Research Article
BibTex RIS Cite

COMPARISON OF ANTIOXIDANT AND ANTI-INFLAMMATORY EFFECTS OF SOME POLYPHENOLIC COMPOUNDS AND THEIR BIOTRANSFORMATION EXTRACTS

Year 2023, , 220 - 227, 20.01.2023
https://doi.org/10.33483/jfpau.1122665

Abstract

Objective: Microbial transformations are green biotechnological processes where different microorganisms or enzymes are used to produce new metabolites from defined substrates. Hesperidin, quercetin, and their derivatives have been proven in scientific research to have a variety of biological activities, such as antioxidant, antimicrobial, and anticancer activities.
Material and Method: This study performed the microbial transformation of hesperidin and quercetin utilizing 13 different microbial strains. The transformation extracts of hesperidin and quercetin were investigated in antioxidant (DPPH· and ABTS·+ methods) and anti-inflammatory effects.
Result and Discussion: The biotransformation of hesperidin was observed in 5 of 13 strains. There were Rhizopus stolonifera, Saccharomyces pararoseus, S. cerevisiae, Penicillium claviforme, and Fusarium solani while microbial transformation of quercetin was identified Aspergillus flavus and Penicillium claviforme. The results of this research show that the extracts obtained with the Aspergillus and Penicillium strains were more effective in terms of antioxidant and anti-inflammatory effects. DPPH· antioxidant activity of A. flavus extract (IC50: 22.55±0.32 µg/ml) was higher than the other biotransformation extracts. The IC50 value of R. stolonifer from the hesperidin transformation extracts is 25.93±0.36 µg/ml. The microbial transformation of hesperidin by Penicillium strain has not been researched previously. 

Supporting Institution

Anadolu University

Project Number

1901S001

Thanks

This study is part of the PhD thesis of Damla KIRCI and was financially supported as a Scientific Research Project (1901S001) by Anadolu University.

References

  • 1. Hosoda, R., Horio, Y., Shimoda, K., Hamada, M., Hamada, H., Hamada, H. (2013). Regioselective hydroxylation and glucosylation of flavanones with cultured plant cells of Eucalyptus perriniana. Natural Product Communications, 8(7), 905-906. [CrossRef]
  • 2. Cao, H., Chen, X., Jassbi, A.R., Xiao, J. (2015). Microbial biotransformation of bioactive flavonoids. Biotechnology Advances, 33(1), 214-223. [CrossRef]
  • 3. Kim, J., Wie, M.B., Ahn, M., Tanaka, A., Matsuda, H., Shin, T. (2019). Benefits of hesperidin in central nervous system disorders: a review. Anatomy & Cell Biology, 52(4), 369-377. [CrossRef]
  • 4. Umeno, A., Horie, M., Murotomi, K., Nakajima, Y., Yoshida, Y. (2016). Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules, 21(6), 708. [CrossRef]
  • 5. Ali, A.M., Gabbar, M.A., Abdel-Twab, S.M., Fahmy, E.M., Ebaid, H., Alhazza, I.M., Ahmed, O.M. (2020). Antidiabetic potency, antioxidant effects, and mode of actions of Citrus reticulata fruit peel hydroethanolic extract, hesperidin, and quercetin in nicotinamide/streptozotocin-induced Wistar diabetic rats. Oxidative Medicine and Cellular Longevity, 2020. [CrossRef]
  • 6. Chikara, S., Nagaprashantha, L.D., Singhal, J., Horne, D., Awasthi, S., Singhal, S.S. (2018). Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Letters, 413, 122-134. [CrossRef]
  • 7. Pandey, P., Khan, F. (2021). A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from Citrus fruits. Nutrition Research, 92, 21-31. [CrossRef]
  • 8. Miles, E.A., Calder, P.C. (2021). Effects of Citrus fruit juices and their bioactive components on inflammation and immunity: a narrative review. Frontiers in Immunology, 12, 2558. [CrossRef]
  • 9. Wang, W., Sun, C., Mao, L., Ma, P., Liu, F., Yang, J., Gao, Y. (2016). The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends in Food Science & Technology, 56, 21-38. [CrossRef]
  • 10. David, A.V.A., Arulmoli, R., Parasuraman, S. (2016). Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacognosy Reviews, 10(20), 84-89. [CrossRef]
  • 11. Meneguzzo, F., Ciriminna, R., Zabini, F., Pagliaro, M. (2020). Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. Processes, 8(5), 549. [CrossRef]
  • 12. Garg, A., Garg, S., Zaneveld, L.J.D., Singla, A.K. (2001). Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytotherapy Research, 15(8), 655-669. [CrossRef]
  • 13. Batur, Ö.Ö., Kıran, İ., Berger, R.G., Demirci, B. (2019). Microbial transformation of β-caryophyllene and longifolene by Wolfiporia extensa. Natural Volatiles and Essential Oils, 6(3), 8-15.
  • 14. Clarke, G., Ting, K.N., Wiart, C., Fry, J. (2013). High correlation of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants, 2(1), 1-10. [CrossRef]
  • 15. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. [CrossRef]
  • 16. Baylac, S., Racine, P. (2003). Inhibition of 5-lipoxygenase by essential oils and other natural fragrant extracts. International Journal of Aromatherapy, 13(2-3), 138-142. [CrossRef]
  • 17. Nakajima, V.M., Moala, T., Moura, C.S., Amaya-Farfan, J., Gambero, A., Macedo, G.A., Macedo, J.A. (2017). Biotransformed citrus extract as a source of anti-inflammatory polyphenols: Effects in macrophages and adipocytes. Food Research International, 97, 37-44. [CrossRef]
  • 18. Pérez-Nájera, V.C., Lugo-Cervantes, E., Amaya-Delgado, L., Madrigal-Pulido, J.A., Rueda-Puente, E.O., Borboa-Flores, J., Del-Toro-Sánchez, C.L. (2018). Biotransformation of hesperidin from lime peel (Citrus limetta Risso) in solid fermentation by Aspergillus saitoi. CyTA-Journal of Food, 16(1), 537-543. [CrossRef]
  • 19. Dodda, S., Bandlapalli, S., Vidyavathi, M. (2012). Biotransformation of hesperidine to hesperitine by Cunninghamella elegans. Asian Journal of Pharmaceutical and Clinical Research, 5(2), 174-178.
  • 20. Wang, Y.Y., Liu, J.H., Yu, B.Y. (2005). Biotransformation of flavonoids by Streptomyces griseus ATCC 13273. Pharmaceutical Biotechnology-Beijing-, 12(5), 308.
  • 21. Escudero-López, B., Cerrillo, I., Gil-Izquierdo, Á., Hornero-Méndez, D., Herrero-Martín, G., Berná, G., ... ,Fernández-Pachón, M.S. (2016). Effect of thermal processing on the profile of bioactive compounds and antioxidant capacity of fermented orange juice. International Journal of Food Sciences and Nutrition, 67(7), 779-788. [CrossRef]
  • 22. Sordon, S., Madej, A., Popłoński, J., Bartmańska, A., Tronina, T., Brzezowska, E., ..., Huszcza, E. (2016). Regioselective ortho-hydroxylations of flavonoids by yeast. Journal of Agricultural and Food Chemistry, 64(27), 5525-5530. [CrossRef]
  • 23. Jia-Qi, X., Ni, F., Bo-Yang, Y., Qian-Qian, W., Zhang, J. (2017). Biotransformation of quercetin by Gliocladium deliquescens NRRL 1086. Chinese Journal of Natural Medicines, 15(8), 615-624. [CrossRef]
  • 24. Zi, J., Valiente, J., Zeng, J., Zhan, J. (2011). Metabolism of quercetin by Cunninghamella elegans ATCC 9245. Journal of Bioscience and Bioengineering, 112(4), 360-362. [CrossRef]

BAZI POLİFENOLİK BİLEŞİKLERİN VE BİYOTRANSFORMASYON EKSTRELERİNİN ANTİOKSİDAN VE ANTİ-ENFLAMATUVAR AKTİVİTELERİNİN KARŞILAŞTIRILMASI

Year 2023, , 220 - 227, 20.01.2023
https://doi.org/10.33483/jfpau.1122665

Abstract

Amaç: Mikrobiyal transformasyonlar belirlenen substratlardan yeni metabolitler üretmek için farklı mikroorganizmaların veya onların enzimlerinin kullanıldığı yeşil biyoteknolojik süreçlerdir. Hesperidin, kersetin ve türevlerinin antioksidan, antimikrobiyal ve antikanser özellikleri dahil olmak üzere çeşitli biyolojik aktivitelere sahip olduğu bilimsel araştırmalarda kanıtlanmıştır.
Gereç ve Yöntem: Bu çalışmada 13 farklı mikrobiyal suş kullanılarak hesperidin ve kersetin mikrobiyal transformasyonu gerçekleştirilmiştir. Hesperidin ve kersetinin mikrobiyal transformasyonundan elde edilen ekstrelerin antioksidan (DPPH· ve ABTS·+ yöntemleri) ve anti-enflamatuvar aktiviteleri araştırılmıştır.
Sonuç ve Tartışma: Hesperidin'in biyotransformasyonu 13 suşdan 5'inde gözlenmiştir. Rhizopus stolonifera, Saccharomyces pararoseus, S. cerevisiae, Penicillium claviforme ve Fusarium solani iken; Kersetinin mikrobiyal transformasyonu Aspergillus flavus ve Penicillium claviforme suşlarında gözlemlenmiştir.
Bu çalışmanın sonuçları Aspergillus ve Penicillium suşları ile yapılan çalışmada elde edilen ekstrelerin antioksidan ve anti-enflamatuvar aktiviteler açısından daha etkili olduğunu göstermektedir. A. flavus ekstresi (IC50: 22,55±0,32 µg/ml) DPPH· antioksidan aktivitesi diğer biyotransformasyon ekstrelerinden daha yüksek bulunmuştur. Hesperidin transformasyon ekstrelerinden R. stolonifer'in IC50 değeri 25,93±0,36 µg/ml'dir. Hesperidinin Penicillium suşu tarafından mikrobiyal dönüşümü daha önce çalışılmamıştır.

Project Number

1901S001

References

  • 1. Hosoda, R., Horio, Y., Shimoda, K., Hamada, M., Hamada, H., Hamada, H. (2013). Regioselective hydroxylation and glucosylation of flavanones with cultured plant cells of Eucalyptus perriniana. Natural Product Communications, 8(7), 905-906. [CrossRef]
  • 2. Cao, H., Chen, X., Jassbi, A.R., Xiao, J. (2015). Microbial biotransformation of bioactive flavonoids. Biotechnology Advances, 33(1), 214-223. [CrossRef]
  • 3. Kim, J., Wie, M.B., Ahn, M., Tanaka, A., Matsuda, H., Shin, T. (2019). Benefits of hesperidin in central nervous system disorders: a review. Anatomy & Cell Biology, 52(4), 369-377. [CrossRef]
  • 4. Umeno, A., Horie, M., Murotomi, K., Nakajima, Y., Yoshida, Y. (2016). Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules, 21(6), 708. [CrossRef]
  • 5. Ali, A.M., Gabbar, M.A., Abdel-Twab, S.M., Fahmy, E.M., Ebaid, H., Alhazza, I.M., Ahmed, O.M. (2020). Antidiabetic potency, antioxidant effects, and mode of actions of Citrus reticulata fruit peel hydroethanolic extract, hesperidin, and quercetin in nicotinamide/streptozotocin-induced Wistar diabetic rats. Oxidative Medicine and Cellular Longevity, 2020. [CrossRef]
  • 6. Chikara, S., Nagaprashantha, L.D., Singhal, J., Horne, D., Awasthi, S., Singhal, S.S. (2018). Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Letters, 413, 122-134. [CrossRef]
  • 7. Pandey, P., Khan, F. (2021). A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from Citrus fruits. Nutrition Research, 92, 21-31. [CrossRef]
  • 8. Miles, E.A., Calder, P.C. (2021). Effects of Citrus fruit juices and their bioactive components on inflammation and immunity: a narrative review. Frontiers in Immunology, 12, 2558. [CrossRef]
  • 9. Wang, W., Sun, C., Mao, L., Ma, P., Liu, F., Yang, J., Gao, Y. (2016). The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends in Food Science & Technology, 56, 21-38. [CrossRef]
  • 10. David, A.V.A., Arulmoli, R., Parasuraman, S. (2016). Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacognosy Reviews, 10(20), 84-89. [CrossRef]
  • 11. Meneguzzo, F., Ciriminna, R., Zabini, F., Pagliaro, M. (2020). Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. Processes, 8(5), 549. [CrossRef]
  • 12. Garg, A., Garg, S., Zaneveld, L.J.D., Singla, A.K. (2001). Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytotherapy Research, 15(8), 655-669. [CrossRef]
  • 13. Batur, Ö.Ö., Kıran, İ., Berger, R.G., Demirci, B. (2019). Microbial transformation of β-caryophyllene and longifolene by Wolfiporia extensa. Natural Volatiles and Essential Oils, 6(3), 8-15.
  • 14. Clarke, G., Ting, K.N., Wiart, C., Fry, J. (2013). High correlation of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants, 2(1), 1-10. [CrossRef]
  • 15. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. [CrossRef]
  • 16. Baylac, S., Racine, P. (2003). Inhibition of 5-lipoxygenase by essential oils and other natural fragrant extracts. International Journal of Aromatherapy, 13(2-3), 138-142. [CrossRef]
  • 17. Nakajima, V.M., Moala, T., Moura, C.S., Amaya-Farfan, J., Gambero, A., Macedo, G.A., Macedo, J.A. (2017). Biotransformed citrus extract as a source of anti-inflammatory polyphenols: Effects in macrophages and adipocytes. Food Research International, 97, 37-44. [CrossRef]
  • 18. Pérez-Nájera, V.C., Lugo-Cervantes, E., Amaya-Delgado, L., Madrigal-Pulido, J.A., Rueda-Puente, E.O., Borboa-Flores, J., Del-Toro-Sánchez, C.L. (2018). Biotransformation of hesperidin from lime peel (Citrus limetta Risso) in solid fermentation by Aspergillus saitoi. CyTA-Journal of Food, 16(1), 537-543. [CrossRef]
  • 19. Dodda, S., Bandlapalli, S., Vidyavathi, M. (2012). Biotransformation of hesperidine to hesperitine by Cunninghamella elegans. Asian Journal of Pharmaceutical and Clinical Research, 5(2), 174-178.
  • 20. Wang, Y.Y., Liu, J.H., Yu, B.Y. (2005). Biotransformation of flavonoids by Streptomyces griseus ATCC 13273. Pharmaceutical Biotechnology-Beijing-, 12(5), 308.
  • 21. Escudero-López, B., Cerrillo, I., Gil-Izquierdo, Á., Hornero-Méndez, D., Herrero-Martín, G., Berná, G., ... ,Fernández-Pachón, M.S. (2016). Effect of thermal processing on the profile of bioactive compounds and antioxidant capacity of fermented orange juice. International Journal of Food Sciences and Nutrition, 67(7), 779-788. [CrossRef]
  • 22. Sordon, S., Madej, A., Popłoński, J., Bartmańska, A., Tronina, T., Brzezowska, E., ..., Huszcza, E. (2016). Regioselective ortho-hydroxylations of flavonoids by yeast. Journal of Agricultural and Food Chemistry, 64(27), 5525-5530. [CrossRef]
  • 23. Jia-Qi, X., Ni, F., Bo-Yang, Y., Qian-Qian, W., Zhang, J. (2017). Biotransformation of quercetin by Gliocladium deliquescens NRRL 1086. Chinese Journal of Natural Medicines, 15(8), 615-624. [CrossRef]
  • 24. Zi, J., Valiente, J., Zeng, J., Zhan, J. (2011). Metabolism of quercetin by Cunninghamella elegans ATCC 9245. Journal of Bioscience and Bioengineering, 112(4), 360-362. [CrossRef]
There are 24 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Research Article
Authors

Damla Kırcı 0000-0002-3479-3999

Betül Demirci 0000-0003-2343-746X

Project Number 1901S001
Publication Date January 20, 2023
Submission Date May 28, 2022
Acceptance Date December 7, 2022
Published in Issue Year 2023

Cite

APA Kırcı, D., & Demirci, B. (2023). COMPARISON OF ANTIOXIDANT AND ANTI-INFLAMMATORY EFFECTS OF SOME POLYPHENOLIC COMPOUNDS AND THEIR BIOTRANSFORMATION EXTRACTS. Journal of Faculty of Pharmacy of Ankara University, 47(1), 220-227. https://doi.org/10.33483/jfpau.1122665
AMA Kırcı D, Demirci B. COMPARISON OF ANTIOXIDANT AND ANTI-INFLAMMATORY EFFECTS OF SOME POLYPHENOLIC COMPOUNDS AND THEIR BIOTRANSFORMATION EXTRACTS. Ankara Ecz. Fak. Derg. January 2023;47(1):220-227. doi:10.33483/jfpau.1122665
Chicago Kırcı, Damla, and Betül Demirci. “COMPARISON OF ANTIOXIDANT AND ANTI-INFLAMMATORY EFFECTS OF SOME POLYPHENOLIC COMPOUNDS AND THEIR BIOTRANSFORMATION EXTRACTS”. Journal of Faculty of Pharmacy of Ankara University 47, no. 1 (January 2023): 220-27. https://doi.org/10.33483/jfpau.1122665.
EndNote Kırcı D, Demirci B (January 1, 2023) COMPARISON OF ANTIOXIDANT AND ANTI-INFLAMMATORY EFFECTS OF SOME POLYPHENOLIC COMPOUNDS AND THEIR BIOTRANSFORMATION EXTRACTS. Journal of Faculty of Pharmacy of Ankara University 47 1 220–227.
IEEE D. Kırcı and B. Demirci, “COMPARISON OF ANTIOXIDANT AND ANTI-INFLAMMATORY EFFECTS OF SOME POLYPHENOLIC COMPOUNDS AND THEIR BIOTRANSFORMATION EXTRACTS”, Ankara Ecz. Fak. Derg., vol. 47, no. 1, pp. 220–227, 2023, doi: 10.33483/jfpau.1122665.
ISNAD Kırcı, Damla - Demirci, Betül. “COMPARISON OF ANTIOXIDANT AND ANTI-INFLAMMATORY EFFECTS OF SOME POLYPHENOLIC COMPOUNDS AND THEIR BIOTRANSFORMATION EXTRACTS”. Journal of Faculty of Pharmacy of Ankara University 47/1 (January 2023), 220-227. https://doi.org/10.33483/jfpau.1122665.
JAMA Kırcı D, Demirci B. COMPARISON OF ANTIOXIDANT AND ANTI-INFLAMMATORY EFFECTS OF SOME POLYPHENOLIC COMPOUNDS AND THEIR BIOTRANSFORMATION EXTRACTS. Ankara Ecz. Fak. Derg. 2023;47:220–227.
MLA Kırcı, Damla and Betül Demirci. “COMPARISON OF ANTIOXIDANT AND ANTI-INFLAMMATORY EFFECTS OF SOME POLYPHENOLIC COMPOUNDS AND THEIR BIOTRANSFORMATION EXTRACTS”. Journal of Faculty of Pharmacy of Ankara University, vol. 47, no. 1, 2023, pp. 220-7, doi:10.33483/jfpau.1122665.
Vancouver Kırcı D, Demirci B. COMPARISON OF ANTIOXIDANT AND ANTI-INFLAMMATORY EFFECTS OF SOME POLYPHENOLIC COMPOUNDS AND THEIR BIOTRANSFORMATION EXTRACTS. Ankara Ecz. Fak. Derg. 2023;47(1):220-7.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.