Research Article
BibTex RIS Cite

CHEMICAL COMPOSITION AND IN VITRO ANALYSIS OF ANTIBACTERIAL ACTIVITY OF ACUTODESMUS DIMORPHUS (TURPIN) P.M. TSARENKO (SCENEDESMACEAE, CHLOROPHYTA)

Year 2023, , 168 - 177, 20.01.2023
https://doi.org/10.33483/jfpau.1151637

Abstract

Objective: Green microalgae are fast growing organisms and are known to have diverse bioactive compounds and biomolecules. The chemical composition and antibacterial activities of a green microalga, Acutodesmus dimorphus BIOTECH 4039 were studied.
Material and Method: Dried algal biomass of A. dimorphus was subjected to proximate and elemental composition analysis. Methanolic extract of A. dimorphus was used to determine the total phenolic content (TPC) and antibacterial activity of the microalga. TPC was measured using the Folin–Ciocalteu method. On the other hand, the antibacterial activity against medically important bacterial pathogens (Staphylococcus epidermidis BIOTECH 10098, penicillin acylase-producing Bacillus cereus BIOTECH 1509, Listeria monocytogenes BIOTECH 1958, Methicillin-Resistant Staphylococcus aureus BIOTECH 10378, Pseudomonas aeruginosa BIOTECH 1824, penicillin acylase-producing Escherichia coli BIOTECH 1634, and Serratia marcescens BIOTECH 1748) was done using modified Kirby-Bauer diffusion method.
Result and Discussion: A. dimorphus contained high amounts of protein, ash, and lipid with percent composition of 43.19 ± 0.13, 26.92 ± 0.01, and 14.17 ± 0.04, respectively. The elemental nutrient composition of the algal biomass was observed to be in a decreasing order of Ca > Mg > K > Mn > Na > Fe > Zn > Pb > Cu > Cd >Cr. In addition, A. dimorphus has a TPC of 5.34 ± 0.09 mg GAE/g. Potent antibacterial activities of A. dimorphus extract were observed against Methicillin-Resistant Staphylococcus aureus, S. epidermidis, penicillin acylase-producing Bacillus cereus with zones of inhibition of 15.1 ± 0.3 mm, 13.5 ± 0.1 mm, and 6.82 ± 0.7 mm, respectively. The study shows the use of A. dimorphus as good alternative source of important compounds and microelements that can be use in industrial and pharmaceutical application

Supporting Institution

University of the Philippines Los Baños

Thanks

The author is grateful for the financial and technical support given by the PNCM-BIOTECH, UPLB and Mrs. Arsenia B. Sapin for the conduct of the research study.

References

  • 1. Arguelles, E.D.L.R. (2022). Total phenolic content and in vitro analysis of antioxidant, antibacterial, and alpha-glucosidase inhibition properties of Chroococcus minutus (Kützing) Nägeli (Chroococcales, Cyanobacteria). Ankara Üniversitesi Eczacılık Fakültesi Dergisi. 46(1), 170-181. [CrossRef]
  • 2. Arguelles, E.D.L.R. (2021). Biochemical composition and bioactive properties of Chlorella minutissima (Chm1) as a potential source of chemical compounds for nutritional feed supplement and disease control in aquaculture. Current Applied Science and Technology, 21(1),65-77.
  • 3. Garcia-Gonzalez,J.; Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal of Applied Phycology. 28, 1051–1061. [CrossRef] 4. Choochote, W., Suklampoo, L., Ochaikul, D. 2014. Evaluation of antioxidant capacities of green microalgae. Journal of Applied Phycology, 26(1), 43-48. [CrossRef]
  • 5. Martinez-Goss, M.R., Manlapas, J.E.B., Arguelles, E.D.L.R. (2019). Cyanobacteria and diatoms in the cyanobacterial mats in a natural saltwater hot spring in Coron, Palawan, Philippines. Philippine Science Letters, 12(Supplement), 11-32.
  • 6. Li, H.B., Cheng, K.W., Wong, C.C., Fan, K.W., Chen, F., Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry, 102, 771-776. [CrossRef]
  • 7. Arguelles, E.D.L.R., Sapin, A.B. (2021). Chemical composition and bioactive properties of Sargassum aquifolium (Turner) C. Agardh and its potential for pharmaceutical application. Philippine Journal of Science, 151(S1), 9-24. [CrossRef]
  • 8. Arguelles, E.D.L.R., Sapin, A.B. (2020). In vitro antioxidant, alpha-glucosidase inhibition, and antibacterial properties of Turbinaria decurrens Bory (Sargassaceae, Ochrophyta). Asia-Pacific Journal of Science and Technology, 25(3), 1-9.
  • 9. Arguelles, E.D.L.R. (2018). Proximate analysis, antibacterial activity, total phenolic content and antioxidant capacity of a green microalga Scenedesmus quadricauda (Turpin) Brébisson. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 20(1), 150-158.
  • 10. AOAC (2011). Official Methods of Analysis of AOAC. 18th edition, Gaithersburg, MD.
  • 11. Nuñez Selles, A., Castro, H.T.V., Aguero, J.A., Gonzalez, J.G., Naddeo, F., De Simone, F., Pastrelli, L. (2002). Isolation and quantitative analysis of phenolic antioxidants, free sugars and polyols from mango (Mangifera indica L.) stem bark aqueous decoction used in Cuba as a nutritional supplement. Journal of Agricultural and Food Chemistry, 50, 762-766. [CrossRef]
  • 12. Elfita, Mardiyanto, Fitrya, Eka Larasati, J., Julinar, Widjajanti, H., Muharni. (2019). Antibacterial activity of Cordyline fructicosa leaf extracts and its endophytic fungi extracts. Biodiversitas Journal of Biological Diversity, 20(12), 3804–3812. [CrossRef]
  • 13. Bi, Z., He B.B. (2013). Characterization of microalgae for the purpose of biofuel production. Transaction of the American Society of Agricultural and Biological Engineers, 56(4), 1529-1539. [CrossRef]
  • 14. Sivakumar, K., Senthilkumar, R. (2008). Biodiversity of microalgae and their elemental components from Veeranam Lake, Tamilnadu, India. Korean Journal of Ecology and Environment, 41(2), 128-136.
  • 15. Tibbetts, S.M., Milley, J.E., Lall, S.P. (2015). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. Journal of Applied Phycology, 27, 1109-1119. [CrossRef]
  • 16. Arguelles, E.D.L.R., Sapin, A.B. (2020). Bioprospecting of Turbinaria orrnata (Fucales, Phaeophyceae) for cosmetic application: Antioxidant, tyrosinase inhibition and antibacterial activities”, Journal of the International Society for Southeast Asian Agricultural Sciences, 26(2), 30-41.
  • 17. Gatenby, C.M., Orcutt, D.M., Kreeger, D.A., Parker, B.C., Jones, V.A., Neves, R.J. (2003). Biochemical composition of three algal species proposed as food for captive freshwater mussels. Journal of Applied Phycology, 15, 1-11 [CrossRef]
  • 18. Sharma, K.K., Schuhmann, H., Schenk, P.M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5, 1532-1553. [CrossRef]
  • 19. Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24, 1477-1486. [CrossRef]
  • 20. Safafar, H., van Wagenen, J., Møller, P., Jacobsen, S. (2015). Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Marine Drugs, 13, 7339-7356. [CrossRef]
  • 21. Little, S.M., Senhorinho, G.N.A., Saleh, M., Basiliko, N., Scott, J.A. (2021). Antibacterial compounds in green microalgae from extreme environments: a review. Algae, 36(1), 61-72. [CrossRef]
  • 22. Senhorinho, G.N.A., Laamanen, C.A., Scott, J.A. (2018). Bioprospecting freshwater microalgae for antibacterial activity from water bodies associated with abandoned mine sites. Phycologia 57, 432-439. [CrossRef]
  • 23. Arguelles, E.D.L.R., Monsalud, R.G. (2017). Morphotaxonomy and diversity of terrestrial microalgae and cyanobacteria in biological crusts of soil from paddy fields of Los Baños, Laguna (Philippines). Philippine Journal of Systematic Biology, 11(2), 25-36.
  • 24. Alsenani, F., Tupally, K.R., Chua, E.T., Eltanahy, E., Alsufyani, H., Parekh, H.S., Schenk, P.M. (2020). Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharmaceutical Journal, 28, 1834-1841. [CrossRef]
  • 25. Benkendorff, K., Davis, A.R., Rogers, C.N., Bremmer, J.B. (2005). Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. Journal of Experimental Marine Biology and Ecology, 316(1), 29-44. [CrossRef]
  • 26. Smith, V.J., Desbois, A.P., Dyrynda, E.A. (2010). Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Marine Drugs, 8(4), 1213-1262. [CrossRef]
  • 27. Arguelles, E.D.L.R., Sapin, A.B. (2022). Proximate composition and in vitro analysis of antioxidant and antibacterial activities of Padina boryana Thivy. Science, Engineering and Health Studies, 16, 22030002.
  • 28. Arguelles, E.D.L.R., Sapin, A.B. (2022). Bioactive properties and therapeutic potential of Padina australis Hauck (Dictyotaceae, Ochrophyta). International Journal of Agricultural Technology, 18(1), 13-34.
  • 29. Katircioglu, H., Beyalti, Y., Aslim, B., Yusekdag, Z., Atic, T. (2006). Screening for antimicrobial agent production of some microalgae in freshwater. The Internet Journal of Microbiology. 2(2),63-72. [CrossRef]

ACUTODESMUS DIMORPHUS (TURPIN) P.M. TSARENKO (SCENEDESMACEAE, CHLOROPHYTA)' NIN KİMYASAL BİLEŞİMİ VE ANTİBAKTERİYEL AKTİVİTESİNİN İN VİTRO ANALİZİ

Year 2023, , 168 - 177, 20.01.2023
https://doi.org/10.33483/jfpau.1151637

Abstract

Amaç: Yeşil mikroalgler hızlı büyüyen organizmalardır ve çeşitli biyoaktif bileşiklere ve biyomoleküllere sahip oldukları bilinmektedir. Yeşil bir mikroalg olan Acutodesmus dimorphus BIOTECH 4039'un kimyasal bileşimi ve antibakteriyel aktiviteleri incelenmiştir.
Gereç ve Yöntem: A. dimorphus'un kurutulmuş alg biyokütlesi proksimate ve elemental kompozisyon analizine tabi tutulmuştur. A. dimorphus'un metanolik ekstresi, mikroalglerin toplam fenolik içeriğini (TPC) ve antibakteriyel aktivitesini belirlemek için kullanılmıştır. TPC, Folin-Ciocalteu yöntemi kullanılarak ölçülmüştür. Öte yandan, tıbbi açıdan önemli bakteriyel patojenlere (Staphylococcus epidermidis BIOTECH 10098, penisilin asilaz üreten Bacillus cereus BIOTECH 1509, Listeria monocytogenes BIOTECH 1958) karşı antibakteriyel aktivite, Methicillin-Resistant Staphylococcus aureus BIOTECH 10378, Pseudomonas aeruginosa BIOTECH 1824, penicillin acylase-producing Escherichia coli BIOTECH 1634 ve Serratia marcescens BIOTECH 1748) modifiye Kirby-Bauer difüzyon yöntemi kullanılarak yapılmıştır.
Sonuç ve Tartışma: A. dimorphus, sırasıyla 43.19 ± 0.13, 26.92 ± 0.01 ve 14.17 ± 0.04 yüzde bileşimiyle yüksek miktarda protein, kül ve lipid içermektedir. Alg biyokütlesinin elementel besin bileşiminin azalan bir sırayla Ca > Mg > K > Mn > Na > Fe > Zn > Pb > Cu > Cd >Cr olduğu görülmüştür. Ayrıca, A. dimorphus 5.34 ± 0.09 mg GAE/g TPC değerine sahiptir. A. dimorphus ekstraktının Metisiline Dirençli Staphylococcus aureus, S. epidermidis, penisilin asilaz üreten Bacillus cereus'a karşı sırasıyla 15.1 ± 0.3 mm, 13.5 ± 0.1 mm ve 6.82 ± 0.7 mm inhibisyon zonları ile güçlü antibakteriyel aktiviteleri gözlenmiştir. Bu çalışma, A. dimorphus'un endüstriyel ve farmasötik uygulamalarda kullanılabilecek önemli bileşikler ve mikro elementler için iyi bir alternatif kaynak olarak kullanılabileceğini göstermektedir.

References

  • 1. Arguelles, E.D.L.R. (2022). Total phenolic content and in vitro analysis of antioxidant, antibacterial, and alpha-glucosidase inhibition properties of Chroococcus minutus (Kützing) Nägeli (Chroococcales, Cyanobacteria). Ankara Üniversitesi Eczacılık Fakültesi Dergisi. 46(1), 170-181. [CrossRef]
  • 2. Arguelles, E.D.L.R. (2021). Biochemical composition and bioactive properties of Chlorella minutissima (Chm1) as a potential source of chemical compounds for nutritional feed supplement and disease control in aquaculture. Current Applied Science and Technology, 21(1),65-77.
  • 3. Garcia-Gonzalez,J.; Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal of Applied Phycology. 28, 1051–1061. [CrossRef] 4. Choochote, W., Suklampoo, L., Ochaikul, D. 2014. Evaluation of antioxidant capacities of green microalgae. Journal of Applied Phycology, 26(1), 43-48. [CrossRef]
  • 5. Martinez-Goss, M.R., Manlapas, J.E.B., Arguelles, E.D.L.R. (2019). Cyanobacteria and diatoms in the cyanobacterial mats in a natural saltwater hot spring in Coron, Palawan, Philippines. Philippine Science Letters, 12(Supplement), 11-32.
  • 6. Li, H.B., Cheng, K.W., Wong, C.C., Fan, K.W., Chen, F., Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry, 102, 771-776. [CrossRef]
  • 7. Arguelles, E.D.L.R., Sapin, A.B. (2021). Chemical composition and bioactive properties of Sargassum aquifolium (Turner) C. Agardh and its potential for pharmaceutical application. Philippine Journal of Science, 151(S1), 9-24. [CrossRef]
  • 8. Arguelles, E.D.L.R., Sapin, A.B. (2020). In vitro antioxidant, alpha-glucosidase inhibition, and antibacterial properties of Turbinaria decurrens Bory (Sargassaceae, Ochrophyta). Asia-Pacific Journal of Science and Technology, 25(3), 1-9.
  • 9. Arguelles, E.D.L.R. (2018). Proximate analysis, antibacterial activity, total phenolic content and antioxidant capacity of a green microalga Scenedesmus quadricauda (Turpin) Brébisson. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 20(1), 150-158.
  • 10. AOAC (2011). Official Methods of Analysis of AOAC. 18th edition, Gaithersburg, MD.
  • 11. Nuñez Selles, A., Castro, H.T.V., Aguero, J.A., Gonzalez, J.G., Naddeo, F., De Simone, F., Pastrelli, L. (2002). Isolation and quantitative analysis of phenolic antioxidants, free sugars and polyols from mango (Mangifera indica L.) stem bark aqueous decoction used in Cuba as a nutritional supplement. Journal of Agricultural and Food Chemistry, 50, 762-766. [CrossRef]
  • 12. Elfita, Mardiyanto, Fitrya, Eka Larasati, J., Julinar, Widjajanti, H., Muharni. (2019). Antibacterial activity of Cordyline fructicosa leaf extracts and its endophytic fungi extracts. Biodiversitas Journal of Biological Diversity, 20(12), 3804–3812. [CrossRef]
  • 13. Bi, Z., He B.B. (2013). Characterization of microalgae for the purpose of biofuel production. Transaction of the American Society of Agricultural and Biological Engineers, 56(4), 1529-1539. [CrossRef]
  • 14. Sivakumar, K., Senthilkumar, R. (2008). Biodiversity of microalgae and their elemental components from Veeranam Lake, Tamilnadu, India. Korean Journal of Ecology and Environment, 41(2), 128-136.
  • 15. Tibbetts, S.M., Milley, J.E., Lall, S.P. (2015). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. Journal of Applied Phycology, 27, 1109-1119. [CrossRef]
  • 16. Arguelles, E.D.L.R., Sapin, A.B. (2020). Bioprospecting of Turbinaria orrnata (Fucales, Phaeophyceae) for cosmetic application: Antioxidant, tyrosinase inhibition and antibacterial activities”, Journal of the International Society for Southeast Asian Agricultural Sciences, 26(2), 30-41.
  • 17. Gatenby, C.M., Orcutt, D.M., Kreeger, D.A., Parker, B.C., Jones, V.A., Neves, R.J. (2003). Biochemical composition of three algal species proposed as food for captive freshwater mussels. Journal of Applied Phycology, 15, 1-11 [CrossRef]
  • 18. Sharma, K.K., Schuhmann, H., Schenk, P.M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5, 1532-1553. [CrossRef]
  • 19. Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24, 1477-1486. [CrossRef]
  • 20. Safafar, H., van Wagenen, J., Møller, P., Jacobsen, S. (2015). Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Marine Drugs, 13, 7339-7356. [CrossRef]
  • 21. Little, S.M., Senhorinho, G.N.A., Saleh, M., Basiliko, N., Scott, J.A. (2021). Antibacterial compounds in green microalgae from extreme environments: a review. Algae, 36(1), 61-72. [CrossRef]
  • 22. Senhorinho, G.N.A., Laamanen, C.A., Scott, J.A. (2018). Bioprospecting freshwater microalgae for antibacterial activity from water bodies associated with abandoned mine sites. Phycologia 57, 432-439. [CrossRef]
  • 23. Arguelles, E.D.L.R., Monsalud, R.G. (2017). Morphotaxonomy and diversity of terrestrial microalgae and cyanobacteria in biological crusts of soil from paddy fields of Los Baños, Laguna (Philippines). Philippine Journal of Systematic Biology, 11(2), 25-36.
  • 24. Alsenani, F., Tupally, K.R., Chua, E.T., Eltanahy, E., Alsufyani, H., Parekh, H.S., Schenk, P.M. (2020). Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharmaceutical Journal, 28, 1834-1841. [CrossRef]
  • 25. Benkendorff, K., Davis, A.R., Rogers, C.N., Bremmer, J.B. (2005). Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. Journal of Experimental Marine Biology and Ecology, 316(1), 29-44. [CrossRef]
  • 26. Smith, V.J., Desbois, A.P., Dyrynda, E.A. (2010). Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Marine Drugs, 8(4), 1213-1262. [CrossRef]
  • 27. Arguelles, E.D.L.R., Sapin, A.B. (2022). Proximate composition and in vitro analysis of antioxidant and antibacterial activities of Padina boryana Thivy. Science, Engineering and Health Studies, 16, 22030002.
  • 28. Arguelles, E.D.L.R., Sapin, A.B. (2022). Bioactive properties and therapeutic potential of Padina australis Hauck (Dictyotaceae, Ochrophyta). International Journal of Agricultural Technology, 18(1), 13-34.
  • 29. Katircioglu, H., Beyalti, Y., Aslim, B., Yusekdag, Z., Atic, T. (2006). Screening for antimicrobial agent production of some microalgae in freshwater. The Internet Journal of Microbiology. 2(2),63-72. [CrossRef]
There are 28 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Research Article
Authors

Eldrin Arguelles 0000-0003-1856-670X

Publication Date January 20, 2023
Submission Date July 31, 2022
Acceptance Date November 15, 2022
Published in Issue Year 2023

Cite

APA Arguelles, E. (2023). CHEMICAL COMPOSITION AND IN VITRO ANALYSIS OF ANTIBACTERIAL ACTIVITY OF ACUTODESMUS DIMORPHUS (TURPIN) P.M. TSARENKO (SCENEDESMACEAE, CHLOROPHYTA). Journal of Faculty of Pharmacy of Ankara University, 47(1), 168-177. https://doi.org/10.33483/jfpau.1151637
AMA Arguelles E. CHEMICAL COMPOSITION AND IN VITRO ANALYSIS OF ANTIBACTERIAL ACTIVITY OF ACUTODESMUS DIMORPHUS (TURPIN) P.M. TSARENKO (SCENEDESMACEAE, CHLOROPHYTA). Ankara Ecz. Fak. Derg. January 2023;47(1):168-177. doi:10.33483/jfpau.1151637
Chicago Arguelles, Eldrin. “CHEMICAL COMPOSITION AND IN VITRO ANALYSIS OF ANTIBACTERIAL ACTIVITY OF ACUTODESMUS DIMORPHUS (TURPIN) P.M. TSARENKO (SCENEDESMACEAE, CHLOROPHYTA)”. Journal of Faculty of Pharmacy of Ankara University 47, no. 1 (January 2023): 168-77. https://doi.org/10.33483/jfpau.1151637.
EndNote Arguelles E (January 1, 2023) CHEMICAL COMPOSITION AND IN VITRO ANALYSIS OF ANTIBACTERIAL ACTIVITY OF ACUTODESMUS DIMORPHUS (TURPIN) P.M. TSARENKO (SCENEDESMACEAE, CHLOROPHYTA). Journal of Faculty of Pharmacy of Ankara University 47 1 168–177.
IEEE E. Arguelles, “CHEMICAL COMPOSITION AND IN VITRO ANALYSIS OF ANTIBACTERIAL ACTIVITY OF ACUTODESMUS DIMORPHUS (TURPIN) P.M. TSARENKO (SCENEDESMACEAE, CHLOROPHYTA)”, Ankara Ecz. Fak. Derg., vol. 47, no. 1, pp. 168–177, 2023, doi: 10.33483/jfpau.1151637.
ISNAD Arguelles, Eldrin. “CHEMICAL COMPOSITION AND IN VITRO ANALYSIS OF ANTIBACTERIAL ACTIVITY OF ACUTODESMUS DIMORPHUS (TURPIN) P.M. TSARENKO (SCENEDESMACEAE, CHLOROPHYTA)”. Journal of Faculty of Pharmacy of Ankara University 47/1 (January 2023), 168-177. https://doi.org/10.33483/jfpau.1151637.
JAMA Arguelles E. CHEMICAL COMPOSITION AND IN VITRO ANALYSIS OF ANTIBACTERIAL ACTIVITY OF ACUTODESMUS DIMORPHUS (TURPIN) P.M. TSARENKO (SCENEDESMACEAE, CHLOROPHYTA). Ankara Ecz. Fak. Derg. 2023;47:168–177.
MLA Arguelles, Eldrin. “CHEMICAL COMPOSITION AND IN VITRO ANALYSIS OF ANTIBACTERIAL ACTIVITY OF ACUTODESMUS DIMORPHUS (TURPIN) P.M. TSARENKO (SCENEDESMACEAE, CHLOROPHYTA)”. Journal of Faculty of Pharmacy of Ankara University, vol. 47, no. 1, 2023, pp. 168-77, doi:10.33483/jfpau.1151637.
Vancouver Arguelles E. CHEMICAL COMPOSITION AND IN VITRO ANALYSIS OF ANTIBACTERIAL ACTIVITY OF ACUTODESMUS DIMORPHUS (TURPIN) P.M. TSARENKO (SCENEDESMACEAE, CHLOROPHYTA). Ankara Ecz. Fak. Derg. 2023;47(1):168-77.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.