther Sci. 2016;28:2148-2150.
  • 31. Wong MS, Cheng CY, Ng BKW, et al. The effect of rigid versus flexible spinal orthosis on the gait pattern of patients with adolescent idiopathic scoliosis. Gait Posture. 2008;27:189-195.
  • 32. Negrini S, Atanasio S, Fusco C, et al. Effectiveness of complete conservative treatment for adolescent idiopathic scoliosis (bracing and exercises) based on SOSORT management criteria: results according to the SRS criteria for bracing studies- SOSORT Award 2009 Winner. Scoliosis. 2009;4:19.
  • 33. Schmitz A, König R, Kandyba J, et al. Visualisation of the brace effect on the spinal profile in idiopathic scoliosis. Eur Spine J. 2005;14:138-143.
  • 34. Zeid I. CAD/CAM theory and practice. McGraw-Hill International Editions. Computer Science Series. 1991.
  • 35. Wong MS, Cheng JCY, Lo KH. A comparison of treatment effectiveness between the CAD/CAM method and the manual method for managing adolescent idiopathic scoliosis. Prosthet Orthot Int. 2005;29:105-111.
  • 36. Sankar WN, Albrektson J, Lerman L, et al. Scoliosis in-brace curve correction and patient preference of CAD/CAM versus plaster molded TLSOs. J Child Orthop. 2007;1:345-349.
  • 37. Cobetto N, Aubin CE, Parent S, et al. 3D correction of AIS in braces designed using CAD/CAM and FEM: a randomized controlled trial. Scoliosis Spinal Disord. 2017;12:1-8.
  • 38. Cobetto N, Aubin CE, Clin J, et al. Braces optimized with computer-assisted design and simulations are lighter, more comfortable, and more efficient than plaster-cast braces for the treatment of adolescent idiopathic scoliosis. Spine Deform. 2014;2:276-284.
  • 39. Karimi MT, Borojeni MK. Evaluation of the immediate effect of bracing on gait symmetry, lower-limb kinematics, and trunk and pelvic motion during level walking in adolescents with idiopathic scoliosis. J Prosthet Orthot. 2017;29:183-189.
  • 40. Wong MS. Computer-aided design and computer-aided manufacture (CAD/CAM) system for construction of spinal orthosis for patients with adolescent idiopathic scoliosis. Physiother Theor Pr. 2011;27:74-79.
  • 41. Cobb JR. Outline for the study of scoliosis. AAOS Instr Course Lec. 1948;5:261-275.
  • 42. King HA, Moe JH, Bradford DS, et al. The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am. 1983;65:1302-1313.
  • 43. Orlin MN, McPoil TG. Plantar pressure assessment. Phys Ther. 2000;80:399-409.
  • 44. Skopljak A, Muft IM, Sukalo A, et al. Pedobarography in diagnosis and clinical application. Acta Inform. 2014;22:374-378.
  • 45. Portney LG, Watkins MP. Foundations of clinical research: applications to practice, 2nd Edition. Upper Saddle River, NJ: Pearson/Prentice Hall, 2009.
  • 46. Cohen J. Statistical power analysis. Curr Dir Psychol Sci. 1992;1:98-101
  • 47. Mahaudens P, Thonnard JL, Detrembleur C. Influence of structural pelvic disorders during standing and walking in adolescents with idiopathic scoliosis, Spine J. 2005;5:427-433.
  • 48. Şahin F, Urak Ö, Akkaya N. Evaluation of balance in young adults with idiopathic scoliosis. Turk J Phys Med Rehab. 2019;65:236-243.
  • 49. Wiernicka M, Kotwicki T, Kamińska E, et al. Postural stability in adolescent girls with progressive idiopathic scoliosis. BioMed Res Int. 2019.
  • 50. Kaviani BM, Karimi MT, Ebrahimi A. The effects of Milwaukee orthosis on gait parameters in a Scoliotic subject. J Res Rehabil Sci. 2012;8:1403-1412.

Effects of brace on pedobarographic parameters in individuals with adolescent idiopathic scoliosis

Year 2021, Volume: 8 Issue: 1, 44 - 53, 07.05.2021

Abstract

Purpose: The aim of the study was to evaluate the immediate effects of brace on static, dynamic and stabilometric changes in individuals with Adolescent Idiopathic Scoliosis (AIS).
Methods: Twenty-nine AIS individuals (24 girls; 5 boys) aged between 10-19 years and have moderate curve (20-45°) included into the study. Static, stabilometric and dynamic data of the individuals were recorded by the DIASU pedobarography device (Diasu Company, Rome, Italy 4024 sensor, 300 MHz frequency). Assessments were carried out on same individuals in-brace and without-brace conditions. All data were recorded with Milletrix software (Diagnostic Support, Rome, Italy) and transferred to computer system.
Results: There were no differences between with in-brace and without-brace conditions on static and stabilometric values (p>0.05). However, it was found that braces affected dynamic values such as footstep length and foot acceleration on the left side (p<0.05). It was observed that these values decreased with using braces.
Conclusion: Immediate effects of bracing could change dynamic pedobarographic variables such as acceleration and step length. Regarding short-term effects of bracing on dynamic parameters, therapists and orthotists should consider the compensatory effects of bracing through the rehabilitation.

Project Number

2019-22

References

  • 1. Grivas TB, de Mauroy JC, Negrini S, et al. Terminology-glossary including acronyms and quotations in use for the conservative spinal deformities treatment: 8th SOSORT consensus paper. Scoliosis. 2010;5:23.
  • 2. Negrini S, Aulisa GA, Aulisa L, et al. 2011 SOSORT guidelines: Orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis J. 2012;7:1-35.
  • 3. Veldhuizen AG, Wever DJ, Webb PJ. The aetiology of idiopathic scoliosis: biomechanical and neuromuscular factors. Eur Spine J. 2000;9:178-184.
  • 4. Kubat O, Ovadia D. Frontal and sagittal imbalance in patients with adolescent idiopathic deformity. Ann Transl Med. 2020;8:29-29.
  • 5. Basmajian JV. Muscles alive. Their functions revealed by electromyography. Acad Med. 1962;37:802.
  • 6. Gauchard GC, Lascombes P, Kuhnast M, et al. Influence of different types of progressive idiopathic scoliosis on static and dynamic postural control. Spine. 2001;26:1052-1058.
  • 7. Thorstensson A, Nilsson J, Carlson H, et al. Trunk movements in human locomotion. Acta Physiol Scand. 1984;121:9-22.
  • 8. Cole A, Burwell RG, Jacobs KJ. Hip rotation, knee rotation and femoral anteversion in healthy subjects and in children with adolescent idiopathic scoliosis: relation of hip rotation to lateral spinal curves. Clin Anat. 1990;3:65.
  • 9. Saji MJ, Upadhyay SS, Leong JC. Increased femoral neck-shaft angles in adolescent idiopathic scoliosis. Spine. 1995;20:303-311.
  • 10. Daryabor A, Arazpour M, Samadian M, et al. Efficacy of corrective spinal orthoses on gait and energy consumption in scoliosis subjects: a literature review. Disabil Rehabil Assist Technol. 2017;12:324-332.
  • 11. Kotwicki T, Walczak A, Szulc A. Trunk rotation and hip joint range of rotation in adolescent girls with idiopathic scoliosis: Does the” dinner plate” turn asymmetrically? Scoliosis. 2008;3:1.
  • 12. Mahaudens P, Banse X, Mousny M, et al. Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis. Eur Spine J. 2009;18:512-521.
  • 13. Schizas CG, Kramers-de Quervain IA, Stussi E, et al. Gait asymmetries in patients with idiopathic scoliosis using vertical forces measurement only. Eur Spine J. 1998;7:95-98.
  • 14. Chockalingam N, Dangerfield PH, Rahmatalla A, et al. Assessment of ground reaction force during scoliotic gait. Eur Spine J. 2014;13:750-754.
  • 15. Giakas G, Baltzopoulos V, Dangerfield PH, et al. Comparison of gait patterns between healthy and scoliotic patients using time and frequency domain analysis of ground reaction forces. Spine (Phila Pa 1976). 1996;21:2235-2242.
  • 16. Riddle HF, Roaf R. Muscle imbalance in the causation of scoliosis. Lancet. 1955;268:1245-1247.
  • 17. Kramers-de Quervain IA, Müller R, Stacoff A, et al. Gait analysis in patients with idiopathic scoliosis. Eur Spine J. 2004;13:449-456.
  • 18. Ma Q, Lin H, Wang L, et al. Correlation between spinal coronal balance and static baropodometry in children with adolescent idiopathic scoliosis. Gait Posture. 2020;75:93-97.
  • 19. Yang JH, Suh SW, Sung PS, et al. Asymmetrical gait in adolescents with idiopathic scoliosis. Eur Spine J. 2013;22:2407-2413.
  • 20. Weinstein SL, Dolan LA, Wright JG, et al. Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med. 2013;369:1512-1521.
  • 21. Havey RM, Gavin TM, Patwardhan AG. Stability of the scoliotic spine: Effect of scoliosis braces. Spine. 2016;41:S18-19.
  • 22. Carr WA, Moe JH, Winter RB, et al. Treatment of idiopathic scoliosis in the Milwaukee brace. J Bone Joint Surg Am. 1980;62:599-612.
  • 23. Maruyama T. Bracing adolescent idiopathic scoliosis: A systematic review of the literature of effective conservative treatment looking for end results 5 years after weaning. Disabil Rehabil. 2008;30:786-791.
  • 24. Cinnella P, Muratore M, Testa E, et al. The treatment of adolescent idiopathic scoliosis with Cheneau brace: long term outcome. Scoliosis. 2009;4:1-1.
  • 25. Zaborowska-Sapeta K, Kowalski IM, Kotwicki T, et al. Effectiveness of Chêneau brace treatment for idiopathic scoliosis: Prospective study in 79 patients followed to skeletal maturity. Scoliosis. 2011;6:2.
  • 26. Rigo M, Jelačić M. Brace technology thematic series: the 3D Rigo Chêneau-type brace. Scoliosis Spinal Disord. 2017;12:1-46.
  • 27. Chase AP, Bader DL, Houghton GR. The biomechanical effectiveness of the Boston brace in the management of adolescent idiopathic scoliosis. Spine. 1989;14:636-642.
  • 28. Gür G, Yakut Y. Effects of a spinal brace on the functional profile of the feet in adolescent idiopathic scoliosis. ACU Sağlık Bil Derg. 2018;9:282-288.
  • 29. Paolucci T, Morone G, Di Cesare A. Effect of Chêneau brace on postural balance in adolescent idiopathic scoliosis: a pilot study. Eur J Phys Rehab Med. 2013;49:649-657.
  • 30. Song HN, Kim YM, Kim K. Comparison of spatiotemporal gait parameters with a spinal orthosis and without a spinal orthosis on level ground and stairs. J Phys Ther Sci. 2016;28:2148-2150.
  • 31. Wong MS, Cheng CY, Ng BKW, et al. The effect of rigid versus flexible spinal orthosis on the gait pattern of patients with adolescent idiopathic scoliosis. Gait Posture. 2008;27:189-195.
  • 32. Negrini S, Atanasio S, Fusco C, et al. Effectiveness of complete conservative treatment for adolescent idiopathic scoliosis (bracing and exercises) based on SOSORT management criteria: results according to the SRS criteria for bracing studies- SOSORT Award 2009 Winner. Scoliosis. 2009;4:19.
  • 33. Schmitz A, König R, Kandyba J, et al. Visualisation of the brace effect on the spinal profile in idiopathic scoliosis. Eur Spine J. 2005;14:138-143.
  • 34. Zeid I. CAD/CAM theory and practice. McGraw-Hill International Editions. Computer Science Series. 1991.
  • 35. Wong MS, Cheng JCY, Lo KH. A comparison of treatment effectiveness between the CAD/CAM method and the manual method for managing adolescent idiopathic scoliosis. Prosthet Orthot Int. 2005;29:105-111.
  • 36. Sankar WN, Albrektson J, Lerman L, et al. Scoliosis in-brace curve correction and patient preference of CAD/CAM versus plaster molded TLSOs. J Child Orthop. 2007;1:345-349.
  • 37. Cobetto N, Aubin CE, Parent S, et al. 3D correction of AIS in braces designed using CAD/CAM and FEM: a randomized controlled trial. Scoliosis Spinal Disord. 2017;12:1-8.
  • 38. Cobetto N, Aubin CE, Clin J, et al. Braces optimized with computer-assisted design and simulations are lighter, more comfortable, and more efficient than plaster-cast braces for the treatment of adolescent idiopathic scoliosis. Spine Deform. 2014;2:276-284.
  • 39. Karimi MT, Borojeni MK. Evaluation of the immediate effect of bracing on gait symmetry, lower-limb kinematics, and trunk and pelvic motion during level walking in adolescents with idiopathic scoliosis. J Prosthet Orthot. 2017;29:183-189.
  • 40. Wong MS. Computer-aided design and computer-aided manufacture (CAD/CAM) system for construction of spinal orthosis for patients with adolescent idiopathic scoliosis. Physiother Theor Pr. 2011;27:74-79.
  • 41. Cobb JR. Outline for the study of scoliosis. AAOS Instr Course Lec. 1948;5:261-275.
  • 42. King HA, Moe JH, Bradford DS, et al. The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am. 1983;65:1302-1313.
  • 43. Orlin MN, McPoil TG. Plantar pressure assessment. Phys Ther. 2000;80:399-409.
  • 44. Skopljak A, Muft IM, Sukalo A, et al. Pedobarography in diagnosis and clinical application. Acta Inform. 2014;22:374-378.
  • 45. Portney LG, Watkins MP. Foundations of clinical research: applications to practice, 2nd Edition. Upper Saddle River, NJ: Pearson/Prentice Hall, 2009.
  • 46. Cohen J. Statistical power analysis. Curr Dir Psychol Sci. 1992;1:98-101
  • 47. Mahaudens P, Thonnard JL, Detrembleur C. Influence of structural pelvic disorders during standing and walking in adolescents with idiopathic scoliosis, Spine J. 2005;5:427-433.
  • 48. Şahin F, Urak Ö, Akkaya N. Evaluation of balance in young adults with idiopathic scoliosis. Turk J Phys Med Rehab. 2019;65:236-243.
  • 49. Wiernicka M, Kotwicki T, Kamińska E, et al. Postural stability in adolescent girls with progressive idiopathic scoliosis. BioMed Res Int. 2019.
  • 50. Kaviani BM, Karimi MT, Ebrahimi A. The effects of Milwaukee orthosis on gait parameters in a Scoliotic subject. J Res Rehabil Sci. 2012;8:1403-1412.
There are 50 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Yağmur Altun 0000-0002-6605-3565

Burcu Dilek 0000-0002-4169-6302

Yavuz Yakut 0000-0001-9363-0869

Project Number 2019-22
Publication Date May 7, 2021
Submission Date September 14, 2020
Published in Issue Year 2021 Volume: 8 Issue: 1

Cite

Vancouver Altun Y, Dilek B, Yakut Y. Effects of brace on pedobarographic parameters in individuals with adolescent idiopathic scoliosis. JETR. 2021;8(1):44-53.