Research Article
BibTex RIS Cite

SİPROFLOKSASİN TAYİNİ İÇİN NANOPARTİKÜL TEMELLİ DUYARLI SPEKTROFOTOMETRİK YÖNTEM GELİŞTİRİLMESİ

Year 2023, , 95 - 103, 20.01.2023
https://doi.org/10.33483/jfpau.1160946

Abstract

Amaç: Siprofloksasin, pek çok bakteriyel enfeksiyon ile savaşta kullanılan bir florokinolon grubu antibiyotiktir. Bu çalışmanın amacı, siprofloksasinin spektrofotometrik tayini için nanopartikül temelli hızlı ve duyarlı bir yöntem geliştirmektir.
Gereç ve Yöntem: Yöntem geliştirilmesinde metal nanopartikül olarak AgNP kullanıldı. Siprofloksasinin spektrofotometrik tayininde, AgNP’nin 395.5 nm’deki lokalize yüzey plazmon rezonans (LSPR) absorbsiyon bantı kullanıldı. Deneysel çalışmalarda kullanılan fosfat tampon çözeltisinin optimum pH değerini belirlemek için, farklı pH değerlerindeki siprofloksasin-AgNP’nin absorbans değerindeki değişiklikler incelendi. Dinamik Işın Spektrometresi (DLS) ölçümleri ile AgNP boyutundaki değişiklikler tespit edildi.
Sonuç ve Tartışma: Çalışmamızda siprofloksasinin farmasötik preparatlarda tayini için AgNP’ye dayalı yeni bir spektrofotometrik yöntem geliştirildi. Geliştirilen yöntem için doğrusal çalışma aralığı, pH 6.0 fosfat tamponunda 0.003-3.313 mg/L ve pH 8.0 fosfat tamponunda 0.025-2.50 mg/L olarak belirlendi. Oftalmik solüsyondaki siprofloksasin miktarının belirlenmesi için yapılan geri kazanım çalışmasında geri kazanım değeri %87±3.3 olarak bulundu. Bu veriler ışığında, siprofloksasin tayini için geliştirilen AgNP bazlı yöntemin klinik analizlerde etkili bir analiz yöntemi olarak kullanılabileceği düşünülmektedir.

Supporting Institution

Tübitak

References

  • 1. Verderosa, A.D., de la Fuente-Núñez, C., Mansour, S.C., Cao, J., Lu, T.K., Hancock, R.E., Fairfull-Smith, K.E. (2017). Ciprofloxacin-nitroxide hybrids with potential for biofilm control. European Journal of Medicinal Chemistry, 138, 590-601. [CrossRef]
  • 2. Nahid, P., Mase, S.R., Migliori, G.B., Sotgiu, G., Bothamley, G.H., Brozek, J.L., Cattamanchi, A., Cegielski, J.P., Chen, L., Daley, C.L., Dalton, T.L., Duarte, R., Fregonese, F., Horsburgh, C.R., Jr, Ahmad Khan, F., Kheir, F., Lan, Z., Lardizabal, A., Lauzardo, M., Mangan, J.M., Seaworth, B. (2019). Treatment of drug-resistant Tuberculosis. An official ATS/CDC/ERS/IDSA clinical practice guideline. American Journal of Respiratory and Critical Care Medicine, 200(10), e93-e142. [CrossRef]
  • 3. Hu, Y.Q., Zhang, S., Xu, Z., Lv, Z.S., Liu, M.L., Feng, L.S. (2017). 4-Quinolone hybrids and their antibacterial activities. European Journal of Medicinal Chemistry, 141, 335-345. [CrossRef]
  • 4. Weinstein, R.A., Gaynes, R., Edwards, J.R. (2005). Overview of nosocomial infections caused by gram-negative bacilli. clinical infectious diseases. National Nosocomial Infections Surveillance System, 41(6), 848-854. [CrossRef]
  • 5. Tay, S.B., Yew, W.S. (2013). Development of quorum-based anti-virulence therapeutics targeting gram-negative bacterial pathogens. International Journal of Molecular Sciences, 14(8), 16570-16599. [CrossRef]
  • 6. Zhang, G.F., Liu, X., Zhang, S., Pan, B., Liu, M.L. (2018). Ciprofloxacin derivatives and their antibacterial activities. European Journal of Medicinal Chemistry, 146, 599-612. [CrossRef]
  • 7. Mahgoub, H., Aly, F.A. (1998). UV-spectrophotometric determination of ampicillin sodium and sulbactam sodium in two-component mixtures. Journal of Pharmaceutical and Biomedical Analysis, 17(8), 1273-1278. [CrossRef]
  • 8. Shahrouei, F., Elhami, S., Tahanpesar, E. (2018). Highly sensitive detection of ceftriaxone in water, food, pharmaceutical and biological samples based on gold nanoparticles in aqueous and micellar media. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 203, 287-293. [CrossRef]
  • 9. Wu, S.S., Chein, C.Y., Wen, Y.H. (2008). Analysis of ciprofloxacin by a simple high-performance liquid chromatography method. Journal of Chromatographic Science, 46(6), 490-495. [CrossRef]
  • 10. Al-Momani, I., Haj-Hussein, A., Tahtamouni, A. (2008). Flow Injection Spectrophotometric and chromatographic determination of ciprofloxacin and norfloxacin in pharmaceutical formulations original paper. Journal of Flow Injection Analysis, 25(2), 151. [CrossRef]
  • 11. Fierens, C., Hillaert, S., Van den Bossche, W. (2000). The qualitative and quantitative determination of quinolones of first and second generation by capillary electrophoresis. Journal of Pharmaceutical and Biomedical Analysis, 22(5), 763-772. [CrossRef]
  • 12. Tong, L., Li, P., Wang, Y., Zhu, K. (2009). Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS. Chemosphere, 74(8), 1090-1097. [CrossRef]
  • 13. Fotouhi, L., Alahyari, M. (2010). Electrochemical behavior and analytical application of ciprofloxacin using a multi-walled nanotube composite film-glassy carbon electrode. Colloids and Surfaces B: Biointerfaces, 81(1), 110-114. [CrossRef]
  • 14. Gayen, P., Chaplin, B.P. (2016). Selective electrochemical detection of ciprofloxacin with a porous nafion/multiwalled carbon nanotube composite film electrode. ACS Applied Materials & Interfaces, 8(3), 1615-1626. [CrossRef]
  • 15. Dermiş, S., Kılıç, S., Ertekin, Z.C., Dinç, E. (2019). Quantitative analysis of ciprofloxacin in an ophthalmic solution using UV absorption spectrophotometry and derivative spectrophotometry. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 14(1), 71-76. [CrossRef]
  • 16. Zhou, Z., Jiang, J.Q. (2012). Detection of ibuprofen and ciprofloxacin by solid-phase extraction and UV/Vis spectroscopy. Journal of Applied Spectroscopy, 79(3), 459-464. [CrossRef]
  • 17. Talsky, V.G. (1994). Derivative spectrophotometry. Low and higher order. VCH Verlagsgesellschaft, Weinheim, 228. [CrossRef]
  • 18. Caktu Güler, K. (2014). Ph.D. Thesis. Preparation of surface plasmon resonance based biosensors diclofenac imprinted. Department of Nanotechnology and Nanomedicine, Institute of Science and Technology, Hacettepe University, Ankara, Turkey.
  • 19. Homola, J., Yee S.S., Myszka D. (2008). Surface plasmon biosensors, in optical biosensors: Today and tomorrow (2nd Edition). In: F.S. Ligler and C.R. Taitt (Eds.), Optical Biosensors, (pp. 185-242). Elsevier.
  • 20. Dibekkaya, H. (2015). Master Thesis. Preparation of surface plasmon resonance based biosensor for determination of AntiCCP antibodies. Department of Bioengineering, Institute of Science and Technology, Hacettepe University, Ankara, Turkey.
  • 21. Fernando, I., Zhou, Y. (2019). Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere, 216, 297-305. [CrossRef]
  • 22. Taghizade, M., Ebrahimi, M., Fooladi, E., Yoosefian, M. (2021). Simultaneous spectrophotometric determination of the resudial of ciprofloxacin, famotidine, and tramadol using magnetic solid phase extraction coupled with multivariate calibration methods. Microchemical Journal, 160, 105627. [CrossRef]
  • 23. Palamy, S., Ruengsitagoon, W. (2018). Reverse flow injection spectrophotometric determination of ciprofloxacin in pharmaceuticals using iron from soil as a green reagent. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 190, 129-134. [CrossRef]
  • 24. Al-Ameer Khammas, Z.A., Mubdir, N.S. (2014). An eco-friendly method for extraction and determination of ciprofloxacin in blood serum and pharmaceuticals. Science Journal of Analytical Chemistry, 2, 47-54. [CrossRef]
  • 25. Garrido, J.M., Melle-Franco, M., Strutyński, K., Borges, F., Brett, C.M., Garrido, E.M. (2017). β-Cyclodextrin carbon nanotube-enhanced sensor for ciprofloxacin detection. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering, 52(4), 313-319. [CrossRef]
  • 26. Yang, B., Zhang, Y., Zhang, Q., Liu, Y., Yan, Y. (2019). Study on the preparation of water-soluble AgInS2 quantum dots and their application in the detection of ciprofloxacin. Journal of Materials Science: Materials in Electronics, 30(20), 18794-18801. [CrossRef]
  • 27. Yuan, X.L., Wu, X.Y., He, M., Lai, J.P., Sun, H. (2022). A ratiometric fiber optic sensor based on CdTe QDs functionalized with glutathione and mercaptopropionic acid for on-site monitoring of antibiotic ciprofloxacin in aquaculture water. Nanomaterials, 12(5), 829. [CrossRef]

DEVELOPMENT OF NANOPARTICLE BASED SENSITIVE SPECTROPHOTOMETRIC METHOD FOR THE DETERMINATION OF CIPROFLOXACIN

Year 2023, , 95 - 103, 20.01.2023
https://doi.org/10.33483/jfpau.1160946

Abstract

Objective: Ciprofloxacin is a fluoroquinolone antibiotic used in the fight against many bacterial infections. The aim of this study is to develop a rapid and sensitive method for the spectrophotometric determination of metal nanoparticle-based ciprofloxacin.
Material and Method: AgNP was used as metal nanoparticle to develop the method. The localized surface plasmon resonance (LSPR) absorption band of AgNP at 395.5 nm was used for the spectrophotometric determination of ciprofloxacin. In order to determine the optimum pH value of the phosphate buffer solution used in the experimental studies, the changes in the absorbance value of ciprofloxacin-AgNP at different pH values were examined. Changes in AgNP size were detected by DLS measurements.
Result and Discussion: In our study, a new spectrophotometric method based on AgNP was developed for the determination of ciprofloxacin in pharmaceutical preparations. The linear working range for the developed method was determined as 0.003-3.313 mg/L in pH 6.0 phosphate buffer and 0.025-2.50 mg/L in pH 8.0 phosphate buffer. In the recovery study performed to determine the amount of ciprofloxacin in the ophthalmic solution, the recovery value was found to be 87±3.3%. In the light of these data, it is thought that the AgNP-based method developed for the determination of ciprofloxacin can be used as an effective analysis method in clinical analysis.

References

  • 1. Verderosa, A.D., de la Fuente-Núñez, C., Mansour, S.C., Cao, J., Lu, T.K., Hancock, R.E., Fairfull-Smith, K.E. (2017). Ciprofloxacin-nitroxide hybrids with potential for biofilm control. European Journal of Medicinal Chemistry, 138, 590-601. [CrossRef]
  • 2. Nahid, P., Mase, S.R., Migliori, G.B., Sotgiu, G., Bothamley, G.H., Brozek, J.L., Cattamanchi, A., Cegielski, J.P., Chen, L., Daley, C.L., Dalton, T.L., Duarte, R., Fregonese, F., Horsburgh, C.R., Jr, Ahmad Khan, F., Kheir, F., Lan, Z., Lardizabal, A., Lauzardo, M., Mangan, J.M., Seaworth, B. (2019). Treatment of drug-resistant Tuberculosis. An official ATS/CDC/ERS/IDSA clinical practice guideline. American Journal of Respiratory and Critical Care Medicine, 200(10), e93-e142. [CrossRef]
  • 3. Hu, Y.Q., Zhang, S., Xu, Z., Lv, Z.S., Liu, M.L., Feng, L.S. (2017). 4-Quinolone hybrids and their antibacterial activities. European Journal of Medicinal Chemistry, 141, 335-345. [CrossRef]
  • 4. Weinstein, R.A., Gaynes, R., Edwards, J.R. (2005). Overview of nosocomial infections caused by gram-negative bacilli. clinical infectious diseases. National Nosocomial Infections Surveillance System, 41(6), 848-854. [CrossRef]
  • 5. Tay, S.B., Yew, W.S. (2013). Development of quorum-based anti-virulence therapeutics targeting gram-negative bacterial pathogens. International Journal of Molecular Sciences, 14(8), 16570-16599. [CrossRef]
  • 6. Zhang, G.F., Liu, X., Zhang, S., Pan, B., Liu, M.L. (2018). Ciprofloxacin derivatives and their antibacterial activities. European Journal of Medicinal Chemistry, 146, 599-612. [CrossRef]
  • 7. Mahgoub, H., Aly, F.A. (1998). UV-spectrophotometric determination of ampicillin sodium and sulbactam sodium in two-component mixtures. Journal of Pharmaceutical and Biomedical Analysis, 17(8), 1273-1278. [CrossRef]
  • 8. Shahrouei, F., Elhami, S., Tahanpesar, E. (2018). Highly sensitive detection of ceftriaxone in water, food, pharmaceutical and biological samples based on gold nanoparticles in aqueous and micellar media. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 203, 287-293. [CrossRef]
  • 9. Wu, S.S., Chein, C.Y., Wen, Y.H. (2008). Analysis of ciprofloxacin by a simple high-performance liquid chromatography method. Journal of Chromatographic Science, 46(6), 490-495. [CrossRef]
  • 10. Al-Momani, I., Haj-Hussein, A., Tahtamouni, A. (2008). Flow Injection Spectrophotometric and chromatographic determination of ciprofloxacin and norfloxacin in pharmaceutical formulations original paper. Journal of Flow Injection Analysis, 25(2), 151. [CrossRef]
  • 11. Fierens, C., Hillaert, S., Van den Bossche, W. (2000). The qualitative and quantitative determination of quinolones of first and second generation by capillary electrophoresis. Journal of Pharmaceutical and Biomedical Analysis, 22(5), 763-772. [CrossRef]
  • 12. Tong, L., Li, P., Wang, Y., Zhu, K. (2009). Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS. Chemosphere, 74(8), 1090-1097. [CrossRef]
  • 13. Fotouhi, L., Alahyari, M. (2010). Electrochemical behavior and analytical application of ciprofloxacin using a multi-walled nanotube composite film-glassy carbon electrode. Colloids and Surfaces B: Biointerfaces, 81(1), 110-114. [CrossRef]
  • 14. Gayen, P., Chaplin, B.P. (2016). Selective electrochemical detection of ciprofloxacin with a porous nafion/multiwalled carbon nanotube composite film electrode. ACS Applied Materials & Interfaces, 8(3), 1615-1626. [CrossRef]
  • 15. Dermiş, S., Kılıç, S., Ertekin, Z.C., Dinç, E. (2019). Quantitative analysis of ciprofloxacin in an ophthalmic solution using UV absorption spectrophotometry and derivative spectrophotometry. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 14(1), 71-76. [CrossRef]
  • 16. Zhou, Z., Jiang, J.Q. (2012). Detection of ibuprofen and ciprofloxacin by solid-phase extraction and UV/Vis spectroscopy. Journal of Applied Spectroscopy, 79(3), 459-464. [CrossRef]
  • 17. Talsky, V.G. (1994). Derivative spectrophotometry. Low and higher order. VCH Verlagsgesellschaft, Weinheim, 228. [CrossRef]
  • 18. Caktu Güler, K. (2014). Ph.D. Thesis. Preparation of surface plasmon resonance based biosensors diclofenac imprinted. Department of Nanotechnology and Nanomedicine, Institute of Science and Technology, Hacettepe University, Ankara, Turkey.
  • 19. Homola, J., Yee S.S., Myszka D. (2008). Surface plasmon biosensors, in optical biosensors: Today and tomorrow (2nd Edition). In: F.S. Ligler and C.R. Taitt (Eds.), Optical Biosensors, (pp. 185-242). Elsevier.
  • 20. Dibekkaya, H. (2015). Master Thesis. Preparation of surface plasmon resonance based biosensor for determination of AntiCCP antibodies. Department of Bioengineering, Institute of Science and Technology, Hacettepe University, Ankara, Turkey.
  • 21. Fernando, I., Zhou, Y. (2019). Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere, 216, 297-305. [CrossRef]
  • 22. Taghizade, M., Ebrahimi, M., Fooladi, E., Yoosefian, M. (2021). Simultaneous spectrophotometric determination of the resudial of ciprofloxacin, famotidine, and tramadol using magnetic solid phase extraction coupled with multivariate calibration methods. Microchemical Journal, 160, 105627. [CrossRef]
  • 23. Palamy, S., Ruengsitagoon, W. (2018). Reverse flow injection spectrophotometric determination of ciprofloxacin in pharmaceuticals using iron from soil as a green reagent. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 190, 129-134. [CrossRef]
  • 24. Al-Ameer Khammas, Z.A., Mubdir, N.S. (2014). An eco-friendly method for extraction and determination of ciprofloxacin in blood serum and pharmaceuticals. Science Journal of Analytical Chemistry, 2, 47-54. [CrossRef]
  • 25. Garrido, J.M., Melle-Franco, M., Strutyński, K., Borges, F., Brett, C.M., Garrido, E.M. (2017). β-Cyclodextrin carbon nanotube-enhanced sensor for ciprofloxacin detection. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering, 52(4), 313-319. [CrossRef]
  • 26. Yang, B., Zhang, Y., Zhang, Q., Liu, Y., Yan, Y. (2019). Study on the preparation of water-soluble AgInS2 quantum dots and their application in the detection of ciprofloxacin. Journal of Materials Science: Materials in Electronics, 30(20), 18794-18801. [CrossRef]
  • 27. Yuan, X.L., Wu, X.Y., He, M., Lai, J.P., Sun, H. (2022). A ratiometric fiber optic sensor based on CdTe QDs functionalized with glutathione and mercaptopropionic acid for on-site monitoring of antibiotic ciprofloxacin in aquaculture water. Nanomaterials, 12(5), 829. [CrossRef]
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Research Article
Authors

Hakan Balcı 0000-0003-4106-3211

Zehra Özden Erdoğan 0000-0002-1687-973X

Alperen Özdemir 0000-0001-5907-0300

Publication Date January 20, 2023
Submission Date August 11, 2022
Acceptance Date October 26, 2022
Published in Issue Year 2023

Cite

APA Balcı, H., Erdoğan, Z. Ö., & Özdemir, A. (2023). SİPROFLOKSASİN TAYİNİ İÇİN NANOPARTİKÜL TEMELLİ DUYARLI SPEKTROFOTOMETRİK YÖNTEM GELİŞTİRİLMESİ. Journal of Faculty of Pharmacy of Ankara University, 47(1), 95-103. https://doi.org/10.33483/jfpau.1160946
AMA Balcı H, Erdoğan ZÖ, Özdemir A. SİPROFLOKSASİN TAYİNİ İÇİN NANOPARTİKÜL TEMELLİ DUYARLI SPEKTROFOTOMETRİK YÖNTEM GELİŞTİRİLMESİ. Ankara Ecz. Fak. Derg. January 2023;47(1):95-103. doi:10.33483/jfpau.1160946
Chicago Balcı, Hakan, Zehra Özden Erdoğan, and Alperen Özdemir. “SİPROFLOKSASİN TAYİNİ İÇİN NANOPARTİKÜL TEMELLİ DUYARLI SPEKTROFOTOMETRİK YÖNTEM GELİŞTİRİLMESİ”. Journal of Faculty of Pharmacy of Ankara University 47, no. 1 (January 2023): 95-103. https://doi.org/10.33483/jfpau.1160946.
EndNote Balcı H, Erdoğan ZÖ, Özdemir A (January 1, 2023) SİPROFLOKSASİN TAYİNİ İÇİN NANOPARTİKÜL TEMELLİ DUYARLI SPEKTROFOTOMETRİK YÖNTEM GELİŞTİRİLMESİ. Journal of Faculty of Pharmacy of Ankara University 47 1 95–103.
IEEE H. Balcı, Z. Ö. Erdoğan, and A. Özdemir, “SİPROFLOKSASİN TAYİNİ İÇİN NANOPARTİKÜL TEMELLİ DUYARLI SPEKTROFOTOMETRİK YÖNTEM GELİŞTİRİLMESİ”, Ankara Ecz. Fak. Derg., vol. 47, no. 1, pp. 95–103, 2023, doi: 10.33483/jfpau.1160946.
ISNAD Balcı, Hakan et al. “SİPROFLOKSASİN TAYİNİ İÇİN NANOPARTİKÜL TEMELLİ DUYARLI SPEKTROFOTOMETRİK YÖNTEM GELİŞTİRİLMESİ”. Journal of Faculty of Pharmacy of Ankara University 47/1 (January 2023), 95-103. https://doi.org/10.33483/jfpau.1160946.
JAMA Balcı H, Erdoğan ZÖ, Özdemir A. SİPROFLOKSASİN TAYİNİ İÇİN NANOPARTİKÜL TEMELLİ DUYARLI SPEKTROFOTOMETRİK YÖNTEM GELİŞTİRİLMESİ. Ankara Ecz. Fak. Derg. 2023;47:95–103.
MLA Balcı, Hakan et al. “SİPROFLOKSASİN TAYİNİ İÇİN NANOPARTİKÜL TEMELLİ DUYARLI SPEKTROFOTOMETRİK YÖNTEM GELİŞTİRİLMESİ”. Journal of Faculty of Pharmacy of Ankara University, vol. 47, no. 1, 2023, pp. 95-103, doi:10.33483/jfpau.1160946.
Vancouver Balcı H, Erdoğan ZÖ, Özdemir A. SİPROFLOKSASİN TAYİNİ İÇİN NANOPARTİKÜL TEMELLİ DUYARLI SPEKTROFOTOMETRİK YÖNTEM GELİŞTİRİLMESİ. Ankara Ecz. Fak. Derg. 2023;47(1):95-103.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.