Research Article
BibTex RIS Cite

DETERMINATION OF ALPHA-2-MACROGLUBULIN IN SERUM SAMPLES

Year 2022, , 967 - 978, 30.09.2022
https://doi.org/10.33483/jfpau.1139157

Abstract

Objective: Proteomics is one of the fastest growing omics that has been extensively used in clinical studies. Proteomics involves qualitative and quantitative protein analysis in a wide range of samples starting from a single cell to complex biological samples. Protein-based biomarker studies have been applied to many diseases including metabolic diseases, cancer and neuropsychiatric diseases for both diagnostic and prognostic purposes. Alpha-2-macroglubulin (A2MG) is a clinically relevant secreted protein involving in various biological processes including blood coagulation, protein binding and protease inhibition. Current methods for A2MG analysis are limited, as they focus on either immune-specific binding through a certain protein unit or a unique peptide. As a single protein could be in different forms (complexes, modifications, etc) and the biological activity is structure specific, an extensive analysis is necessary. Here a new Mass-Spectrometry (MS) based method was developed for comprehensive A2MG analysis.
Material and Method: A reference human serum and A2MG protein standard were used for method development. Proteolytic protein digestion was performed using trypsin and Circular-Dichroism (CD) spectroscopy was used to ensure protein unfolding and denaturation prior to digestion. Targeted MS method was developed to monitor 12 unique peptides for A2MG in serum.
Result and Discussion: Monitoring multiple peptides for a single protein enabled to observe biological differences offer a robust and reliable A2MG analysis in serum. The method can also easily be implemented to other proteins. The concept of targeted-MS provides an ideal quantification and validation platform which then can be easily transferred to clinical laboratories.

Supporting Institution

METU BAP

Project Number

AGEP-103-2019-10105

References

  • Perkel, J. M. (2021). Single-cell proteomics takes centre stage. Nature. 597, 580–582. [CrossRef]
  • 2. Geyer, P. E., Voytik, E., Treit, P. V, Doll, S., Kleinhempel, A., Niu, L., Müller, J. B., Buchholtz, M., Bader, J. M., Teupser, D., Holdt, L. M., Mann, M. (2019). Plasma Proteome Profiling to detect and avoid sample‐related biases in biomarker studies. EMBO Molecular Medicine 11(11), 1-12. [CrossRef]
  • 3. Macklin, A., Khan, S., Kislinger, T. (2020) Recent advances in mass spectrometry based clinical proteomics: Applications to cancer research. Clinical Proteomics. 17, 1–25. [CrossRef]
  • 4. Titz, B., Gadaleta, R. M., Sasso, G. Lo, Elamin, A., Ekroos, K., Ivanov, N. V., Peitsch, M. C., Hoeng, J. (2018). Proteomics and Lipidomics in Inflammatory Bowel Disease Research: From Mechanistic Insights to Biomarker Identification. International Journal of Molecular Sciences, 19, 2775. [CrossRef]
  • 5. Okada, K., Itoh, H., Ikemoto, M. (2021). Serum complement C3 and α 2-macroglobulin are potentially useful biomarkers for inflammatory bowel disease patients. Heliyon. 7(3), e06554. [CrossRef]
  • 6. Stanley, B. A., Gundry, R. L., Cotter, R. J., Van Eyk, J. E. (2004). Heart disease, clinical proteomics and mass spectrometry. Disease Markers, 20, 167–178. [CrossRef]
  • 7. Roverso, M., Dogra, R., Visentin, S., Pettenuzzo, S., Cappellin, L., Pastore, P., Bogialli, S. (2022). Mass spectrometry-based “omics” technologies for the study of gestational diabetes and the discovery of new biomarkers. Mass Spectrometry Reviews, 1-38. [CrossRef]
  • 8. Cooper, J. D., Ozcan, S., Gardner, R. M., Rustogi, N., Wicks, S., Van Rees, G. F., Leweke, F. M., Dalman, C., Karlsson, H., Bahn, S. (2017). Schizophrenia-risk and urban birth are associated with proteomic changes in neonatal dried blood spots. Translation Psychiatry, 7, 1290, 1-14. [CrossRef]
  • 9. Yeon, S., Han, S., Cooper, J. D., Ozcan, S., Rustogi, N., Penninx, B. W. J. H., Bahn, S. (2019). Integrating proteomic, sociodemographic and clinical data to predict future depression diagnosis in subthreshold symptomatic individuals. Translational Psychiatry, 9, 277. [CrossRef]
  • 10. Vandooren, J., Itoh, Y. (2021) Alpha-2-Macroglobulin in Inflammation, Immunity and Infections. Frontiers in Immunology, 12, 5411. [CrossRef]
  • 11. Birkenmeier, G., Müller, R., Huse, K., Forberg, J., Gläser, C., Hedrich, H., Nicklisch, S., Reichenbach, A. (2003). Human α2-macroglobulin: Genotype–phenotype relation. Experimenatl Neurology, 184, 153–161. [CrossRef]
  • 12. Gautreaux, M. A., Tucker, L. J., Person, X. J., Zetterholm, H. K., Priddy, L. B. (2022). Review of immunological plasma markers for longitudinal analysis of inflammation and infection in rat models. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 40(6), 1251-1262 [CrossRef]
  • 13. Gygi, S. P., Corthals, G. L., Zhang, Y., Rochon, Y., Aebersold, R. (2000). Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proceedings of the National Academy of Sciences of the United States, 97, 9390–9395. [CrossRef]
  • 14. Tighe, P. J., Ryder, R. R., Todd, I., Fairclough, L. C. (2015). ELISA in the multiplex era: Potentials and pitfalls. Proteomics. Clinical Applications, 9, 406–422 [CrossRef]
  • 15. Rappsilber, J., Mann, M. (2002). What does it mean to identify a protein in proteomics? Trends in Biochemical Sciences, 27, 74–78. [CrossRef]
  • 16. Kim, M. S., Pinto, S. M., Getnet, D., Nirujogi, R. S., Manda, S. S., Chaerkady, R., Madugundu, A. K., Kelkar, D. S., Isserlin, R., Jain, S., Thomas, J. K., Muthusamy, B., Leal-Rojas, P., Kumar, P., Sahasrabuddhe, N. A., Balakrishnan, L., Advani, J., George, B., Renuse, S., Selvan, L. D. N., Patil, A. H., Nanjappa, V., Radhakrishnan, A., Prasad, S., Subbannayya, T., Raju, R., Kumar, M., Sreenivasamurthy, S. K., Marimuthu, A., Sathe, G. J., Chavan, S., Datta, K. K., Subbannayya, Y., Sahu, A., Yelamanchi, S. D., Jayaram, S., Rajagopalan, P., Sharma, J., Murthy, K. R., Syed, N., Goel, R., Khan, A. A., Ahmad, S., Dey, G., Mudgal, K., Chatterjee, A., Huang, T. C., Zhong, J., Wu, X., Shaw, P. G., Freed, D., Zahari, M. S., Mukherjee, K. K., Shankar, S., Mahadevan, A., Lam, H., Mitchell, C. J., Shankar, S. K., Satishchandra, P., Schroeder, J. T., Sirdeshmukh, R., Maitra, A., Leach, S. D., Drake, C. G., Halushka, M. K., Prasad, T. S. K., Hruban, R. H., Kerr, C. L., Bader, G. D., Iacobuzio-Donahue, C. A., Gowda, H., Pandey, A. (2014). A draft map of the human proteome. Nature, 509, 575–581. [CrossRef]
  • 17. Geyer, P. E., Holdt, L. M., Teupser, D., Mann, M. (2017). Revisiting biomarker discovery by plasma proteomics. Molecular Systems Biology 13, 942, 1-15. [CrossRef]
  • 18. Glish, G. L., Vachet, R. W. (2003). The basics of mass spectrometry in the twenty-first century. Nature Reviews Drug Discovery, 2, 140–150. [CrossRef]
  • 19. Liebler, D. C., Zimmerman, L. J. (2013). Targeted Quantitation of Proteins by Mass Spectrometry. Biochemistry, 52, 3797–3806. [CrossRef]
  • 20. Mesaros, C., Blair, I. A. (2016). Mass spectrometry-based approaches to targeted quantitative proteomics in cardiovascular disease. Clinical Proteomics, 13, 20, 1-18. [CrossRef]
  • 21. Ozcan, S., Cooper, J. D., Lago, S. G., Kenny, D., Rustogi, N., Stocki, P., Bahn, S. (2017). Towards reproducible MRM based biomarker discovery using dried blood spots. Scientific Reports, 7, 45178. [CrossRef]
  • 22. MacLean, B., Tomazela, D. M., Shulman, N., Chambers, M., Finney, G. L., Frewen, B., Kern, R., Tabb, D. L., Liebler, D. C., MacCoss, M. J. (2010). Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics, 26, 966–968. [CrossRef]
  • 23. Goldstein, F. W. (2007). Combating resistance in a challenging, changing environment. Clinical Microbiology and Infection, 13, 2–6. [CrossRef]
  • 24. Zhang, Y., Sun, H., Zhang, J., Brasier, A. R., Zhao, Y. (2017). Quantitative Assessment of the Effects of Trypsin Digestion Methods on Affinity Purification-Mass Spectrometry-based Protein-Protein Interaction Analysis. Journal of Proteome Research, 16, 3068–3082. [CrossRef]

SERUM ÖRNEKLERİNDE ALFA-2-MAKROGLUBULİN TAYİNİ

Year 2022, , 967 - 978, 30.09.2022
https://doi.org/10.33483/jfpau.1139157

Abstract

Amaç: Proteomik, klinik çalışmalarda yaygın olarak kullanılan en hızlı büyüyen omiklerden biridir. Proteomik, tek bir hücreden başlayarak karmaşık biyolojik örneklere kadar geniş bir örnek yelpazesinde kalitatif ve kantitatif protein analizini içerir. Protein bazlı biyobelirteç çalışmaları, metabolik hastalıklar, kanser ve nöropsikiyatrik hastalıklar dahil olmak üzere birçok hastalığa hem tanısal hem de prognostik amaçlarla uygulanmıştır. Alfa-2-makroglubulin (A2MG), kan pıhtılaşması, protein bağlanması ve proteaz inhibisyonu dahil olmak üzere çeşitli biyolojik süreçlerde yer alan, klinik önemi olan ve salgılanan bir proteindir. A2MG analizi için mevcut yöntemler, belirli bir protein birimi veya benzersiz bir peptit yoluyla immün spesifik bağlanmaya odaklandıklarından sınırlıdır. Tek bir protein farklı formlarda (kompleksler, modifikasyonlar, vb.) olabileceğinden ve biyolojik aktivite yapıya özel olduğundan, kapsamlı bir analiz gereklidir. Bu çalışmada kapsamlı A2MG analizi için yeni bir Kütle Spektrometresi (MS) tabanlı yöntem geliştirildi.
Gereç ve Yöntem: Bu çalışmada, kapsamlı A2MG analizi için yeni bir Kütle Spektrometresi (MS) tabanlı yöntem geliştirilmiştir. Analitik yöntem geliştirme referans insan serumu ve A2MG protein standardı ile yapılmıştır. Proteolitik protein sindirimi için tripsin kullanılmış ve sindirimden önce ve sonra proteinin denatürasyonu Dairesel-Dikroizm (CD) spektroskopisi kullanılarak test edilmiştir. Hedefli MS yöntemi, serumda A2MG için 12 benzersiz peptidi izlemek için geliştirilmiştir.
Sonuç ve Tartışma: Bu çalışmada, biyolojik farklılıkları gözlemlemek için geliştirilen tek bir protein için çoklu peptitlerin ölçülmesi ile sağlam ve güvenilir serumda A2MG analizi geliştirilmiştir. Yöntem, diğer proteinlere de kolayca uygulanabilir. Hedeflenen MS konsepti, daha sonra klinik laboratuvarlara kolayca aktarılabilen ideal bir niceleme ve doğrulama platformu sağlayacaktır.

Project Number

AGEP-103-2019-10105

References

  • Perkel, J. M. (2021). Single-cell proteomics takes centre stage. Nature. 597, 580–582. [CrossRef]
  • 2. Geyer, P. E., Voytik, E., Treit, P. V, Doll, S., Kleinhempel, A., Niu, L., Müller, J. B., Buchholtz, M., Bader, J. M., Teupser, D., Holdt, L. M., Mann, M. (2019). Plasma Proteome Profiling to detect and avoid sample‐related biases in biomarker studies. EMBO Molecular Medicine 11(11), 1-12. [CrossRef]
  • 3. Macklin, A., Khan, S., Kislinger, T. (2020) Recent advances in mass spectrometry based clinical proteomics: Applications to cancer research. Clinical Proteomics. 17, 1–25. [CrossRef]
  • 4. Titz, B., Gadaleta, R. M., Sasso, G. Lo, Elamin, A., Ekroos, K., Ivanov, N. V., Peitsch, M. C., Hoeng, J. (2018). Proteomics and Lipidomics in Inflammatory Bowel Disease Research: From Mechanistic Insights to Biomarker Identification. International Journal of Molecular Sciences, 19, 2775. [CrossRef]
  • 5. Okada, K., Itoh, H., Ikemoto, M. (2021). Serum complement C3 and α 2-macroglobulin are potentially useful biomarkers for inflammatory bowel disease patients. Heliyon. 7(3), e06554. [CrossRef]
  • 6. Stanley, B. A., Gundry, R. L., Cotter, R. J., Van Eyk, J. E. (2004). Heart disease, clinical proteomics and mass spectrometry. Disease Markers, 20, 167–178. [CrossRef]
  • 7. Roverso, M., Dogra, R., Visentin, S., Pettenuzzo, S., Cappellin, L., Pastore, P., Bogialli, S. (2022). Mass spectrometry-based “omics” technologies for the study of gestational diabetes and the discovery of new biomarkers. Mass Spectrometry Reviews, 1-38. [CrossRef]
  • 8. Cooper, J. D., Ozcan, S., Gardner, R. M., Rustogi, N., Wicks, S., Van Rees, G. F., Leweke, F. M., Dalman, C., Karlsson, H., Bahn, S. (2017). Schizophrenia-risk and urban birth are associated with proteomic changes in neonatal dried blood spots. Translation Psychiatry, 7, 1290, 1-14. [CrossRef]
  • 9. Yeon, S., Han, S., Cooper, J. D., Ozcan, S., Rustogi, N., Penninx, B. W. J. H., Bahn, S. (2019). Integrating proteomic, sociodemographic and clinical data to predict future depression diagnosis in subthreshold symptomatic individuals. Translational Psychiatry, 9, 277. [CrossRef]
  • 10. Vandooren, J., Itoh, Y. (2021) Alpha-2-Macroglobulin in Inflammation, Immunity and Infections. Frontiers in Immunology, 12, 5411. [CrossRef]
  • 11. Birkenmeier, G., Müller, R., Huse, K., Forberg, J., Gläser, C., Hedrich, H., Nicklisch, S., Reichenbach, A. (2003). Human α2-macroglobulin: Genotype–phenotype relation. Experimenatl Neurology, 184, 153–161. [CrossRef]
  • 12. Gautreaux, M. A., Tucker, L. J., Person, X. J., Zetterholm, H. K., Priddy, L. B. (2022). Review of immunological plasma markers for longitudinal analysis of inflammation and infection in rat models. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 40(6), 1251-1262 [CrossRef]
  • 13. Gygi, S. P., Corthals, G. L., Zhang, Y., Rochon, Y., Aebersold, R. (2000). Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proceedings of the National Academy of Sciences of the United States, 97, 9390–9395. [CrossRef]
  • 14. Tighe, P. J., Ryder, R. R., Todd, I., Fairclough, L. C. (2015). ELISA in the multiplex era: Potentials and pitfalls. Proteomics. Clinical Applications, 9, 406–422 [CrossRef]
  • 15. Rappsilber, J., Mann, M. (2002). What does it mean to identify a protein in proteomics? Trends in Biochemical Sciences, 27, 74–78. [CrossRef]
  • 16. Kim, M. S., Pinto, S. M., Getnet, D., Nirujogi, R. S., Manda, S. S., Chaerkady, R., Madugundu, A. K., Kelkar, D. S., Isserlin, R., Jain, S., Thomas, J. K., Muthusamy, B., Leal-Rojas, P., Kumar, P., Sahasrabuddhe, N. A., Balakrishnan, L., Advani, J., George, B., Renuse, S., Selvan, L. D. N., Patil, A. H., Nanjappa, V., Radhakrishnan, A., Prasad, S., Subbannayya, T., Raju, R., Kumar, M., Sreenivasamurthy, S. K., Marimuthu, A., Sathe, G. J., Chavan, S., Datta, K. K., Subbannayya, Y., Sahu, A., Yelamanchi, S. D., Jayaram, S., Rajagopalan, P., Sharma, J., Murthy, K. R., Syed, N., Goel, R., Khan, A. A., Ahmad, S., Dey, G., Mudgal, K., Chatterjee, A., Huang, T. C., Zhong, J., Wu, X., Shaw, P. G., Freed, D., Zahari, M. S., Mukherjee, K. K., Shankar, S., Mahadevan, A., Lam, H., Mitchell, C. J., Shankar, S. K., Satishchandra, P., Schroeder, J. T., Sirdeshmukh, R., Maitra, A., Leach, S. D., Drake, C. G., Halushka, M. K., Prasad, T. S. K., Hruban, R. H., Kerr, C. L., Bader, G. D., Iacobuzio-Donahue, C. A., Gowda, H., Pandey, A. (2014). A draft map of the human proteome. Nature, 509, 575–581. [CrossRef]
  • 17. Geyer, P. E., Holdt, L. M., Teupser, D., Mann, M. (2017). Revisiting biomarker discovery by plasma proteomics. Molecular Systems Biology 13, 942, 1-15. [CrossRef]
  • 18. Glish, G. L., Vachet, R. W. (2003). The basics of mass spectrometry in the twenty-first century. Nature Reviews Drug Discovery, 2, 140–150. [CrossRef]
  • 19. Liebler, D. C., Zimmerman, L. J. (2013). Targeted Quantitation of Proteins by Mass Spectrometry. Biochemistry, 52, 3797–3806. [CrossRef]
  • 20. Mesaros, C., Blair, I. A. (2016). Mass spectrometry-based approaches to targeted quantitative proteomics in cardiovascular disease. Clinical Proteomics, 13, 20, 1-18. [CrossRef]
  • 21. Ozcan, S., Cooper, J. D., Lago, S. G., Kenny, D., Rustogi, N., Stocki, P., Bahn, S. (2017). Towards reproducible MRM based biomarker discovery using dried blood spots. Scientific Reports, 7, 45178. [CrossRef]
  • 22. MacLean, B., Tomazela, D. M., Shulman, N., Chambers, M., Finney, G. L., Frewen, B., Kern, R., Tabb, D. L., Liebler, D. C., MacCoss, M. J. (2010). Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics, 26, 966–968. [CrossRef]
  • 23. Goldstein, F. W. (2007). Combating resistance in a challenging, changing environment. Clinical Microbiology and Infection, 13, 2–6. [CrossRef]
  • 24. Zhang, Y., Sun, H., Zhang, J., Brasier, A. R., Zhao, Y. (2017). Quantitative Assessment of the Effects of Trypsin Digestion Methods on Affinity Purification-Mass Spectrometry-based Protein-Protein Interaction Analysis. Journal of Proteome Research, 16, 3068–3082. [CrossRef]
There are 24 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Research Article
Authors

Sureyya Ozcan Kabasakal 0000-0002-9371-3696

Project Number AGEP-103-2019-10105
Publication Date September 30, 2022
Submission Date July 1, 2022
Acceptance Date September 2, 2022
Published in Issue Year 2022

Cite

APA Ozcan Kabasakal, S. (2022). DETERMINATION OF ALPHA-2-MACROGLUBULIN IN SERUM SAMPLES. Journal of Faculty of Pharmacy of Ankara University, 46(3), 967-978. https://doi.org/10.33483/jfpau.1139157
AMA Ozcan Kabasakal S. DETERMINATION OF ALPHA-2-MACROGLUBULIN IN SERUM SAMPLES. Ankara Ecz. Fak. Derg. September 2022;46(3):967-978. doi:10.33483/jfpau.1139157
Chicago Ozcan Kabasakal, Sureyya. “DETERMINATION OF ALPHA-2-MACROGLUBULIN IN SERUM SAMPLES”. Journal of Faculty of Pharmacy of Ankara University 46, no. 3 (September 2022): 967-78. https://doi.org/10.33483/jfpau.1139157.
EndNote Ozcan Kabasakal S (September 1, 2022) DETERMINATION OF ALPHA-2-MACROGLUBULIN IN SERUM SAMPLES. Journal of Faculty of Pharmacy of Ankara University 46 3 967–978.
IEEE S. Ozcan Kabasakal, “DETERMINATION OF ALPHA-2-MACROGLUBULIN IN SERUM SAMPLES”, Ankara Ecz. Fak. Derg., vol. 46, no. 3, pp. 967–978, 2022, doi: 10.33483/jfpau.1139157.
ISNAD Ozcan Kabasakal, Sureyya. “DETERMINATION OF ALPHA-2-MACROGLUBULIN IN SERUM SAMPLES”. Journal of Faculty of Pharmacy of Ankara University 46/3 (September 2022), 967-978. https://doi.org/10.33483/jfpau.1139157.
JAMA Ozcan Kabasakal S. DETERMINATION OF ALPHA-2-MACROGLUBULIN IN SERUM SAMPLES. Ankara Ecz. Fak. Derg. 2022;46:967–978.
MLA Ozcan Kabasakal, Sureyya. “DETERMINATION OF ALPHA-2-MACROGLUBULIN IN SERUM SAMPLES”. Journal of Faculty of Pharmacy of Ankara University, vol. 46, no. 3, 2022, pp. 967-78, doi:10.33483/jfpau.1139157.
Vancouver Ozcan Kabasakal S. DETERMINATION OF ALPHA-2-MACROGLUBULIN IN SERUM SAMPLES. Ankara Ecz. Fak. Derg. 2022;46(3):967-78.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.