BibTex RIS Cite

Allometric equations for estimating standing biomass of Avicennia marina in Bushehr of Iran

Year 2016, Volume: 66 Issue: 2, 691 - 697, 01.07.2016
https://doi.org/10.17099/jffiu.23699

Abstract

Allometric equations for estimating standing biomass of Avicennia marina in Bushehr of Iran

Abstract: Today, it is important to use of ecological indicators, such as biomass for recognizing the special status of ecosystems, such as mangrove forests and also monitoring and evaluating changes through a specific period. Because using the direct method of evaluating biomass would be destructive, it is common in all similar area to use determine exact Allometric equations by using the statistical relationship between the structural characteristics of trees and their biomass and use these equations to estimate the biomass of trees. The aim of this study is estimate the aboveground biomass of mangroves and determine Allometric models for Nayband area in Bushehr, located in southern Iran. A number of mangrove trees were randomly selected. Collar diameter, crown diameter and tree height of standing trees were measured. After logging and weighing fresh weight, dry weight, trunk and branches were obtained in laboratory and biomass of components was calculated. The relationship between quantities feature of trees and biomass for determination of allometric equation was studied by using linear, power and exponential regression. The equations were compared with each other based on the different modeling parameters. The highest significant correlation was found between crown diameters and dry weight (R > 0.90). The best equations were obtained by means of an exponential and power regression models (R2adj> 0.90). The models were obtained from explained factor, suggests that there might be a relationship between the characteristics of mangrove trees and biomass.

Keywords: Biomass, mangrove, modeling, Iran

İran Buşehr Eyaletinde Avicennia marina biyokütle tahmini için allometrik denklemlerin kullanımı

Özet: Günümüzde; subasar ormanları gibi özel yapıdaki ekosistemlerin araştırılması için biyokütle gibi bazı ekolojik göstergelerin kullanılması önemlidir. Biyokütlenin hesaplanmasında doğrudan metodların kullanılması yıkıcı sonuçlar doğuracağından, ağaçların yapısal özellikleri ve biyokütle arasındaki istatistiki ilişkiye dayanan  kesin Allometrik denklemleri kullanarak biyokütleyi tahmin etmek yaygın bir şekilde uygulanmaktadır. Bu çalışmanın amacı, İran'ın güneyinde yer alan Buşehr Eyaleti Nayband bölgesi'ndeki subasar ormanları yerüstü biyokütle miktarının Allometrik yöntemlerle belirlenmesidir. Subasar ormanlarında ağaçlar rastgele seçilmiş, bu ağaçların boyu, göğüs çapı ve taç genişlikleri ölçülmüştür. Kesilen ağaçların taze ve kuru ağırlıkları ölçülerek gövde ve dalları biyokütlelerinin hesaplanması için laboratuvara taşınmıştır. Uygun allometrik denklemin belirlenmesi için ağaçların özelliği ve biyokütle arasındaki ilişki doğrusal, güç ve üstel regresyon kullanılarak incelenmiştir. Denklemler farklı modelleme parametrelerine dayanarak birbirleriyle karşılaştırılmıştır. En yüksek anlamlı ilişki taç çapları ve kuru ağırlık (R> 0.90) arasında bulunmuştur. En iyi denklemler üstel ve güç regresyon modelleri (R2adj> 0.90) vasıtasıyla elde edilmiştir. Açıklanan gerekçelere dayanılarak kullanılan en uygun modeller; subasar ormanlarında yetişen ağaçların karakteristikleri ile biyokütle arasında bir ilişki olabileceğini bize düşündürmektredir.

Anahtar Kelimeler:  Biyokütle, subasar orman, modelleme, İran

Received (Geliş): 15.11.2015 - Revised (Düzeltme): 29.12.2015 - Accepted (Kabul): 01.02.2016

Cite (Atıf): Ghasemi, A., Fallah, A., Joibary, S.S., 2016. Allometric equations for estimating standing biomass of Avicennia marina in Bushehr of Iran. Journal of the Faculty of Forestry Istanbul University 66(2): 691-697. DOI: 10.17099/jffiu.23699

References

  • Smith III, T. J. and Whelan, K. R. T. (2006). Development of allometric relations for three mangrove species in South Florida for use in the Greater Everglades Ecosystem restoration. Wetlands Ecol. Manag. 14:409-419.
  • Steinke, T. D., Ward, C. J. and Rajh, A. (1995). Forest structure and biomass of mangrove in the Mgeni estuary, south Africa. Hydrobiologia 295:159-166.
  • Comley, B. W. T. and McGuinness, K. A. (2005). Above- and below-ground biomass, and allometry, of four common northern Australian mangroves. Aust. J. Bot. 53:431-436.
  • Coronado-Molina, C., Day, J. W., Reyes, E., & Perez, B. C. (2004). Standing crop and aboveground biomass partitioning of a dwarf mangrove forest in Taylor River Slough, Florida. Wetlands Ecology and Management, 12(3), 157–164.
  • FAO. (2008). FOR SOUTHEAST ASIA. FAO and Wetlands International, 198.
  • Farley, J., Batker, D., De la Torre, I., & Hudspeth, T. (2010). Conserving mangrove ecosystems in the Philippines: transcending disciplinary and institutional borders. Environmental Management, 45(1), 39–51.
  • Ghasemi, A., & Sousa, E. S. (2008). Spectrum sensing in cognitive radio networks: requirements, challenges and design trade-offs. IEEE Communications Magazine.
  • Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, a., Loveland, T., Masek, J. and Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159.
  • Hogarth, P. J. (2015). The biology of mangroves and seagrasses. Oxford University Press.
  • Komiyama, A., Havanond, S., Srisawatt, W., Mochida, Y., Fujimoto, K., Ohnishi, T., Shuichi, I. and Miyagi, T. (2000). Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr.) CB Rob.) Forest. Forest Ecology and Management, 139(1), 127–134.
  • Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89(2), 128–137.
  • Osland, M. J., Day, R. H., Larriviere, J. C., & From, A. S. (2014). Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): Equations for a climate sensitive mangrove-marsh ecotone. PLoS ONE, 9(6), 1–7.
  • Parvaresh, H., Parvaresh, E., & Zahedi, G. (2012). Establishing Allometric Relationship Using Crown Diameter for the Estimation of above-Ground Biomass of Grey Mangrove, Avicennia Marina ( Forsk ) Vierh in Mangrove Forests of Sirik , Iran. Journal of Basic and Applied Scientific Research, 2(2), 1763–1769.
  • Ross, M. S., Ruiz, P. L., Telesnicki, G. J., & Meeder, J. F. (2001). Estimating above-ground biomass and production in mangrove communities of Biscayne National Park, Florida (U.S.A.). Wetlands Ecology and Management, 9(1), 27–37.
  • Safdari, V., & Shadman, por msa. (2013). Wood anatomy of an Iranian mangrove plant, Avicennia marina (Forsk) Vierth growing in mangrove forests (Ghashem Island). Iranian Journal of Wood and Paper Science Research, 29(4), 560–570.
  • Sandilyan, S. (2010). Climate change and mangrove wetlands. Emerg Sci, 2(7), 18–19.
  • Sandilyan, S., & Kathiresan, K. (2012). Mangrove conservation: a global perspective. Biodiversity and Conservation, 21(14), 3523–3542.
  • Sandilyan, S., Thiyagesan, K., Nagarajan, R., & Vencatesan, J. (2010). Salinity rise in Indian mangroves—a looming danger for coastal biodiversity. Current Science, 98(6), 754–756.
  • Smith III, T. J., Foster, A. M., Tiling-Range, G., & Jones, J. W. (2013). Dynamics of mangrove–marsh ecotones in subtropical coastal wetlands: fire, sea-level rise, and water levels. Fire Ecology, 9(1), 66–77.
  • Woodroffe, C. D. (1985). Studies of a mangrove basin, Tuff Crater, New Zealand: I. Mangrove biomass and production of detritus. Estuarine, Coastal and Shelf Science, 20(3), 265–280.

İran Buşehr Eyaletinde Avicennia marina biyokütle tahmini için allometrik denklemlerin kullanımı

Year 2016, Volume: 66 Issue: 2, 691 - 697, 01.07.2016
https://doi.org/10.17099/jffiu.23699

Abstract

Günümüzde; subasar ormanları gibi özel yapıdaki ekosistemlerin araştırılması için biyokütle gibi bazı ekolojik göstergelerin kullanılması önemlidir. Biyokütlenin hesaplanmasında doğrudan metodların kullanılması yıkıcı sonuçlar doğuracağından, ağaçların yapısal özellikleri ve biyokütle arasındaki istatistiki ilişkiye dayanan kesin Allometrik denklemleri kullanarak biyokütleyi tahmin etmek yaygın bir şekilde uygulanmaktadır. Bu çalışmanın amacı, İran'ın güneyinde yer alan Buşehr Eyaleti Nayband bölgesi'ndeki subasar ormanları yerüstü biyokütle miktarının Allometrik yöntemlerle belirlenmesidir. Subasar ormanlarında ağaçlar rastgele seçilmiş, bu ağaçların boyu, göğüs çapı ve taç genişlikleri ölçülmüştür. Kesilen ağaçların taze ve kuru ağırlıkları ölçülerek gövde ve dalları biyokütlelerinin hesaplanması için laboratuvara taşınmıştır. Uygun allometrik denklemin belirlenmesi için ağaçların özelliği ve biyokütle arasındaki ilişki doğrusal, güç ve üstel regresyon kullanılarak incelenmiştir. Denklemler farklı modelleme parametrelerine dayanarak birbirleriyle karşılaştırılmıştır. En yüksek anlamlı ilişki taç çapları ve kuru ağırlık (R> 0.90) arasında bulunmuştur. En iyi denklemler üstel ve güç regresyon modelleri (R2 adj> 0.90) vasıtasıyla elde edilmiştir. Açıklanan gerekçelere dayanılarak kullanılan en uygun modeller; subasar ormanlarında yetişen ağaçların karakteristikleri ile biyokütle arasında bir ilişki olabileceğini bize düşündürmektedir.

References

  • Smith III, T. J. and Whelan, K. R. T. (2006). Development of allometric relations for three mangrove species in South Florida for use in the Greater Everglades Ecosystem restoration. Wetlands Ecol. Manag. 14:409-419.
  • Steinke, T. D., Ward, C. J. and Rajh, A. (1995). Forest structure and biomass of mangrove in the Mgeni estuary, south Africa. Hydrobiologia 295:159-166.
  • Comley, B. W. T. and McGuinness, K. A. (2005). Above- and below-ground biomass, and allometry, of four common northern Australian mangroves. Aust. J. Bot. 53:431-436.
  • Coronado-Molina, C., Day, J. W., Reyes, E., & Perez, B. C. (2004). Standing crop and aboveground biomass partitioning of a dwarf mangrove forest in Taylor River Slough, Florida. Wetlands Ecology and Management, 12(3), 157–164.
  • FAO. (2008). FOR SOUTHEAST ASIA. FAO and Wetlands International, 198.
  • Farley, J., Batker, D., De la Torre, I., & Hudspeth, T. (2010). Conserving mangrove ecosystems in the Philippines: transcending disciplinary and institutional borders. Environmental Management, 45(1), 39–51.
  • Ghasemi, A., & Sousa, E. S. (2008). Spectrum sensing in cognitive radio networks: requirements, challenges and design trade-offs. IEEE Communications Magazine.
  • Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, a., Loveland, T., Masek, J. and Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159.
  • Hogarth, P. J. (2015). The biology of mangroves and seagrasses. Oxford University Press.
  • Komiyama, A., Havanond, S., Srisawatt, W., Mochida, Y., Fujimoto, K., Ohnishi, T., Shuichi, I. and Miyagi, T. (2000). Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr.) CB Rob.) Forest. Forest Ecology and Management, 139(1), 127–134.
  • Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89(2), 128–137.
  • Osland, M. J., Day, R. H., Larriviere, J. C., & From, A. S. (2014). Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): Equations for a climate sensitive mangrove-marsh ecotone. PLoS ONE, 9(6), 1–7.
  • Parvaresh, H., Parvaresh, E., & Zahedi, G. (2012). Establishing Allometric Relationship Using Crown Diameter for the Estimation of above-Ground Biomass of Grey Mangrove, Avicennia Marina ( Forsk ) Vierh in Mangrove Forests of Sirik , Iran. Journal of Basic and Applied Scientific Research, 2(2), 1763–1769.
  • Ross, M. S., Ruiz, P. L., Telesnicki, G. J., & Meeder, J. F. (2001). Estimating above-ground biomass and production in mangrove communities of Biscayne National Park, Florida (U.S.A.). Wetlands Ecology and Management, 9(1), 27–37.
  • Safdari, V., & Shadman, por msa. (2013). Wood anatomy of an Iranian mangrove plant, Avicennia marina (Forsk) Vierth growing in mangrove forests (Ghashem Island). Iranian Journal of Wood and Paper Science Research, 29(4), 560–570.
  • Sandilyan, S. (2010). Climate change and mangrove wetlands. Emerg Sci, 2(7), 18–19.
  • Sandilyan, S., & Kathiresan, K. (2012). Mangrove conservation: a global perspective. Biodiversity and Conservation, 21(14), 3523–3542.
  • Sandilyan, S., Thiyagesan, K., Nagarajan, R., & Vencatesan, J. (2010). Salinity rise in Indian mangroves—a looming danger for coastal biodiversity. Current Science, 98(6), 754–756.
  • Smith III, T. J., Foster, A. M., Tiling-Range, G., & Jones, J. W. (2013). Dynamics of mangrove–marsh ecotones in subtropical coastal wetlands: fire, sea-level rise, and water levels. Fire Ecology, 9(1), 66–77.
  • Woodroffe, C. D. (1985). Studies of a mangrove basin, Tuff Crater, New Zealand: I. Mangrove biomass and production of detritus. Estuarine, Coastal and Shelf Science, 20(3), 265–280.
There are 20 citations in total.

Details

Primary Language English
Journal Section Short Note (Kısa Not)
Authors

Akbar Ghasemi This is me

Asghar Fallah This is me

Shaban Joibary This is me

Publication Date July 1, 2016
Published in Issue Year 2016 Volume: 66 Issue: 2

Cite

APA Ghasemi, A., Fallah, A., & Joibary, S. (2016). Allometric equations for estimating standing biomass of Avicennia marina in Bushehr of Iran. Journal of the Faculty of Forestry Istanbul University, 66(2), 691-697. https://doi.org/10.17099/jffiu.23699
AMA Ghasemi A, Fallah A, Joibary S. Allometric equations for estimating standing biomass of Avicennia marina in Bushehr of Iran. J FAC FOR ISTANBUL U. July 2016;66(2):691-697. doi:10.17099/jffiu.23699
Chicago Ghasemi, Akbar, Asghar Fallah, and Shaban Joibary. “Allometric Equations for Estimating Standing Biomass of Avicennia Marina in Bushehr of Iran”. Journal of the Faculty of Forestry Istanbul University 66, no. 2 (July 2016): 691-97. https://doi.org/10.17099/jffiu.23699.
EndNote Ghasemi A, Fallah A, Joibary S (July 1, 2016) Allometric equations for estimating standing biomass of Avicennia marina in Bushehr of Iran. Journal of the Faculty of Forestry Istanbul University 66 2 691–697.
IEEE A. Ghasemi, A. Fallah, and S. Joibary, “Allometric equations for estimating standing biomass of Avicennia marina in Bushehr of Iran”, J FAC FOR ISTANBUL U, vol. 66, no. 2, pp. 691–697, 2016, doi: 10.17099/jffiu.23699.
ISNAD Ghasemi, Akbar et al. “Allometric Equations for Estimating Standing Biomass of Avicennia Marina in Bushehr of Iran”. Journal of the Faculty of Forestry Istanbul University 66/2 (July 2016), 691-697. https://doi.org/10.17099/jffiu.23699.
JAMA Ghasemi A, Fallah A, Joibary S. Allometric equations for estimating standing biomass of Avicennia marina in Bushehr of Iran. J FAC FOR ISTANBUL U. 2016;66:691–697.
MLA Ghasemi, Akbar et al. “Allometric Equations for Estimating Standing Biomass of Avicennia Marina in Bushehr of Iran”. Journal of the Faculty of Forestry Istanbul University, vol. 66, no. 2, 2016, pp. 691-7, doi:10.17099/jffiu.23699.
Vancouver Ghasemi A, Fallah A, Joibary S. Allometric equations for estimating standing biomass of Avicennia marina in Bushehr of Iran. J FAC FOR ISTANBUL U. 2016;66(2):691-7.