Review
BibTex RIS Cite

DOĞADAN İLHAM ALAN BİYOMİMETİK NANOTAŞIYICI SİSTEMLER

Year 2022, , 551 - 575, 29.05.2022
https://doi.org/10.33483/jfpau.1033286

Abstract

Amaç: Sentetik, biyolojik ve biyoteknolojik ilaç araştırmalarında sıklıkla kullanılan polimerik ve lipidik yapıdaki nanopartiküler sistemler klinik beklentileri halen istenilen düzeyde karşılayamamaktadır. Yenilikçi bir yaklaşım olarak geliştirilen doğadan ilham alan, biyomimetik nanotaşıyıcılar sahip oldukları yüksek biyouyumluluk, düşük toksisisite ve doğal hedefleme yetenekleri nedeniyle gittikçe artan şekilde çalışmalara dahil edilmektedir. Bu derlemenin amacı biyomimetik nanotaşıyıcılar alanında yapılan güncel çalışmaları ele alarak farmasötik yenilikçi taşıyıcı system geliştirme çabasına katkıda bulunmaktır.
Sonuç ve Tartışma: En sık kullanılan biyomimetik sistemler arasında virüs temelli, memeli hücresi temelli ve bakteri-mantar temelli nanotaşıyıcı sistemler bulunmaktadır. Doğanın bize sunduğu bu sistemleri anlama çabası taşıyıcı sistem araştırmalarında bizi daha ileriye götürebilir. Bununla birlikte, kontrol edilebilirlik ve seri üretim gibi sentetik sistemlerin avantajları ile biyolojik sistemlerin yüksek hücresel alım ve biyouyumluluk işlevlerinin birleştirmesi ile daha başarılı nanotaşıyıcı sistemlerin geliştirilme potansiyeli olabilecektir. Böylece, biyomimetik sistemlerin protein, gen ve diğer terapötik ajanların taşınmasındaki rolü artacaktır.

Supporting Institution

Tübitak

Project Number

218S840

References

  • 1. Shende, P., Basarkar, V. (2019). Recent trends and advances in microbe-based drug delivery systems. [CrossRef]
  • 2. Fu, G.-F., Li, X., Hou, Y.-Y., Fan, Y.-R., Liu, W.-H., Xu, G.-X. (2005). Bifidobacterium longum as an oral delivery system of endostatin for gene therapy on solid liver cancer. Cancer Gene Therapy, 12, 133–140. [CrossRef]
  • 3. Aminu, N., Bello, I., Umar, N. M., Tanko, N., Aminu, A., Audu, M. M. (2020). The influence of nanoparticulate drug delivery systems in drug therapy. In Journal of Drug Delivery Science and Technology (Vol. 60). [CrossRef]
  • 4. C. Tuba; Hascicek, S.T. (2009). Polimerik nanopartikuler ilaç taşıyıcı sistemlerde yüzey modifikasyonu. Ankara Universitesi Eczacilik Fakultesi Dergisi, 38(2), 137–154. [CrossRef]
  • 5. Erel-Akbaba, G.,Akbaba, H. (2021). Investigation of the potential therapeutic effect of cationic lipoplex mediated fibroblast growth factor-2 encoding plasmid DNA delivery on wound healing. DARU Journal of Pharmaceutical Sciences. [CrossRef]
  • 6. Torchilin, V. P. (2014). Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews Drug Discovery, 13(11), 813–827. [CrossRef]
  • 7. Zhang, H., Liu, J., Chen, Q., Mi, P. (2020). Ligand-installed anti-VEGF genomic nanocarriers for effective gene therapy of primary and metastatic tumors. Journal of Controlled Release, 320, 314–327. [CrossRef]
  • 8. Erel-Akbaba, G., Carvalho, L. A., Tian, T., Zinter, M., Akbaba, H., Obeid, P. J., Chiocca, E. A., Weissleder, R., Kantarci, A. G., & Tannous, B. A. (2019). Radiation-Induced Targeted Nanoparticle-Based Gene Delivery for Brain Tumor Therapy. ACS Nano, 13(4), 4028–4040. [CrossRef]
  • 9. Maslanka Figueroa, S., Fleischmann, D., Goepferich, A. (2021). Biomedical nanoparticle design: What we can learn from viruses. In Journal of Controlled Release (Vol. 329, pp. 552–569). [CrossRef]
  • 10. Parodi, A., Molinaro, R., Sushnitha, M., Evangelopoulos, M., Martinez, J. O., Arrighetti, N., Corbo, C., Tasciotti, E. (2017). Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials, 147, 155–168. [CrossRef]
  • 11. Unzueta, U., Céspedes, M. V., Vázquez, E., Ferrer-Miralles, N., Mangues, R., Villaverde, A. (2015). Towards protein-based viral mimetics for cancer therapies. In Trends in Biotechnology (Vol. 33, Issue 5, pp. 253–258). [CrossRef]
  • 12. Franco, O. L., Qian, Y., Chen, S., Zhang, J., Yang, G. (2019). Bioinspired and Biomimetic Nanotherapies for the Treatment of Infectious Diseases. [CrossRef]
  • 13. Schwarz, B., Uchida, M., Douglas, T. (2017). Biomedical and Catalytic Opportunities of Virus-Like Particles in Nanotechnology. In Advances in Virus Research (Vol. 97, pp. 1–60). [CrossRef]
  • 14. Kanekiyo, M., Buck, C. B. (2017). Virus-Like Particle and Nanoparticle Vaccines. In Human Vaccines: Emerging Technologies in Design and Development (pp. 87–98). [CrossRef]
  • 15. Kushnir, N., Streatfield, S. J., Yusibov, V. (2012). Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development. In Vaccine (Vol. 31, Issue 1, pp. 58–83). [CrossRef]
  • 16. Gadekar, V., Borade, Y., Kannaujia, S., Rajpoot, K., Anup, N., Tambe, V., Kalia, K., Tekade, R. K. (2021). Nanomedicines accessible in the market for clinical interventions. In Journal of Controlled Release (Vol. 330, pp. 372–397). [CrossRef]
  • 17. Yilmaz, I. C., Ipekoglu, E. M., Bulbul, A., Turay, N., Yildirim, M., Evcili, I., Yilmaz, N. S., Guvencli, N., Aydin, Y., Gungor, B., Saraydar, B., Bartan, A. G., Ibibik, B., Bildik, T., Baydemir, İ., Sanli, H. A., Kayaoglu, B., Ceylan, Y., Yildirim, T., Gursel, M. (2021). Development and preclinical evaluation of virus-like particle vaccine against COVID-19 infection. Allergy: European Journal of Allergy and Clinical Immunology. [CrossRef]
  • 18. Mbah, C. C., Attama, A. A. (2018). Vesicular carriers as innovative nanodrug delivery formulations. In Organic Materials as Smart Nanocarriers for Drug Delivery (pp. 519–559). [CrossRef]
  • 19. Loo, Y. S., Bose, R. J., McCarthy, J. R., Mat Azmi, I. D., Madheswaran, T. (2021). Biomimetic bacterial and viral-based nanovesicles for drug delivery, theranostics, and vaccine applications. In Drug Discovery Today (Vol. 26, Issue 4, pp. 902–915). [CrossRef]
  • 20. Sabu, C., Rejo, C., Kotta, S., Pramod, K. (2018). Bioinspired and biomimetic systems for advanced drug and gene delivery. In Journal of Controlled Release (Vol. 287, pp. 142–155). [CrossRef]
  • 21. Almeida, J. D., Edwards, D. C., Brand, C. M., Heath, T. D. (1975). FORMATION OF VIROSOMES FROM INFLUENZA SUBUNITS AND LIPOSOMES. The Lancet, 306(7941), 899–901. [CrossRef]
  • 22. Daemen, T., De Mare, A., Bungener, L., De Jonge, J., Huckriede, A., Wilschut, J. (2005). Virosomes for antigen and DNA delivery. In Advanced Drug Delivery Reviews (Vol. 57, Issue 3 SPEC. ISS., pp. 451–463). [CrossRef]
  • 23. Felnerova, D., Viret, J. F., Glück, R., Moser, C. (2004). Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. In Current Opinion in Biotechnology (Vol. 15, Issue 6, pp. 518–529). Elsevier Current Trends. [CrossRef]
  • 24. Zheng, B., Peng, W., Guo, M., Huang, M., Gu, Y., Wang, T., Ni, G., Ming, D. (2021). Inhalable nanovaccine with biomimetic coronavirus structure to trigger mucosal immunity of respiratory tract against COVID-19. Chemical Engineering Journal, 418, 129392. [CrossRef]
  • 25. Huda, S., Alam, M. A., Sharma, P. K. (2020). Smart nanocarriers-based drug delivery for cancer therapy: An innovative and developing strategy. In Journal of Drug Delivery Science and Technology (Vol. 60, p. 102018). [CrossRef]
  • 26. Correia-Pinto, J. F., Csaba, N., Alonso, M. J. (2013). Vaccine delivery carriers: Insights and future perspectives. International Journal of Pharmaceutics, 440(1), 27–38. [CrossRef]
  • 27. Whitesides, G. M., Grzybowski, B. (2002). Self-assembly at all scales. In Science (Vol. 295, Issue 5564, pp. 2418–2421). [CrossRef]
  • 28. Delfi, M., Sartorius, R., Ashrafizadeh, M., Sharifi, E., Zhang, Y., De Berardinis, P., Zarrabi, A., Varma, R. S., Tay, F. R., Smith, B. R., Makvandi, P. (2021). Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. In Nano Today (Vol. 38, p. 101119). [CrossRef]
  • 29. Khyatti, M., Patel, P. C., Stefanescu, I., Menezes, J. (1991). Epstein-Barr virus (EBV) glycoprotein gp350 expressed on transfected cells resistant to natural killer cell activity serves as a target antigen for EBV-specific antibody-dependent cellular cytotoxicity. Journal of Virology, 65(2), 996–1001. [CrossRef]
  • 30. Kanekiyo, M., Bu, W., Joyce, M. G., Meng, G., Whittle, J. R. R., Baxa, U., Yamamoto, T., Narpala, S., Todd, J. P., Rao, S. S., McDermott, A. B., Koup, R. A., Rossmann, M. G., Mascola, J. R., Graham, B. S., Cohen, J. I., Nabel, G. J. (2015). Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site. Cell, 162(5), 1090–1100. [CrossRef]
  • 31. Xu, C. H., Ye, P. J., Zhou, Y. C., He, D. X., Wei, H., Yu, C. Y. (2020). Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta Biomaterialia, 105, 1–14. [CrossRef]
  • 32. Choi, B., Park, W., Park, S. Bin, Rhim, W. K., Han, D. K. (2020). Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications. Methods, 177(October 2019), 2–14. [CrossRef]
  • 33. Li, R., He, Y., Zhang, S., Qin, J., Wang, J. (2018). Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharmaceutica Sinica B, 8(1), 14–22. [CrossRef]
  • 34. Zhai, Y., Su, J., Ran, W., Zhang, P., Yin, Q., Zhang, Z., Yu, H., Li, Y. (2017). Preparation and Application of Cell Membrane-Camouflaged Nanoparticles for Cancer Therapy. Theranostics, 7(10), 2575–2592. [CrossRef]
  • 35. Dash, P., Piras, A. M., Dash, M. (2020). Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. Journal of Controlled Release, 327, 546–570. [CrossRef]
  • 36. Yoo, J. W., Irvine, D. J., Discher, D. E., Mitragotri, S. (2011). Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nature Reviews Drug Discovery, 10(7), 521–535. [CrossRef]
  • 37. Föller, M., Huber, S. M., Lang, F. (2008). Erythrocyte programmed cell death. IUBMB Life, 60(10), 661–668. [CrossRef]
  • 38. Pierige, F., Serafini, S., Rossi, L., Magnani, M. (2008). Cell-based drug delivery. Advanced Drug Delivery Reviews, 60(2), 286–295. [CrossRef]
  • 39. Jia, Y., Duan, L., Li, J. (2016). Hemoglobin-Based Nanoarchitectonic Assemblies as Oxygen Carriers. Advanced Materials, 28(6), 1312–1318. [CrossRef]
  • 40. Hu, C.-M. J., Fang, R. H., Zhang, L. (2012). Erythrocyte-Inspired Delivery Systems. Advanced Healthcare Materials, 1(5), 537–547. [CrossRef]
  • 41. Legrand, N., Huntington, N. D., Nagasawa, M., Bakker, A. Q., Schotte, R., Strick-Marchand, H., Geus, S. J. de, Pouw, S. M., Böhne, M., Voordouw, A., Weijer, K., Santo, J. P. Di, Spits, H. (2011). Functional CD47/signal regulatory protein alpha (SIRPα) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proceedings of the National Academy of Sciences, 108(32), 13224–13229. [CrossRef]
  • 42. Xia, Q., Zhang, Y., Li, Z., Hou, X., Feng, N. (2019). Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharmaceutica Sinica B, 9(4), 675–689. [CrossRef]
  • 43. Hamidi, M., Tajerzadeh, H. (2003). Carrier erythrocytes: An overview. Drug Delivery: Journal of Delivery and Targeting of Therapeutic Agents, 10(1), 9–20. [CrossRef]
  • 44. Fang, R. H., Hu, C. M. J., Chen, K. N. H., Luk, B. T., Carpenter, C. W., Gao, W., Li, S., Zhang, D. E., Lu, W., Zhang, L. (2013). Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale, 5(19), 8884–8888. [CrossRef]
  • 45. Kroll, A.V., Frang, R.H., Zhang, L. (2017). Biointerfacing and Applications of Cell Membrane-Coated Nanoparticles. Bioconjugate Chemistry, 28(1), 23–32. [CrossRef]
  • 46. Fang, J., Nakamura, H., Maeda, H. (2011). The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews, 63(3), 136–151. [CrossRef]
  • 47. Chai, Z., Hu, X., Wei, X., Zhan, C., Lu, L., Jiang, K., Su, B., Ruan, H., Ran, D., Fang, R. H., Zhang, L., Lu, W. (2017). A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. Journal of Controlled Release, 264, 102–111. [CrossRef]
  • 48. Li, A., Zhao, J., Fu, J., Cai, J., Zhang, P. (2021). Recent advances of biomimetic nano-systems in the diagnosis and treatment of tumor. Asian Journal of Pharmaceutical Sciences, 16(2), 161–174. [CrossRef]
  • 49. Gao, C., Wu, Z., Lin, Z., Lin, X., He, Q. (2016). Polymeric capsule-cushioned leukocyte cell membrane vesicles as a biomimetic delivery platform. Nanoscale, 8(6), 3548–3554. [CrossRef]
  • 50. Corbo, C., Parodi A., Evangelopoulos M., Engler R.K., Matsunami, Engler A.C, Tasciotti E. (2015). Proteomic Profiling of a Biomimetic Drug Delivery Platform. Current Drug Targets, 16(13), 1540–1547. [CrossRef]
  • 51. Huang, Y., Gao, X., Chen, J. (2018). Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy. Acta Pharmaceutica Sinica B, 8(1), 4–13. [CrossRef]
  • 52. JA, B. (2005). Regulatory T-cell therapy: is it ready for the clinic? Nature Reviews. Immunology, 5(4), 343–349. [CrossRef]
  • 53. Wang, Q., Cheng, H., Peng, H., Zhou, H., Li, P. Y., Langer, R. (2015). Non-genetic engineering of cells for drug delivery and cell-based therapy. Advanced Drug Delivery Reviews, 91, 125–140. [CrossRef]
  • 54. Patel, S. R., Hartwig, J. H., Italiano, J. E. (2005). The biogenesis of platelets from megakaryocyte proplatelets. The Journal of Clinical Investigation, 115(12), 3348–3354. [CrossRef]
  • 55. Harker, L. A., Roskos, L. K., Marzec, U. M., Carter, R. A., Cherry, J. K., Sundell, B., Cheung, E. N., Terry, D., Sheridan, W. (2000). Effects of megakaryocyte growth and development factor on platelet production, platelet life span, and platelet function in healthy human volunteers. Blood, 95(8), 2514–2522. [CrossRef]
  • 56. Chen, Y., Zhao, G., Wang, S., He, Y., Han, S., Du, C., Li, S., Fan, Z., Wang, C., Wang, J. (2019). Platelet-membrane-camouflaged bismuth sulfide nanorods for synergistic radio-photothermal therapy against cancer. Biomaterials Science, 7(8), 3450–3459. [CrossRef] 57. Li, Z., Hu, S., Cheng, K. (2018). Platelets and their biomimetics for regenerative medicine and cancer therapies. Journal of Materials Chemistry. B, 6(45), 7354–7365. [CrossRef]
  • 58. Wu, M., Le, W., Mei, T., Wang, Y., Chen, B., Liu, Z., Xue, C. (2019). Cell membrane camouflaged nanoparticles: a new biomimetic platform for cancer photothermal therapy. International Journal of Nanomedicine, Volume 14, 4431–4448. [CrossRef]
  • 59. Liu, Y., Luo, J., Chen, X., Liu, W., Chen, T. (2019). Cell Membrane Coating Technology: A Promising Strategy for Biomedical Applications. Nano-Micro Letters, 11(1). [CrossRef]
  • 60. Quesada, M. P., García-Bernal, D., Pastor, D., Estirado, A., Blanquer, M., García-Hernández, A. M., Moraleda, J. M., Martínez, S. (2019). Safety and Biodistribution of Human Bone Marrow-Derived Mesenchymal Stromal Cells Injected Intrathecally in Non-Obese Diabetic Severe Combined Immunodeficiency Mice: Preclinical Study. Tissue Engineering and Regenerative Medicine, 16(5), 525–538. [CrossRef]
  • 61. Sherr, C. J. (1996). Cancer cell cycles. Science, 274(5293), 1672–1674. [CrossRef]
  • 62. Yang, R., Xu, J., Xu, L., Sun, X., Chen, Q., Zhao, Y, Liu, Z. (2018). Cancer Cell Membrane-Coated Adjuvant Nanoparticles with Mannose Modification for Effective Anticancer Vaccination. ACS Nano, 12(6), 5121–5129. [CrossRef]
  • 63. Stremersch, S., De Smedt, S. C., & Raemdonck, K. (2016). Therapeutic and diagnostic applications of extracellular vesicles. Journal of Controlled Release, 244, 167–183. [CrossRef]
  • 64. Tian, T., Zhang, H. X., He, C. P., Fan, S., Zhu, Y. L., Qi, C., Huang, N. P., Xiao, Z. D., Lu, Z. H., Tannous, B. A., & Gao, J. (2018). Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials, 150, 137–149. [CrossRef]
  • 65. Conde-Vancells, J., Rodriguez-Suarez, E., Embade, N., Gil, D., Matthiesen, R., Valle, M., Falcon-Perez, J.M.,. (2008). Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. Journal of Proteome Research, 7(12), 5157–5166.
  • 66. Camussi, G., Deregibus, M.C., Bruno, S., Cantaluppi V., Biancone L. (2010). Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney International, 78(9), 838–848. [CrossRef]
  • 67. Kotmakcı, M., & Erel-Akbaba, G. (2017). Exosome isolation: is there an optimal method with regard to diagnosis or treatment?, Novel Implications of Exosomes in Diagnosis and Treatment of Cancer and Infectious Diseases. Intech Open, 163. [CrossRef]
  • 68. Sun, D., Zhuang, X., Xiang, X., Liu, Y., Zhang, S., Liu, C, Zhang, H.G., (2010). A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Molecular Therapy : The Journal of the American Society of Gene Therapy, 18(9), 1606–1614. [CrossRef]
  • 69. Jo, W., Jeong, D., Kim, J., Cho, S., Jang, S., Han, C., Kang, J. Y., Gho Y. S., Park, J. (2014). Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab on a Chip, 14(7), 1261–1269. [CrossRef]
  • 70. Jang, S.C., Kim, O.Y., Yoon, C.M., Choi, D.S., Roh, T.Y., Park, J. … Gho, Y.S. (2013). Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano, 7(9), 7698–7710. [CrossRef]
  • 71. Hosseinidoust, Z., Mostaghaci, B., Yasa, O., Park, B. W., Singh, A. V., & Sitti, M. (2016). Bioengineered and biohybrid bacteria-based systems for drug delivery. In Advanced Drug Delivery Reviews (Vol. 106, pp. 27–44). [CrossRef]
  • 72. Poo, H., Pyo, H. M., Lee, T. Y., Yoon, S. W., Lee, J. S., Kim, C. J., Sung, M. H., & Lee, S. H. (2006). Oral administration of human papillomavirus type 16 E7 displayed on Lactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice. International Journal of Cancer, 119(7), 1702–1709. [CrossRef]
  • 73. Harisa, G. I., Sherif, A. Y., Youssof, A. M. E., Alanazi, F. K., & Salem-Bekhit, M. M. (2020). Bacteriosomes as a Promising Tool in Biomedical Applications: Immunotherapy and Drug Delivery. AAPS PharmSciTech, 21(5), 1–13. [CrossRef]
  • 74. Claesen, J., & Fischbach, M. A. (2015). Synthetic microbes as drug delivery systems. ACS Synthetic Biology, 4(4), 358-364. [CrossRef]
  • 75. Rabanel, J. M., Hildgen, P., & Banquy, X. (2014). Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. In Journal of Controlled Release (Vol. 185, Issue 1, pp. 71–87). [CrossRef]
  • 76. Wang, R., Yan, H., Yu, A., Ye, L., & Zhai, G. (2021). Cancer targeted biomimetic drug delivery system. Journal of Drug Delivery Science and Technology, 63(January), 102530. [CrossRef]
  • 77. Chen, W., Wang, Y., Qin, M., Zhang, X., Zhang, Z., Sun, X., & Gu, Z. (2018). Bacteria-Driven Hypoxia Targeting for Combined Biotherapy and Photothermal Therapy. ACS Nano, 12(6), 5995–6005. [CrossRef]
  • 78. Zhang, M., Li, M., Du, L., Zeng, J., Yao, T., & Jin, Y. (2020). Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer. International Journal of Pharmaceutics, 578, 119177. [CrossRef]
  • 79. Langemann, T., Koller, V. J., Muhammad, A., Kudela, P., Mayr, U. B., & Lubitz, W. (2010). The b1. Hosseinidoust Z, Mostaghaci B, Yasa O, Park BW, Singh AV, Sitti M. Bioengineered and biohybrid bacteria-based systems for drug delivery. Vol. 106, Advanced Drug Delivery Reviews. [CrossRef]
  • 80. Youssof, A. M. E., Alanazi, F. K., Salem-Bekhit, M. M., Shakeel, F., & Haq, N. (2019). Bacterial Ghosts Carrying 5-Fluorouracil: A Novel Biological Carrier for Targeting Colorectal Cancer. AAPS PharmSciTech, 20(2), 1–12. [CrossRef]
  • 81. Kudela, P., Koller, V. J., & Lubitz, W. (2010). Bacterial ghosts (BGs)-Advanced antigen and drug delivery system. Vaccine, 28(36), 5760–5767. [CrossRef]
  • 82. Moghaddam, A. B., Namvar, F., Moniri, M., Tahir, P. M., Azizi, S., & Mohamad, R. (2015). molecules Nanoparticles Biosynthesized by Fungi and Yeast: A Review of Their Preparation, Properties, and Medical Applications. Molecules, 20, 16540–16565. [CrossRef]
  • 83. Hu, X., & Zhang, J. (2017). Yeast capsules for targeted delivery: the future of nanotherapy? Nanomedicine, 12(9), 955–957. [CrossRef]
  • 84. Hu, X., Yang, G., Chen, S., Luo, S., & Zhang, J. (2020). Biomimetic and bioinspired strategies for oral drug delivery. Biomaterials Science, 8(4), 1020–1044. [CrossRef]

NATURE-INSPIRED BIOMIMETIC NANOCARRIER SYSTEMS

Year 2022, , 551 - 575, 29.05.2022
https://doi.org/10.33483/jfpau.1033286

Abstract

Objective: Nanoparticular systems such as polymeric and lipidic nanoparticles, which are frequently used in synthetic, biological and biotechnological drug delivery, struggle to meet clinical expectations at the desired level. Nature-inspired biomimetic nanocarriers developed as an innovative approach, are increasingly included in studies due to their high biocompatibility, low toxicity, and natural targeting capabilities. The aim of this review is to contribute to the development of innovative pharmaceutical carrier system by addressing the current studies in the field of biomimetic nanocarriers.
Result and Discussion: Among the most commonly used biomimetic systems are virus-based, mammalian cell-based and bacteria-fungi-based nanocarrier systems. The effort to understand these systems that nature offers us could take us further in carrier system research. Moreover, there may be potential for more successful nanocarrier systems to be developed by combining the advantages of synthetic systems such as controllability and mass production with the high cellular uptake and biocompatibility functions of biological systems. Thus, the role of biomimetic systems in the transport of proteins, genes and other therapeutic agents will increase.

Project Number

218S840

References

  • 1. Shende, P., Basarkar, V. (2019). Recent trends and advances in microbe-based drug delivery systems. [CrossRef]
  • 2. Fu, G.-F., Li, X., Hou, Y.-Y., Fan, Y.-R., Liu, W.-H., Xu, G.-X. (2005). Bifidobacterium longum as an oral delivery system of endostatin for gene therapy on solid liver cancer. Cancer Gene Therapy, 12, 133–140. [CrossRef]
  • 3. Aminu, N., Bello, I., Umar, N. M., Tanko, N., Aminu, A., Audu, M. M. (2020). The influence of nanoparticulate drug delivery systems in drug therapy. In Journal of Drug Delivery Science and Technology (Vol. 60). [CrossRef]
  • 4. C. Tuba; Hascicek, S.T. (2009). Polimerik nanopartikuler ilaç taşıyıcı sistemlerde yüzey modifikasyonu. Ankara Universitesi Eczacilik Fakultesi Dergisi, 38(2), 137–154. [CrossRef]
  • 5. Erel-Akbaba, G.,Akbaba, H. (2021). Investigation of the potential therapeutic effect of cationic lipoplex mediated fibroblast growth factor-2 encoding plasmid DNA delivery on wound healing. DARU Journal of Pharmaceutical Sciences. [CrossRef]
  • 6. Torchilin, V. P. (2014). Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews Drug Discovery, 13(11), 813–827. [CrossRef]
  • 7. Zhang, H., Liu, J., Chen, Q., Mi, P. (2020). Ligand-installed anti-VEGF genomic nanocarriers for effective gene therapy of primary and metastatic tumors. Journal of Controlled Release, 320, 314–327. [CrossRef]
  • 8. Erel-Akbaba, G., Carvalho, L. A., Tian, T., Zinter, M., Akbaba, H., Obeid, P. J., Chiocca, E. A., Weissleder, R., Kantarci, A. G., & Tannous, B. A. (2019). Radiation-Induced Targeted Nanoparticle-Based Gene Delivery for Brain Tumor Therapy. ACS Nano, 13(4), 4028–4040. [CrossRef]
  • 9. Maslanka Figueroa, S., Fleischmann, D., Goepferich, A. (2021). Biomedical nanoparticle design: What we can learn from viruses. In Journal of Controlled Release (Vol. 329, pp. 552–569). [CrossRef]
  • 10. Parodi, A., Molinaro, R., Sushnitha, M., Evangelopoulos, M., Martinez, J. O., Arrighetti, N., Corbo, C., Tasciotti, E. (2017). Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials, 147, 155–168. [CrossRef]
  • 11. Unzueta, U., Céspedes, M. V., Vázquez, E., Ferrer-Miralles, N., Mangues, R., Villaverde, A. (2015). Towards protein-based viral mimetics for cancer therapies. In Trends in Biotechnology (Vol. 33, Issue 5, pp. 253–258). [CrossRef]
  • 12. Franco, O. L., Qian, Y., Chen, S., Zhang, J., Yang, G. (2019). Bioinspired and Biomimetic Nanotherapies for the Treatment of Infectious Diseases. [CrossRef]
  • 13. Schwarz, B., Uchida, M., Douglas, T. (2017). Biomedical and Catalytic Opportunities of Virus-Like Particles in Nanotechnology. In Advances in Virus Research (Vol. 97, pp. 1–60). [CrossRef]
  • 14. Kanekiyo, M., Buck, C. B. (2017). Virus-Like Particle and Nanoparticle Vaccines. In Human Vaccines: Emerging Technologies in Design and Development (pp. 87–98). [CrossRef]
  • 15. Kushnir, N., Streatfield, S. J., Yusibov, V. (2012). Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development. In Vaccine (Vol. 31, Issue 1, pp. 58–83). [CrossRef]
  • 16. Gadekar, V., Borade, Y., Kannaujia, S., Rajpoot, K., Anup, N., Tambe, V., Kalia, K., Tekade, R. K. (2021). Nanomedicines accessible in the market for clinical interventions. In Journal of Controlled Release (Vol. 330, pp. 372–397). [CrossRef]
  • 17. Yilmaz, I. C., Ipekoglu, E. M., Bulbul, A., Turay, N., Yildirim, M., Evcili, I., Yilmaz, N. S., Guvencli, N., Aydin, Y., Gungor, B., Saraydar, B., Bartan, A. G., Ibibik, B., Bildik, T., Baydemir, İ., Sanli, H. A., Kayaoglu, B., Ceylan, Y., Yildirim, T., Gursel, M. (2021). Development and preclinical evaluation of virus-like particle vaccine against COVID-19 infection. Allergy: European Journal of Allergy and Clinical Immunology. [CrossRef]
  • 18. Mbah, C. C., Attama, A. A. (2018). Vesicular carriers as innovative nanodrug delivery formulations. In Organic Materials as Smart Nanocarriers for Drug Delivery (pp. 519–559). [CrossRef]
  • 19. Loo, Y. S., Bose, R. J., McCarthy, J. R., Mat Azmi, I. D., Madheswaran, T. (2021). Biomimetic bacterial and viral-based nanovesicles for drug delivery, theranostics, and vaccine applications. In Drug Discovery Today (Vol. 26, Issue 4, pp. 902–915). [CrossRef]
  • 20. Sabu, C., Rejo, C., Kotta, S., Pramod, K. (2018). Bioinspired and biomimetic systems for advanced drug and gene delivery. In Journal of Controlled Release (Vol. 287, pp. 142–155). [CrossRef]
  • 21. Almeida, J. D., Edwards, D. C., Brand, C. M., Heath, T. D. (1975). FORMATION OF VIROSOMES FROM INFLUENZA SUBUNITS AND LIPOSOMES. The Lancet, 306(7941), 899–901. [CrossRef]
  • 22. Daemen, T., De Mare, A., Bungener, L., De Jonge, J., Huckriede, A., Wilschut, J. (2005). Virosomes for antigen and DNA delivery. In Advanced Drug Delivery Reviews (Vol. 57, Issue 3 SPEC. ISS., pp. 451–463). [CrossRef]
  • 23. Felnerova, D., Viret, J. F., Glück, R., Moser, C. (2004). Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. In Current Opinion in Biotechnology (Vol. 15, Issue 6, pp. 518–529). Elsevier Current Trends. [CrossRef]
  • 24. Zheng, B., Peng, W., Guo, M., Huang, M., Gu, Y., Wang, T., Ni, G., Ming, D. (2021). Inhalable nanovaccine with biomimetic coronavirus structure to trigger mucosal immunity of respiratory tract against COVID-19. Chemical Engineering Journal, 418, 129392. [CrossRef]
  • 25. Huda, S., Alam, M. A., Sharma, P. K. (2020). Smart nanocarriers-based drug delivery for cancer therapy: An innovative and developing strategy. In Journal of Drug Delivery Science and Technology (Vol. 60, p. 102018). [CrossRef]
  • 26. Correia-Pinto, J. F., Csaba, N., Alonso, M. J. (2013). Vaccine delivery carriers: Insights and future perspectives. International Journal of Pharmaceutics, 440(1), 27–38. [CrossRef]
  • 27. Whitesides, G. M., Grzybowski, B. (2002). Self-assembly at all scales. In Science (Vol. 295, Issue 5564, pp. 2418–2421). [CrossRef]
  • 28. Delfi, M., Sartorius, R., Ashrafizadeh, M., Sharifi, E., Zhang, Y., De Berardinis, P., Zarrabi, A., Varma, R. S., Tay, F. R., Smith, B. R., Makvandi, P. (2021). Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. In Nano Today (Vol. 38, p. 101119). [CrossRef]
  • 29. Khyatti, M., Patel, P. C., Stefanescu, I., Menezes, J. (1991). Epstein-Barr virus (EBV) glycoprotein gp350 expressed on transfected cells resistant to natural killer cell activity serves as a target antigen for EBV-specific antibody-dependent cellular cytotoxicity. Journal of Virology, 65(2), 996–1001. [CrossRef]
  • 30. Kanekiyo, M., Bu, W., Joyce, M. G., Meng, G., Whittle, J. R. R., Baxa, U., Yamamoto, T., Narpala, S., Todd, J. P., Rao, S. S., McDermott, A. B., Koup, R. A., Rossmann, M. G., Mascola, J. R., Graham, B. S., Cohen, J. I., Nabel, G. J. (2015). Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site. Cell, 162(5), 1090–1100. [CrossRef]
  • 31. Xu, C. H., Ye, P. J., Zhou, Y. C., He, D. X., Wei, H., Yu, C. Y. (2020). Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta Biomaterialia, 105, 1–14. [CrossRef]
  • 32. Choi, B., Park, W., Park, S. Bin, Rhim, W. K., Han, D. K. (2020). Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications. Methods, 177(October 2019), 2–14. [CrossRef]
  • 33. Li, R., He, Y., Zhang, S., Qin, J., Wang, J. (2018). Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharmaceutica Sinica B, 8(1), 14–22. [CrossRef]
  • 34. Zhai, Y., Su, J., Ran, W., Zhang, P., Yin, Q., Zhang, Z., Yu, H., Li, Y. (2017). Preparation and Application of Cell Membrane-Camouflaged Nanoparticles for Cancer Therapy. Theranostics, 7(10), 2575–2592. [CrossRef]
  • 35. Dash, P., Piras, A. M., Dash, M. (2020). Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. Journal of Controlled Release, 327, 546–570. [CrossRef]
  • 36. Yoo, J. W., Irvine, D. J., Discher, D. E., Mitragotri, S. (2011). Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nature Reviews Drug Discovery, 10(7), 521–535. [CrossRef]
  • 37. Föller, M., Huber, S. M., Lang, F. (2008). Erythrocyte programmed cell death. IUBMB Life, 60(10), 661–668. [CrossRef]
  • 38. Pierige, F., Serafini, S., Rossi, L., Magnani, M. (2008). Cell-based drug delivery. Advanced Drug Delivery Reviews, 60(2), 286–295. [CrossRef]
  • 39. Jia, Y., Duan, L., Li, J. (2016). Hemoglobin-Based Nanoarchitectonic Assemblies as Oxygen Carriers. Advanced Materials, 28(6), 1312–1318. [CrossRef]
  • 40. Hu, C.-M. J., Fang, R. H., Zhang, L. (2012). Erythrocyte-Inspired Delivery Systems. Advanced Healthcare Materials, 1(5), 537–547. [CrossRef]
  • 41. Legrand, N., Huntington, N. D., Nagasawa, M., Bakker, A. Q., Schotte, R., Strick-Marchand, H., Geus, S. J. de, Pouw, S. M., Böhne, M., Voordouw, A., Weijer, K., Santo, J. P. Di, Spits, H. (2011). Functional CD47/signal regulatory protein alpha (SIRPα) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proceedings of the National Academy of Sciences, 108(32), 13224–13229. [CrossRef]
  • 42. Xia, Q., Zhang, Y., Li, Z., Hou, X., Feng, N. (2019). Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharmaceutica Sinica B, 9(4), 675–689. [CrossRef]
  • 43. Hamidi, M., Tajerzadeh, H. (2003). Carrier erythrocytes: An overview. Drug Delivery: Journal of Delivery and Targeting of Therapeutic Agents, 10(1), 9–20. [CrossRef]
  • 44. Fang, R. H., Hu, C. M. J., Chen, K. N. H., Luk, B. T., Carpenter, C. W., Gao, W., Li, S., Zhang, D. E., Lu, W., Zhang, L. (2013). Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale, 5(19), 8884–8888. [CrossRef]
  • 45. Kroll, A.V., Frang, R.H., Zhang, L. (2017). Biointerfacing and Applications of Cell Membrane-Coated Nanoparticles. Bioconjugate Chemistry, 28(1), 23–32. [CrossRef]
  • 46. Fang, J., Nakamura, H., Maeda, H. (2011). The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews, 63(3), 136–151. [CrossRef]
  • 47. Chai, Z., Hu, X., Wei, X., Zhan, C., Lu, L., Jiang, K., Su, B., Ruan, H., Ran, D., Fang, R. H., Zhang, L., Lu, W. (2017). A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. Journal of Controlled Release, 264, 102–111. [CrossRef]
  • 48. Li, A., Zhao, J., Fu, J., Cai, J., Zhang, P. (2021). Recent advances of biomimetic nano-systems in the diagnosis and treatment of tumor. Asian Journal of Pharmaceutical Sciences, 16(2), 161–174. [CrossRef]
  • 49. Gao, C., Wu, Z., Lin, Z., Lin, X., He, Q. (2016). Polymeric capsule-cushioned leukocyte cell membrane vesicles as a biomimetic delivery platform. Nanoscale, 8(6), 3548–3554. [CrossRef]
  • 50. Corbo, C., Parodi A., Evangelopoulos M., Engler R.K., Matsunami, Engler A.C, Tasciotti E. (2015). Proteomic Profiling of a Biomimetic Drug Delivery Platform. Current Drug Targets, 16(13), 1540–1547. [CrossRef]
  • 51. Huang, Y., Gao, X., Chen, J. (2018). Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy. Acta Pharmaceutica Sinica B, 8(1), 4–13. [CrossRef]
  • 52. JA, B. (2005). Regulatory T-cell therapy: is it ready for the clinic? Nature Reviews. Immunology, 5(4), 343–349. [CrossRef]
  • 53. Wang, Q., Cheng, H., Peng, H., Zhou, H., Li, P. Y., Langer, R. (2015). Non-genetic engineering of cells for drug delivery and cell-based therapy. Advanced Drug Delivery Reviews, 91, 125–140. [CrossRef]
  • 54. Patel, S. R., Hartwig, J. H., Italiano, J. E. (2005). The biogenesis of platelets from megakaryocyte proplatelets. The Journal of Clinical Investigation, 115(12), 3348–3354. [CrossRef]
  • 55. Harker, L. A., Roskos, L. K., Marzec, U. M., Carter, R. A., Cherry, J. K., Sundell, B., Cheung, E. N., Terry, D., Sheridan, W. (2000). Effects of megakaryocyte growth and development factor on platelet production, platelet life span, and platelet function in healthy human volunteers. Blood, 95(8), 2514–2522. [CrossRef]
  • 56. Chen, Y., Zhao, G., Wang, S., He, Y., Han, S., Du, C., Li, S., Fan, Z., Wang, C., Wang, J. (2019). Platelet-membrane-camouflaged bismuth sulfide nanorods for synergistic radio-photothermal therapy against cancer. Biomaterials Science, 7(8), 3450–3459. [CrossRef] 57. Li, Z., Hu, S., Cheng, K. (2018). Platelets and their biomimetics for regenerative medicine and cancer therapies. Journal of Materials Chemistry. B, 6(45), 7354–7365. [CrossRef]
  • 58. Wu, M., Le, W., Mei, T., Wang, Y., Chen, B., Liu, Z., Xue, C. (2019). Cell membrane camouflaged nanoparticles: a new biomimetic platform for cancer photothermal therapy. International Journal of Nanomedicine, Volume 14, 4431–4448. [CrossRef]
  • 59. Liu, Y., Luo, J., Chen, X., Liu, W., Chen, T. (2019). Cell Membrane Coating Technology: A Promising Strategy for Biomedical Applications. Nano-Micro Letters, 11(1). [CrossRef]
  • 60. Quesada, M. P., García-Bernal, D., Pastor, D., Estirado, A., Blanquer, M., García-Hernández, A. M., Moraleda, J. M., Martínez, S. (2019). Safety and Biodistribution of Human Bone Marrow-Derived Mesenchymal Stromal Cells Injected Intrathecally in Non-Obese Diabetic Severe Combined Immunodeficiency Mice: Preclinical Study. Tissue Engineering and Regenerative Medicine, 16(5), 525–538. [CrossRef]
  • 61. Sherr, C. J. (1996). Cancer cell cycles. Science, 274(5293), 1672–1674. [CrossRef]
  • 62. Yang, R., Xu, J., Xu, L., Sun, X., Chen, Q., Zhao, Y, Liu, Z. (2018). Cancer Cell Membrane-Coated Adjuvant Nanoparticles with Mannose Modification for Effective Anticancer Vaccination. ACS Nano, 12(6), 5121–5129. [CrossRef]
  • 63. Stremersch, S., De Smedt, S. C., & Raemdonck, K. (2016). Therapeutic and diagnostic applications of extracellular vesicles. Journal of Controlled Release, 244, 167–183. [CrossRef]
  • 64. Tian, T., Zhang, H. X., He, C. P., Fan, S., Zhu, Y. L., Qi, C., Huang, N. P., Xiao, Z. D., Lu, Z. H., Tannous, B. A., & Gao, J. (2018). Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials, 150, 137–149. [CrossRef]
  • 65. Conde-Vancells, J., Rodriguez-Suarez, E., Embade, N., Gil, D., Matthiesen, R., Valle, M., Falcon-Perez, J.M.,. (2008). Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. Journal of Proteome Research, 7(12), 5157–5166.
  • 66. Camussi, G., Deregibus, M.C., Bruno, S., Cantaluppi V., Biancone L. (2010). Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney International, 78(9), 838–848. [CrossRef]
  • 67. Kotmakcı, M., & Erel-Akbaba, G. (2017). Exosome isolation: is there an optimal method with regard to diagnosis or treatment?, Novel Implications of Exosomes in Diagnosis and Treatment of Cancer and Infectious Diseases. Intech Open, 163. [CrossRef]
  • 68. Sun, D., Zhuang, X., Xiang, X., Liu, Y., Zhang, S., Liu, C, Zhang, H.G., (2010). A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Molecular Therapy : The Journal of the American Society of Gene Therapy, 18(9), 1606–1614. [CrossRef]
  • 69. Jo, W., Jeong, D., Kim, J., Cho, S., Jang, S., Han, C., Kang, J. Y., Gho Y. S., Park, J. (2014). Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab on a Chip, 14(7), 1261–1269. [CrossRef]
  • 70. Jang, S.C., Kim, O.Y., Yoon, C.M., Choi, D.S., Roh, T.Y., Park, J. … Gho, Y.S. (2013). Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano, 7(9), 7698–7710. [CrossRef]
  • 71. Hosseinidoust, Z., Mostaghaci, B., Yasa, O., Park, B. W., Singh, A. V., & Sitti, M. (2016). Bioengineered and biohybrid bacteria-based systems for drug delivery. In Advanced Drug Delivery Reviews (Vol. 106, pp. 27–44). [CrossRef]
  • 72. Poo, H., Pyo, H. M., Lee, T. Y., Yoon, S. W., Lee, J. S., Kim, C. J., Sung, M. H., & Lee, S. H. (2006). Oral administration of human papillomavirus type 16 E7 displayed on Lactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice. International Journal of Cancer, 119(7), 1702–1709. [CrossRef]
  • 73. Harisa, G. I., Sherif, A. Y., Youssof, A. M. E., Alanazi, F. K., & Salem-Bekhit, M. M. (2020). Bacteriosomes as a Promising Tool in Biomedical Applications: Immunotherapy and Drug Delivery. AAPS PharmSciTech, 21(5), 1–13. [CrossRef]
  • 74. Claesen, J., & Fischbach, M. A. (2015). Synthetic microbes as drug delivery systems. ACS Synthetic Biology, 4(4), 358-364. [CrossRef]
  • 75. Rabanel, J. M., Hildgen, P., & Banquy, X. (2014). Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. In Journal of Controlled Release (Vol. 185, Issue 1, pp. 71–87). [CrossRef]
  • 76. Wang, R., Yan, H., Yu, A., Ye, L., & Zhai, G. (2021). Cancer targeted biomimetic drug delivery system. Journal of Drug Delivery Science and Technology, 63(January), 102530. [CrossRef]
  • 77. Chen, W., Wang, Y., Qin, M., Zhang, X., Zhang, Z., Sun, X., & Gu, Z. (2018). Bacteria-Driven Hypoxia Targeting for Combined Biotherapy and Photothermal Therapy. ACS Nano, 12(6), 5995–6005. [CrossRef]
  • 78. Zhang, M., Li, M., Du, L., Zeng, J., Yao, T., & Jin, Y. (2020). Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer. International Journal of Pharmaceutics, 578, 119177. [CrossRef]
  • 79. Langemann, T., Koller, V. J., Muhammad, A., Kudela, P., Mayr, U. B., & Lubitz, W. (2010). The b1. Hosseinidoust Z, Mostaghaci B, Yasa O, Park BW, Singh AV, Sitti M. Bioengineered and biohybrid bacteria-based systems for drug delivery. Vol. 106, Advanced Drug Delivery Reviews. [CrossRef]
  • 80. Youssof, A. M. E., Alanazi, F. K., Salem-Bekhit, M. M., Shakeel, F., & Haq, N. (2019). Bacterial Ghosts Carrying 5-Fluorouracil: A Novel Biological Carrier for Targeting Colorectal Cancer. AAPS PharmSciTech, 20(2), 1–12. [CrossRef]
  • 81. Kudela, P., Koller, V. J., & Lubitz, W. (2010). Bacterial ghosts (BGs)-Advanced antigen and drug delivery system. Vaccine, 28(36), 5760–5767. [CrossRef]
  • 82. Moghaddam, A. B., Namvar, F., Moniri, M., Tahir, P. M., Azizi, S., & Mohamad, R. (2015). molecules Nanoparticles Biosynthesized by Fungi and Yeast: A Review of Their Preparation, Properties, and Medical Applications. Molecules, 20, 16540–16565. [CrossRef]
  • 83. Hu, X., & Zhang, J. (2017). Yeast capsules for targeted delivery: the future of nanotherapy? Nanomedicine, 12(9), 955–957. [CrossRef]
  • 84. Hu, X., Yang, G., Chen, S., Luo, S., & Zhang, J. (2020). Biomimetic and bioinspired strategies for oral drug delivery. Biomaterials Science, 8(4), 1020–1044. [CrossRef]
There are 83 citations in total.

Details

Primary Language Turkish
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Collection
Authors

Ezgi Aydın This is me 0000-0003-0593-8586

Ali Aydın This is me 0000-0001-7656-0969

Gizem Çetiner This is me 0000-0001-9557-9008

Gülşah Erel Akbaba 0000-0003-3287-5277

Project Number 218S840
Publication Date May 29, 2022
Submission Date December 6, 2021
Acceptance Date March 31, 2022
Published in Issue Year 2022

Cite

APA Aydın, E., Aydın, A., Çetiner, G., Erel Akbaba, G. (2022). DOĞADAN İLHAM ALAN BİYOMİMETİK NANOTAŞIYICI SİSTEMLER. Journal of Faculty of Pharmacy of Ankara University, 46(2), 551-575. https://doi.org/10.33483/jfpau.1033286
AMA Aydın E, Aydın A, Çetiner G, Erel Akbaba G. DOĞADAN İLHAM ALAN BİYOMİMETİK NANOTAŞIYICI SİSTEMLER. Ankara Ecz. Fak. Derg. May 2022;46(2):551-575. doi:10.33483/jfpau.1033286
Chicago Aydın, Ezgi, Ali Aydın, Gizem Çetiner, and Gülşah Erel Akbaba. “DOĞADAN İLHAM ALAN BİYOMİMETİK NANOTAŞIYICI SİSTEMLER”. Journal of Faculty of Pharmacy of Ankara University 46, no. 2 (May 2022): 551-75. https://doi.org/10.33483/jfpau.1033286.
EndNote Aydın E, Aydın A, Çetiner G, Erel Akbaba G (May 1, 2022) DOĞADAN İLHAM ALAN BİYOMİMETİK NANOTAŞIYICI SİSTEMLER. Journal of Faculty of Pharmacy of Ankara University 46 2 551–575.
IEEE E. Aydın, A. Aydın, G. Çetiner, and G. Erel Akbaba, “DOĞADAN İLHAM ALAN BİYOMİMETİK NANOTAŞIYICI SİSTEMLER”, Ankara Ecz. Fak. Derg., vol. 46, no. 2, pp. 551–575, 2022, doi: 10.33483/jfpau.1033286.
ISNAD Aydın, Ezgi et al. “DOĞADAN İLHAM ALAN BİYOMİMETİK NANOTAŞIYICI SİSTEMLER”. Journal of Faculty of Pharmacy of Ankara University 46/2 (May 2022), 551-575. https://doi.org/10.33483/jfpau.1033286.
JAMA Aydın E, Aydın A, Çetiner G, Erel Akbaba G. DOĞADAN İLHAM ALAN BİYOMİMETİK NANOTAŞIYICI SİSTEMLER. Ankara Ecz. Fak. Derg. 2022;46:551–575.
MLA Aydın, Ezgi et al. “DOĞADAN İLHAM ALAN BİYOMİMETİK NANOTAŞIYICI SİSTEMLER”. Journal of Faculty of Pharmacy of Ankara University, vol. 46, no. 2, 2022, pp. 551-75, doi:10.33483/jfpau.1033286.
Vancouver Aydın E, Aydın A, Çetiner G, Erel Akbaba G. DOĞADAN İLHAM ALAN BİYOMİMETİK NANOTAŞIYICI SİSTEMLER. Ankara Ecz. Fak. Derg. 2022;46(2):551-75.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.