Research Article
BibTex RIS Cite

AROCLOR 1254’ÜN SIÇAN KALBİ VE TİROİT ÜZERİNDEKİ TOKSİK ETKİLERİ VE SELENYUM DÜZEYLERİNİN DEĞİŞTİRİCİ ROLÜ

Year 2023, , 408 - 419, 20.05.2023
https://doi.org/10.33483/jfpau.1217709

Abstract

Amaç: Poliklorlu bifeniller (PCB'ler) geçmişte endüstriyel ürünlerde çok yaygın olarak kullanılmıştır. Bu kimyasallar, toksik etkileri nedeniyle 1970'lerde yasaklanmıştır. PCB'ler, çevrede kalıcı oldukları için insan sağlığını hala etkileyebilir. Aroclor 1254 (A1254), elektrik transformatörlerinde, fluoresan aydınlatma armatürlerinde ve televizyon veya buzdolabı gibi eski cihazlarda kullanılan ticari bir PCB türevidir. Bu çalışmada erkek Sprague-Dawley sıçanlarında A1254'ün kalp ve tiroid üzerindeki toksik etkilerinin değerlendirmesi amaçlanmıştır. Ayrıca selenyum durumunun düzenleyici rolü de değerlendirilmiştir.
Gereç ve Yöntem: Çalışmada 8 haftalık erkek Sprague-Dawley (SD) ratlar kullanılmıştır. Hayvanlar, kontrol grubu, selenyum suplemente grup (SeS); selenyum eksikliği olan grup (SeD); A1254 maruziyet grubu (A); selenyum suplemente A1254'e maruziyet grubu (ASeS) ve selenyum eksikliği olan A1254'e maruziyet (ASeD) olarak rastgele 6 gruba ayrıldı. A1254, beslenme sürecinin son 15 gününde uygulanmıştır. Kalp ve tiroid ağırlıkları ve bağıl ağırlıkları, plazma tiroid hormonu seviyeleri ve ayrıca tiroid ve kalp dokusu oksidatif/antioksidatif parametreleri değerlendirilmiştir.
Sonuç ve Tartışma: Sonuçlar, A1254 maruziyetinin ve selenyum eksikliğinin hem kalp hem de tiroit dokusunda oksidatif strese neden olduğunu göstermiştir. Plazma fT3 ve fT4 seviyeleri ASeD grubunda belirgin şekilde değişmştir. Sonuç olarak, A1254 maruziyetinin hem tiroit hem de kalpte oksidan/antioksidan dengesizliğe yol açabileceği ve tiroit hormonlarının işleyişini bozabileceği söylenebilir. Selenyum, her iki organda da A1254 toksisitesinde değiştirici bir role sahip olduğu görünmektedir ve bunun önemi daha ileri mekanistik deneylerle değerlendirilmelidir.

References

  • 1. Shmarakov, I.O., Lee, Y.J., Jiang, H., Blaner, W.S. (2019). Constitutive androstane receptor mediates PCB-induced disruption of retinoid homeostasis. Toxicology and Applied Pharmacology, 381, 114731. [CrossRef]
  • 2. Seyran, A., Erişir, M. Poli Klorlu Bifeniller ve Sağlık Üzerine Etkileri. (2008). Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi, 22(1), 33-40.
  • 3. Vorkamp, K. (2016). An overlooked environmental issue? A review of the inadvertent formation of PCB-11 and other PCB congeners and their occurrence in consumer products and in the environment. Science of the Total Environment, 541, 1463-1476. [CrossRef]
  • 4. Weber, R., Herold, C., Hollert, H., Kamphues, J., Blepp, M., Ballschmiter, K. (2018). Reviewing the relevance of dioxin and PCB sources for food from animal origin and the need for their inventory, control and management. In Environmental Sciences Europe, 30(1), 42.
  • 5. Chakraborty, P., Prithiviraj, B., Selvaraj, S., Kumar, B. (2016). Polychlorinated biphenyls in settled dust from informal electronic waste recycling workshops and nearby highways in urban centers and suburban industrial roadsides of Chennai city, India: Levels, congener profiles and exposure assessment. Science of the Total Environment, 573, 1413-1421. [CrossRef]
  • 6. Chakraborty, P., Khuman, S.N., Selvaraj, S., Sampath, S., Devi, N.L., Bang, J.J., Katsoyiannis, A. (2016). Polychlorinated biphenyls and organochlorine pesticides in River Brahmaputra from the outer Himalayan Range and River Hooghly emptying into the Bay of Bengal: Occurrence, sources and ecotoxicological risk assessment. Environmental Pollution, 219, 998-1006. [CrossRef]
  • 7. Devi, N.L., Yadav, I.C., Chakraborty, P., Shihua, Q. (2018). Polychlorinated biphenyls in surface soil from North-East India: Implication for sources apportionment and health-risk assessment. Archives of Environmental Contamination and Toxicology, 75(3), 377-389. [CrossRef]
  • 8. Alawi, M., Masaad, M., Al-Hussaini, M. (2018). Comparative study of persistent organic pollutant (POP) (chlorinated pesticides, PCBs, and dioxins/furans) concentrations in cancer-affected human organs with those of healthy organs. Environmental Monitoring and Assessment, 190(8), 470. [CrossRef]
  • 9. Du, S., Rodenburg, L., Patterson, N., Chu, C., Riker, C.D., Yu, C.H., Fan, Z. (Tina). (2020). Concentration of polychlorinated biphenyls in serum from New Jersey biomonitoring study: 2016-2018. Chemosphere, 261, 127730. [CrossRef]
  • 10. Raffetti, E., Speziani, F., Donato, F., Leonardi, L., Orizio, G., Scarcella, C., Apostoli, P., Magoni, M. (2017). Temporal trends of polychlorinated biphenyls serum levels in subjects living in a highly polluted area from 2003 to 2015: A follow-up study. International Journal of Hygiene and Environmental Health, 220(2), 461-467. [CrossRef]
  • 11. He, F., Zuo, L., Ward, E., Arciero, P.J. (2017). Serum polychlorinated biphenyls increase and oxidative stress decreases with a protein-pacing caloric restriction diet in obese men and women. International Journal of Environmental Research and Public Health, 14(1), 59. [CrossRef]
  • 12. Loch-Caruso, R. (2002). Uterine muscle as a potential target of polychlorinated biphenyls during pregnancy. International Journal of Hygiene and Environmental Health, 205, 121-130.
  • 13. Brouwer, A., Longnecker, M.P., Birnbaum, L.S., Cogliano, J., Kostyniak, P., Moore, J., Schantz, S., Winneke, G. (1999), Characterization of Potential Endocrine-Related Health Effects at Low-Dose Levels of Exposure to PCBs. Environmental Health Perspective, 107 Suppl 4(Suppl 4), 639-649. [CrossRef]
  • 14. Sánchez-Alonso, J.A., López-Aparicio, P., Recio, M.N., Pérez-Albarsanz, M.A. (2003). Apoptosis-mediated neurotoxic potential of a planar (PCB 77) and a nonplanar (PCB 153) polychlorinated biphenyl congeners in neuronal cell cultures. Toxicology Letters, 144(3), 337-349. [CrossRef]
  • 15. Tabb, M.M., Kholodovych, V., Grün, F., Zhou, C., Welsh, W.J., Blumberg, B. (2004). Highly chlorinated PCBs inhibit the human xenobiotic response mediated by the steroid and xenobiotic receptor (SXR). Environmental Health Perspectives, 112(2), 163-169. [CrossRef]
  • 16. Schuur, A.G., Brouwer, A., Ke Bergman, A., Coughtrie, M.W.H., Visser, T.J. (1998). Inhibition of thyroid hormone sulfation by hydroxylated metabolites of polychlorinated biphenyls. In Chemico-Biological Interactions, 109, 293-297. [CrossRef]
  • 17. Sergeev, A.V., Carpenter, D.O. (2011). Geospatial patterns of hospitalization rates for stroke with comorbid hypertension in relation to environmental sources of persistent organic pollutants: Results from a 12-year population-based study. Environmental Science and Pollution Research, 18(4), 576-585. [CrossRef]
  • 18. Hertz-Picciotto, I., Park, H.Y., Dostal, M., Kocan, A., Trnovec, T., Sram, R. (2008). Prenatal exposures to persistent and non-persistent organic compounds and effects on immune system development. Basic and Clinical Pharmacology and Toxicology, 102(2), 146-154. [CrossRef]
  • 19. Collins, W.T., Capen, C.C. (1980). Fine Structural Lesions and Hormonal Alterations in Thyroid Glands of Perinatal Rats Exposed in Utero and by the Milk to Polychlorinated Biphenyls. The American Journal of Pathology, 99(1),125-142.
  • 20. Gray, L.E. Jr, Ostby, J., Marshall, R., Andrews, J. (1993). Reproductive and thyroid effects of low-level polychlorinated biphenyl (Aroclor 1254) exposure. Fundamental and Applied Toxicology, 20(3), 288-294. [CrossRef]
  • 21. Giera, S., Bansal, R., Ortiz-Toro, T.M., Taub, D.G., Zoeller, R.T. (2011). Individual Polychlorinated Biphenyl (PCB) Congeners Produce Tissue- and Gene-Specific Effects on Thyroid Hormone Signaling during Development. Endocrinology, 152(7), 2909-2919. [CrossRef]
  • 22. Webb, C.M., McNabb, F.M.A. (2008). Polychlorinated biphenyl effects on avian hepatic enzyme induction and thyroid function. General and Comparative Endocrinology, 155(3), 650-657. [CrossRef]
  • 23. Salay, E., Garabrant, D. (2009). Polychlorinated biphenyls and thyroid hormones in adults: A systematic review appraisal of epidemiological studies. Chemosphere 74(11), 1413-1419. [CrossRef]
  • 24. Hansen, L.G. (1998). Stepping backward to improve assessment of PCB congener toxicities. Environmental Health Perspective, 106 Suppl 1(Suppl 1), 171-189. [CrossRef]
  • 25. Carpenter D.O. (2006). Polychlorinated biphenyls (PCBs): routes of exposure and effects on human health. Reviews on Environmental Health, 21(1), 1-23.[CrossRef]
  • 26. Kato, Y., Haraguchi, K., Shibahara, T., Masuda, Y., Kimura, R. (1998). Reduction of thyroid hormone levels by methylsulfonyl metabolites of polychlorinated biphenyl congeners in rats. Archives of Toxicology, 72, 541-544. [CrossRef]
  • 27. Kochman, J., Jakubczyk, K., Bargiel, P., Janda-Milczarek, K. (2021). The influence of oxidative stress on thyroid diseases. Antioxidants, 10(9), 1442. [CrossRef]
  • 28. Duntas, L.H., Stathatos, N. (2015). Toxic chemicals and thyroid function: hard facts and lateral thinking. In Reviews in Endocrine and Metabolic Disorders, 16(4), 311-318. [CrossRef]
  • 29. Åkesson, A., Donat-Vargas, C., Berglund, M., Glynn, A., Wolk, A., Kippler, M. (2019). Dietary exposure to polychlorinated biphenyls and risk of heart failure - A population-based prospective cohort study. Environment International, 126, 1-6. [CrossRef]
  • 30. Donat-Vargas, C., Moreno-Franco, B., Laclaustra, M., Sandoval-Insausti, H., Jarauta, E., Guallar-Castillon, P. (2020). Exposure to dietary polychlorinated biphenyls and dioxins, and its relationship with subclinical coronary atherosclerosis: The Aragon Workers’ Health Study. Environment International, 136, 105433. [CrossRef]
  • 31. Bergkvist, C., Berglund, M., Glynn, A., Julin, B., Wolk, A., Åkesson, A. (2016). Dietary exposure to polychlorinated biphenyls and risk of myocardial infarction in men - A population-based prospective cohort study. Environment International, 88, 9–14. [CrossRef]
  • 32. Rao, P., Kodavanti, S., Kannan, N., Yamashita, N., Derr-Yellin, E.C., Ward, T.R., Burgin, D.E., Tilson, H.A., Birnbaum, L.S. (2001). Differential effects of two lots of Aroclor 1254: Congener-specific analysis and neurochemical end points. International Environmental Health Perspectives, 109(11), 1153-1161. [CrossRef]
  • 33. Kaya, D., Imamoglu, I., Sanin, F.D., Payne, R.B., Sowers, K.R. (2017). Potential risk reduction of Aroclor 1254 by microbial dechlorination in anaerobic Grasse River sediment microcosms. Journal of Hazardous Materials, 321, 879-887. [CrossRef]
  • 34. Crofton, K.M., Kodavanti, P.R.S., Derr-Yellin, E.C., Casey, A.C., Kehn, L.S. (2000). PCBs, Thyroid Hormones, and Ototoxicity in Rats: Cross-Fostering Experiments Demonstrate the Impact of Postnatal Lactation Exposure. Toxicology Science, 57(1), 131-140. [CrossRef]
  • 35. Lehigh Shirey, E.A., Jelaso Langerveld, A., Mihalko, D., Ide, C.F. (2006). Polychlorinated biphenyl exposure delays metamorphosis and alters thyroid hormone system gene expression in developing Xenopus laevis. Environmental Research, 102(2), 205-214. [CrossRef]
  • 36. Li, M., Wang, X., Zhu, J., Zhu, S., Hu, X., Zhu, C., Guo, X., Yu, Z., Han, S. (2014). Toxic effects of polychlorinated biphenyls on cardiac development in zebrafish. Molecular Biology Reports, 41(12), 7973-7983. [CrossRef]
  • 37. Borlak, J., Thum, T. (2002). PCBs alter gene expression of nuclear transcription factors and other heart-specific genes in cultures of primary cardiomyocytes: possible implications for cardiotoxicity. Xenobiotica, 32(12), 1173-1183. [CrossRef]
  • 38. Gorini, F., Sabatino, L., Pingitore, A., Vassalle, C. (2021). Selenium: An element of life essential for thyroid function. Molecules, 26 (23), 7084. [CrossRef]
  • 39. Al-Mubarak, A.A., van der Meer, P., Bomer, N. (2021). Selenium, Selenoproteins, and Heart Failure: Current Knowledge and Future Perspective. Current Heart Failure Reports, 18(3),122-131. [CrossRef]
  • 40. Shimada, B.K., Alfulaij, N., Seale, L.A. (2021). The impact of selenium deficiency on cardiovascular function. International Journal of Molecular Sciences, 22(19), 10713. [CrossRef]
  • 41. Kielczykowska, M., Kocot, J., Pazdzior, M., Musik, I. (2018). Selenium - A fascinating antioxidant of protective properties. International Advances in Clinical and Experimental Medicine, 27(2), 245-255.
  • 42. Aebı, H., Wyss, S.R., Scherz, B., Skvarıl, F. (1974). Heterogeneity of Erythrocyte Catalase II: Isolation and Characterization of Normal and Variant Erythrocyte Catalase and Their Subunits. European Journal of Biochemistry, 48(1), 137-145. [CrossRef]
  • 43. Ramasarma, T., Rao, A.V.S., Devi, M.M., Omkumar, R.V., Bhagyashree, K.S., Bhat, S.V. (2015). New insights of superoxide dismutase inhibition of pyrogallol autoxidation. Molecular and Cellular Biochemistry, 400(1-2), 277-285. [CrossRef]
  • 44. Walker, J.M. (1994). The bicinchoninic acid (BCA) assay for protein quantitation. Methods in Molecular Biology, 32, 5-8. [CrossRef]
  • 45. Wang, C., Cui, R., Niu, C., Zhong, X., Zhu, Q., Ji, D., Li, X., Zhang, H., Liu, C., Zhou, L., Li, Y., Xu, G., Wei, Y. (2021). Low-dose PCB126 exposure disrupts cardiac metabolism and causes hypertrophy and fibrosis in mice. Environmental Pollution, 290, 118079. [CrossRef]
  • 46. Teixidó, E., Barenys, M., Piqué, E., Llobet, J.M., Gómez-Catalán, J. (2019). Cardiovascular effects of PCB 126 (3,3’,4,4’,5-pentachlorobiphenyl) in zebrafish embryos and impact of co-exposure to redox modulating chemicals. International Journal of Molecular Sciences, 20(5), 1065. [CrossRef]
  • 47. Brown, D.R., Clark, B.W., Garner, L.V.T., di Giulio, R.T. (2016). Embryonic cardiotoxicity of weak aryl hydrocarbon receptor agonists and CYP1A inhibitor fluoranthene in the Atlantic killifish (Fundulus heteroclitus). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 188, 45-51. [CrossRef]
  • 48. Incardona, J.P., Scholz, N.L. (2016). The influence of heart developmental anatomy on cardiotoxicity-based adverse outcome pathways in fish. International Aquatic Toxicology, 177, 515-525. [CrossRef]
  • 49. Brown, D.R., Clark, B.W., Garner, L.V.T., di Giulio, R.T. (2015). Zebrafish cardiotoxicity: the effects of CYP1A inhibition and AHR2 knockdown following exposure to weak aryl hydrocarbon receptor agonists. Environmental Science and Pollution Research, 22(11), 8329-8338. [CrossRef]
  • 50. Deng, P., Wang, C., Wahlang, B., Sexton, T., Morris, A.J., Hennig, B. (2020). Co-exposure to PCB126 and PFOS increases biomarkers associated with cardiovascular disease risk and liver injury in mice. Toxicology and Applied Pharmacology, 409, 115301. [CrossRef]
  • 51. Sallée, M., Dou, L., Cerini, C., Poitevin, S., Brunet, P., Burtey, S. (2014). The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: A new concept to understand cardiovascular complications of chronic kidney disease. International Toxins, 6(3), 934-949. [CrossRef]
  • 52. Arsenescu, V., Arsenescu, R.I., King, V., Swanson, H., Cassis, L.A. (2008). Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environmental Health Perspective, 116(6), 761-768. [CrossRef]
  • 53. Zhang, Z., Chang, C., Zhang, Y., Chai, Z., Li, J., Qiu, C. (2021). The association between serum selenium concentration and prognosis in patients with heart failure in a Chinese population. Scientific Reports, 11(1), 14533. [CrossRef]
  • 54. de Lorgeril, M., Salen, P. (2006). Selenium and antioxidant defenses as major mediators in the development of chronic heart failure. Heart Failure Reviews,11(1),13-17. [CrossRef]
  • 55. Burgin, D.E., Diliberto, J.J., Derr-Yellin, E.C., Kannan, N., Kodavanti, P.R.S., Birnbaum, L.S. (2001). Differential effects of two lots of Aroclor 1254 on enzyme induction, thyroid hormones, and oxidative stress. International Environmental Health Perspectives, 109(11), 1163-1168. [CrossRef]
  • 56. Abdelsalam, E.E.E., Bandouchova, H., Heger, T., Kanova, M., Kobelkova, K., Nemcova, M., Piacek, V., Sedlackova, J., Seidlova, V., Vitula, F., Pikula, J. (2020). Polychlorinated biphenyl toxicity in the thyroid gland of wild ungulates: An in vitro model. Acta Veterinaria Brno, 89(2), 151–162. [CrossRef]
  • 57. Fair, P.A., Peden-Adams, M.M., Mollenhauer, M.A.M., Bossart, G.D., Keil, D.E., White, N.D. (2021). Effects of an environmentally relevant PCB-mixture on immune function, clinical chemistry, and thyroid hormone levels in adult female B6C3F1 mice. Journal of Toxicology and Environmental Health - Part A: Current Issues, 84(7), 279-297. [CrossRef]
  • 58. Klaassen, C.D., Hood, A.M. (2001). Effects of microsomal enzyme inducers on thyroid follicular cell proliferation and thyroid hormone metabolism. International Toxicologic Pathology, 29(1). [CrossRef]
  • 59. Seldén, A.I., Lundholm, C., Johansson, N., Wingfors, H. (2008). Polychlorinated biphenyls (PCB), thyroid hormones and cytokines in construction workers removing old elastic sealants. International Archives of Occupational and Environmental Health, 82(1), 99-106. [CrossRef]
  • 60. LeRoy, K.D., Thomas, P., Khan, I.A. (2006). Thyroid hormone status of Atlantic croaker exposed to Aroclor 1254 and selected PCB congeners. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 144(3), 263-271. [CrossRef]
  • 61. Coimbra, A.M., Reis-Henriques, M.A., Darras, V.M. (2005). Circulating thyroid hormone levels and iodothyronine deiodinase activities in Nile tilapia (Oreochromis niloticus) following dietary exposure to Endosulfan and Aroclor 1254. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 141(1), 8-14. [CrossRef]
  • 62. Coimbra, A.M., Reis-Henriques, M.A. (2007). Tilapia larvae aroclor 1254 exposure: Effects on gonads and circulating thyroid hormones during adulthood. Bulletin of Environmental Contamination and Toxicology, 79(5), 488-493. [CrossRef]
  • 63. Takaguchi, K., Nishikawa, H., Mizukawa, H., Tanoue, R., Yokoyama, N., Ichii, O., Takiguchi, M., Nakayama, S.M.M., Ikenaka, Y., Kunisue, T., Ishizuka, M., Tanabe, S., Iwata, H., Nomiyama, K. (2019). Effects of PCB exposure on serum thyroid hormone levels in dogs and cats. Science of the Total Environment, 688, 1172-1183. [CrossRef]
  • 64. Ibrahim, M. A. A., Elkaliny, H. H., Abd-Elsalam, M. M. (2021). Lycopene ameliorates the effect of Aroclor 1254 on morphology, proliferation, and angiogenesis of the thyroid gland in rat. Toxicology, 452, 152722. [CrossRef]
  • 65. Köhrle, J. Selenium and the thyroid. (2013). Current Opinion in Endocrinology, Diabetes and Obesity, 20(5),441-448. [CrossRef]
  • 66. Winther, K.H., Rayman, M.P., Bonnema, S.J., Hegedüs, L. (2020). Selenium in thyroid disorders - essential knowledge for clinicians. In Nature Reviews Endocrinology, 16(3), 165-176. [CrossRef]
  • 67. Erkekoglu, P., Giray, B.K., Kizilgun, M., Hininger-Favier, I., Rachidi, W., Roussel, A.M., Favier, A., Hincal, F. (2012). Thyroidal effects of di-(2-ethylhexyl) phthalate in rats of different selenium status. Journal of Environmental Pathology, Toxicology and Oncology, 31(2),143-153. [CrossRef]
  • 68. da Silva, G.B., Yamauchi, M.A., Bagatini, M.D. (2022). Oxidative stress in Hashimoto's thyroiditis: possible adjuvant therapies to attenuate deleterious effects. Molecular and Cellular Biochemistry, 381 [CrossRef]
  • 69. Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Malevu, T.D., Sochor, J., Baron, M., Melcova, M., Zidkova, J., Kizek R. (2017). A summary of new findings on the biological effects of selenium in selected animal species-A critical review. International Journal of Molecular Sciences,18(10), 2209. [CrossRef]

TOXIC EFFECTS OF AROCLOR 1254 ON RAT HEART AND THYROID AND MODIFYING ROLE OF SELENIUM STATUS

Year 2023, , 408 - 419, 20.05.2023
https://doi.org/10.33483/jfpau.1217709

Abstract

Objective: Polychlorinated biphenyls (PCBs) were very widely used in industrial products in past. These chemicals were banned in the 1970s due to their toxic effects. PCBs can still affect human health, as they are persistent in the environment. Aroclor 1254 (A1254) is a commercial PCB congener which was used in electrical transformers, fluorescent lighting fixtures and old appliances such as televisions or refrigerators. In this study, we aimed to evaluate the toxic effects of A1254 on heart and thyroid in male Sprague-Dawley rats. In addition, the modifying role of selenium status was also evaluated.
Material and Method: 8-week-old male Sprague-Dawley (SD) rats were used in the experiment. The animals were separated randomly into 6 groups (n=6) as control; selenium supplemented (SeS); selenium deficient (SeD); A1254 exposed (A); selenium supplemented A1254 exposed (ASeS) and selenium deficient A1254 exposed (ASeD). A1254 was applied by gavage during the last 15 days of feeding period. Heart and thyroid weights and relative weights, plasma thyroid hormone levels, as well as thyroid and heart tissue oxidative/antioxidative parameters were evaluated.
Result and Discussion: Results showed that A1254 exposure and selenium deficiency caused oxidative stress on both heart and thyroid. Plasma fT3 and fT4 levels markedly changed in ASeD group. In conclusion, it can be stated that A1254 exposure can cause lead to oxidative/antioxidative imbalance in both thyroid and heart and can disrupt functioning of thyroid hormones. Selenium seems to have a modifying role in A1254 toxicity in both organs, the importance of which should be evaluated with further mechanistic experiments.

References

  • 1. Shmarakov, I.O., Lee, Y.J., Jiang, H., Blaner, W.S. (2019). Constitutive androstane receptor mediates PCB-induced disruption of retinoid homeostasis. Toxicology and Applied Pharmacology, 381, 114731. [CrossRef]
  • 2. Seyran, A., Erişir, M. Poli Klorlu Bifeniller ve Sağlık Üzerine Etkileri. (2008). Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi, 22(1), 33-40.
  • 3. Vorkamp, K. (2016). An overlooked environmental issue? A review of the inadvertent formation of PCB-11 and other PCB congeners and their occurrence in consumer products and in the environment. Science of the Total Environment, 541, 1463-1476. [CrossRef]
  • 4. Weber, R., Herold, C., Hollert, H., Kamphues, J., Blepp, M., Ballschmiter, K. (2018). Reviewing the relevance of dioxin and PCB sources for food from animal origin and the need for their inventory, control and management. In Environmental Sciences Europe, 30(1), 42.
  • 5. Chakraborty, P., Prithiviraj, B., Selvaraj, S., Kumar, B. (2016). Polychlorinated biphenyls in settled dust from informal electronic waste recycling workshops and nearby highways in urban centers and suburban industrial roadsides of Chennai city, India: Levels, congener profiles and exposure assessment. Science of the Total Environment, 573, 1413-1421. [CrossRef]
  • 6. Chakraborty, P., Khuman, S.N., Selvaraj, S., Sampath, S., Devi, N.L., Bang, J.J., Katsoyiannis, A. (2016). Polychlorinated biphenyls and organochlorine pesticides in River Brahmaputra from the outer Himalayan Range and River Hooghly emptying into the Bay of Bengal: Occurrence, sources and ecotoxicological risk assessment. Environmental Pollution, 219, 998-1006. [CrossRef]
  • 7. Devi, N.L., Yadav, I.C., Chakraborty, P., Shihua, Q. (2018). Polychlorinated biphenyls in surface soil from North-East India: Implication for sources apportionment and health-risk assessment. Archives of Environmental Contamination and Toxicology, 75(3), 377-389. [CrossRef]
  • 8. Alawi, M., Masaad, M., Al-Hussaini, M. (2018). Comparative study of persistent organic pollutant (POP) (chlorinated pesticides, PCBs, and dioxins/furans) concentrations in cancer-affected human organs with those of healthy organs. Environmental Monitoring and Assessment, 190(8), 470. [CrossRef]
  • 9. Du, S., Rodenburg, L., Patterson, N., Chu, C., Riker, C.D., Yu, C.H., Fan, Z. (Tina). (2020). Concentration of polychlorinated biphenyls in serum from New Jersey biomonitoring study: 2016-2018. Chemosphere, 261, 127730. [CrossRef]
  • 10. Raffetti, E., Speziani, F., Donato, F., Leonardi, L., Orizio, G., Scarcella, C., Apostoli, P., Magoni, M. (2017). Temporal trends of polychlorinated biphenyls serum levels in subjects living in a highly polluted area from 2003 to 2015: A follow-up study. International Journal of Hygiene and Environmental Health, 220(2), 461-467. [CrossRef]
  • 11. He, F., Zuo, L., Ward, E., Arciero, P.J. (2017). Serum polychlorinated biphenyls increase and oxidative stress decreases with a protein-pacing caloric restriction diet in obese men and women. International Journal of Environmental Research and Public Health, 14(1), 59. [CrossRef]
  • 12. Loch-Caruso, R. (2002). Uterine muscle as a potential target of polychlorinated biphenyls during pregnancy. International Journal of Hygiene and Environmental Health, 205, 121-130.
  • 13. Brouwer, A., Longnecker, M.P., Birnbaum, L.S., Cogliano, J., Kostyniak, P., Moore, J., Schantz, S., Winneke, G. (1999), Characterization of Potential Endocrine-Related Health Effects at Low-Dose Levels of Exposure to PCBs. Environmental Health Perspective, 107 Suppl 4(Suppl 4), 639-649. [CrossRef]
  • 14. Sánchez-Alonso, J.A., López-Aparicio, P., Recio, M.N., Pérez-Albarsanz, M.A. (2003). Apoptosis-mediated neurotoxic potential of a planar (PCB 77) and a nonplanar (PCB 153) polychlorinated biphenyl congeners in neuronal cell cultures. Toxicology Letters, 144(3), 337-349. [CrossRef]
  • 15. Tabb, M.M., Kholodovych, V., Grün, F., Zhou, C., Welsh, W.J., Blumberg, B. (2004). Highly chlorinated PCBs inhibit the human xenobiotic response mediated by the steroid and xenobiotic receptor (SXR). Environmental Health Perspectives, 112(2), 163-169. [CrossRef]
  • 16. Schuur, A.G., Brouwer, A., Ke Bergman, A., Coughtrie, M.W.H., Visser, T.J. (1998). Inhibition of thyroid hormone sulfation by hydroxylated metabolites of polychlorinated biphenyls. In Chemico-Biological Interactions, 109, 293-297. [CrossRef]
  • 17. Sergeev, A.V., Carpenter, D.O. (2011). Geospatial patterns of hospitalization rates for stroke with comorbid hypertension in relation to environmental sources of persistent organic pollutants: Results from a 12-year population-based study. Environmental Science and Pollution Research, 18(4), 576-585. [CrossRef]
  • 18. Hertz-Picciotto, I., Park, H.Y., Dostal, M., Kocan, A., Trnovec, T., Sram, R. (2008). Prenatal exposures to persistent and non-persistent organic compounds and effects on immune system development. Basic and Clinical Pharmacology and Toxicology, 102(2), 146-154. [CrossRef]
  • 19. Collins, W.T., Capen, C.C. (1980). Fine Structural Lesions and Hormonal Alterations in Thyroid Glands of Perinatal Rats Exposed in Utero and by the Milk to Polychlorinated Biphenyls. The American Journal of Pathology, 99(1),125-142.
  • 20. Gray, L.E. Jr, Ostby, J., Marshall, R., Andrews, J. (1993). Reproductive and thyroid effects of low-level polychlorinated biphenyl (Aroclor 1254) exposure. Fundamental and Applied Toxicology, 20(3), 288-294. [CrossRef]
  • 21. Giera, S., Bansal, R., Ortiz-Toro, T.M., Taub, D.G., Zoeller, R.T. (2011). Individual Polychlorinated Biphenyl (PCB) Congeners Produce Tissue- and Gene-Specific Effects on Thyroid Hormone Signaling during Development. Endocrinology, 152(7), 2909-2919. [CrossRef]
  • 22. Webb, C.M., McNabb, F.M.A. (2008). Polychlorinated biphenyl effects on avian hepatic enzyme induction and thyroid function. General and Comparative Endocrinology, 155(3), 650-657. [CrossRef]
  • 23. Salay, E., Garabrant, D. (2009). Polychlorinated biphenyls and thyroid hormones in adults: A systematic review appraisal of epidemiological studies. Chemosphere 74(11), 1413-1419. [CrossRef]
  • 24. Hansen, L.G. (1998). Stepping backward to improve assessment of PCB congener toxicities. Environmental Health Perspective, 106 Suppl 1(Suppl 1), 171-189. [CrossRef]
  • 25. Carpenter D.O. (2006). Polychlorinated biphenyls (PCBs): routes of exposure and effects on human health. Reviews on Environmental Health, 21(1), 1-23.[CrossRef]
  • 26. Kato, Y., Haraguchi, K., Shibahara, T., Masuda, Y., Kimura, R. (1998). Reduction of thyroid hormone levels by methylsulfonyl metabolites of polychlorinated biphenyl congeners in rats. Archives of Toxicology, 72, 541-544. [CrossRef]
  • 27. Kochman, J., Jakubczyk, K., Bargiel, P., Janda-Milczarek, K. (2021). The influence of oxidative stress on thyroid diseases. Antioxidants, 10(9), 1442. [CrossRef]
  • 28. Duntas, L.H., Stathatos, N. (2015). Toxic chemicals and thyroid function: hard facts and lateral thinking. In Reviews in Endocrine and Metabolic Disorders, 16(4), 311-318. [CrossRef]
  • 29. Åkesson, A., Donat-Vargas, C., Berglund, M., Glynn, A., Wolk, A., Kippler, M. (2019). Dietary exposure to polychlorinated biphenyls and risk of heart failure - A population-based prospective cohort study. Environment International, 126, 1-6. [CrossRef]
  • 30. Donat-Vargas, C., Moreno-Franco, B., Laclaustra, M., Sandoval-Insausti, H., Jarauta, E., Guallar-Castillon, P. (2020). Exposure to dietary polychlorinated biphenyls and dioxins, and its relationship with subclinical coronary atherosclerosis: The Aragon Workers’ Health Study. Environment International, 136, 105433. [CrossRef]
  • 31. Bergkvist, C., Berglund, M., Glynn, A., Julin, B., Wolk, A., Åkesson, A. (2016). Dietary exposure to polychlorinated biphenyls and risk of myocardial infarction in men - A population-based prospective cohort study. Environment International, 88, 9–14. [CrossRef]
  • 32. Rao, P., Kodavanti, S., Kannan, N., Yamashita, N., Derr-Yellin, E.C., Ward, T.R., Burgin, D.E., Tilson, H.A., Birnbaum, L.S. (2001). Differential effects of two lots of Aroclor 1254: Congener-specific analysis and neurochemical end points. International Environmental Health Perspectives, 109(11), 1153-1161. [CrossRef]
  • 33. Kaya, D., Imamoglu, I., Sanin, F.D., Payne, R.B., Sowers, K.R. (2017). Potential risk reduction of Aroclor 1254 by microbial dechlorination in anaerobic Grasse River sediment microcosms. Journal of Hazardous Materials, 321, 879-887. [CrossRef]
  • 34. Crofton, K.M., Kodavanti, P.R.S., Derr-Yellin, E.C., Casey, A.C., Kehn, L.S. (2000). PCBs, Thyroid Hormones, and Ototoxicity in Rats: Cross-Fostering Experiments Demonstrate the Impact of Postnatal Lactation Exposure. Toxicology Science, 57(1), 131-140. [CrossRef]
  • 35. Lehigh Shirey, E.A., Jelaso Langerveld, A., Mihalko, D., Ide, C.F. (2006). Polychlorinated biphenyl exposure delays metamorphosis and alters thyroid hormone system gene expression in developing Xenopus laevis. Environmental Research, 102(2), 205-214. [CrossRef]
  • 36. Li, M., Wang, X., Zhu, J., Zhu, S., Hu, X., Zhu, C., Guo, X., Yu, Z., Han, S. (2014). Toxic effects of polychlorinated biphenyls on cardiac development in zebrafish. Molecular Biology Reports, 41(12), 7973-7983. [CrossRef]
  • 37. Borlak, J., Thum, T. (2002). PCBs alter gene expression of nuclear transcription factors and other heart-specific genes in cultures of primary cardiomyocytes: possible implications for cardiotoxicity. Xenobiotica, 32(12), 1173-1183. [CrossRef]
  • 38. Gorini, F., Sabatino, L., Pingitore, A., Vassalle, C. (2021). Selenium: An element of life essential for thyroid function. Molecules, 26 (23), 7084. [CrossRef]
  • 39. Al-Mubarak, A.A., van der Meer, P., Bomer, N. (2021). Selenium, Selenoproteins, and Heart Failure: Current Knowledge and Future Perspective. Current Heart Failure Reports, 18(3),122-131. [CrossRef]
  • 40. Shimada, B.K., Alfulaij, N., Seale, L.A. (2021). The impact of selenium deficiency on cardiovascular function. International Journal of Molecular Sciences, 22(19), 10713. [CrossRef]
  • 41. Kielczykowska, M., Kocot, J., Pazdzior, M., Musik, I. (2018). Selenium - A fascinating antioxidant of protective properties. International Advances in Clinical and Experimental Medicine, 27(2), 245-255.
  • 42. Aebı, H., Wyss, S.R., Scherz, B., Skvarıl, F. (1974). Heterogeneity of Erythrocyte Catalase II: Isolation and Characterization of Normal and Variant Erythrocyte Catalase and Their Subunits. European Journal of Biochemistry, 48(1), 137-145. [CrossRef]
  • 43. Ramasarma, T., Rao, A.V.S., Devi, M.M., Omkumar, R.V., Bhagyashree, K.S., Bhat, S.V. (2015). New insights of superoxide dismutase inhibition of pyrogallol autoxidation. Molecular and Cellular Biochemistry, 400(1-2), 277-285. [CrossRef]
  • 44. Walker, J.M. (1994). The bicinchoninic acid (BCA) assay for protein quantitation. Methods in Molecular Biology, 32, 5-8. [CrossRef]
  • 45. Wang, C., Cui, R., Niu, C., Zhong, X., Zhu, Q., Ji, D., Li, X., Zhang, H., Liu, C., Zhou, L., Li, Y., Xu, G., Wei, Y. (2021). Low-dose PCB126 exposure disrupts cardiac metabolism and causes hypertrophy and fibrosis in mice. Environmental Pollution, 290, 118079. [CrossRef]
  • 46. Teixidó, E., Barenys, M., Piqué, E., Llobet, J.M., Gómez-Catalán, J. (2019). Cardiovascular effects of PCB 126 (3,3’,4,4’,5-pentachlorobiphenyl) in zebrafish embryos and impact of co-exposure to redox modulating chemicals. International Journal of Molecular Sciences, 20(5), 1065. [CrossRef]
  • 47. Brown, D.R., Clark, B.W., Garner, L.V.T., di Giulio, R.T. (2016). Embryonic cardiotoxicity of weak aryl hydrocarbon receptor agonists and CYP1A inhibitor fluoranthene in the Atlantic killifish (Fundulus heteroclitus). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 188, 45-51. [CrossRef]
  • 48. Incardona, J.P., Scholz, N.L. (2016). The influence of heart developmental anatomy on cardiotoxicity-based adverse outcome pathways in fish. International Aquatic Toxicology, 177, 515-525. [CrossRef]
  • 49. Brown, D.R., Clark, B.W., Garner, L.V.T., di Giulio, R.T. (2015). Zebrafish cardiotoxicity: the effects of CYP1A inhibition and AHR2 knockdown following exposure to weak aryl hydrocarbon receptor agonists. Environmental Science and Pollution Research, 22(11), 8329-8338. [CrossRef]
  • 50. Deng, P., Wang, C., Wahlang, B., Sexton, T., Morris, A.J., Hennig, B. (2020). Co-exposure to PCB126 and PFOS increases biomarkers associated with cardiovascular disease risk and liver injury in mice. Toxicology and Applied Pharmacology, 409, 115301. [CrossRef]
  • 51. Sallée, M., Dou, L., Cerini, C., Poitevin, S., Brunet, P., Burtey, S. (2014). The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: A new concept to understand cardiovascular complications of chronic kidney disease. International Toxins, 6(3), 934-949. [CrossRef]
  • 52. Arsenescu, V., Arsenescu, R.I., King, V., Swanson, H., Cassis, L.A. (2008). Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environmental Health Perspective, 116(6), 761-768. [CrossRef]
  • 53. Zhang, Z., Chang, C., Zhang, Y., Chai, Z., Li, J., Qiu, C. (2021). The association between serum selenium concentration and prognosis in patients with heart failure in a Chinese population. Scientific Reports, 11(1), 14533. [CrossRef]
  • 54. de Lorgeril, M., Salen, P. (2006). Selenium and antioxidant defenses as major mediators in the development of chronic heart failure. Heart Failure Reviews,11(1),13-17. [CrossRef]
  • 55. Burgin, D.E., Diliberto, J.J., Derr-Yellin, E.C., Kannan, N., Kodavanti, P.R.S., Birnbaum, L.S. (2001). Differential effects of two lots of Aroclor 1254 on enzyme induction, thyroid hormones, and oxidative stress. International Environmental Health Perspectives, 109(11), 1163-1168. [CrossRef]
  • 56. Abdelsalam, E.E.E., Bandouchova, H., Heger, T., Kanova, M., Kobelkova, K., Nemcova, M., Piacek, V., Sedlackova, J., Seidlova, V., Vitula, F., Pikula, J. (2020). Polychlorinated biphenyl toxicity in the thyroid gland of wild ungulates: An in vitro model. Acta Veterinaria Brno, 89(2), 151–162. [CrossRef]
  • 57. Fair, P.A., Peden-Adams, M.M., Mollenhauer, M.A.M., Bossart, G.D., Keil, D.E., White, N.D. (2021). Effects of an environmentally relevant PCB-mixture on immune function, clinical chemistry, and thyroid hormone levels in adult female B6C3F1 mice. Journal of Toxicology and Environmental Health - Part A: Current Issues, 84(7), 279-297. [CrossRef]
  • 58. Klaassen, C.D., Hood, A.M. (2001). Effects of microsomal enzyme inducers on thyroid follicular cell proliferation and thyroid hormone metabolism. International Toxicologic Pathology, 29(1). [CrossRef]
  • 59. Seldén, A.I., Lundholm, C., Johansson, N., Wingfors, H. (2008). Polychlorinated biphenyls (PCB), thyroid hormones and cytokines in construction workers removing old elastic sealants. International Archives of Occupational and Environmental Health, 82(1), 99-106. [CrossRef]
  • 60. LeRoy, K.D., Thomas, P., Khan, I.A. (2006). Thyroid hormone status of Atlantic croaker exposed to Aroclor 1254 and selected PCB congeners. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 144(3), 263-271. [CrossRef]
  • 61. Coimbra, A.M., Reis-Henriques, M.A., Darras, V.M. (2005). Circulating thyroid hormone levels and iodothyronine deiodinase activities in Nile tilapia (Oreochromis niloticus) following dietary exposure to Endosulfan and Aroclor 1254. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 141(1), 8-14. [CrossRef]
  • 62. Coimbra, A.M., Reis-Henriques, M.A. (2007). Tilapia larvae aroclor 1254 exposure: Effects on gonads and circulating thyroid hormones during adulthood. Bulletin of Environmental Contamination and Toxicology, 79(5), 488-493. [CrossRef]
  • 63. Takaguchi, K., Nishikawa, H., Mizukawa, H., Tanoue, R., Yokoyama, N., Ichii, O., Takiguchi, M., Nakayama, S.M.M., Ikenaka, Y., Kunisue, T., Ishizuka, M., Tanabe, S., Iwata, H., Nomiyama, K. (2019). Effects of PCB exposure on serum thyroid hormone levels in dogs and cats. Science of the Total Environment, 688, 1172-1183. [CrossRef]
  • 64. Ibrahim, M. A. A., Elkaliny, H. H., Abd-Elsalam, M. M. (2021). Lycopene ameliorates the effect of Aroclor 1254 on morphology, proliferation, and angiogenesis of the thyroid gland in rat. Toxicology, 452, 152722. [CrossRef]
  • 65. Köhrle, J. Selenium and the thyroid. (2013). Current Opinion in Endocrinology, Diabetes and Obesity, 20(5),441-448. [CrossRef]
  • 66. Winther, K.H., Rayman, M.P., Bonnema, S.J., Hegedüs, L. (2020). Selenium in thyroid disorders - essential knowledge for clinicians. In Nature Reviews Endocrinology, 16(3), 165-176. [CrossRef]
  • 67. Erkekoglu, P., Giray, B.K., Kizilgun, M., Hininger-Favier, I., Rachidi, W., Roussel, A.M., Favier, A., Hincal, F. (2012). Thyroidal effects of di-(2-ethylhexyl) phthalate in rats of different selenium status. Journal of Environmental Pathology, Toxicology and Oncology, 31(2),143-153. [CrossRef]
  • 68. da Silva, G.B., Yamauchi, M.A., Bagatini, M.D. (2022). Oxidative stress in Hashimoto's thyroiditis: possible adjuvant therapies to attenuate deleterious effects. Molecular and Cellular Biochemistry, 381 [CrossRef]
  • 69. Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Malevu, T.D., Sochor, J., Baron, M., Melcova, M., Zidkova, J., Kizek R. (2017). A summary of new findings on the biological effects of selenium in selected animal species-A critical review. International Journal of Molecular Sciences,18(10), 2209. [CrossRef]
There are 69 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Research Article
Authors

Aylin Balcı Özyurt 0000-0002-0060-271X

Gizem Özkemahlı 0000-0002-0750-2631

Ünzile Yaman This is me 0000-0002-4493-3684

Ali Aşcı 0000-0003-2866-0935

Murat Kızılgün 0000-0001-5551-4058

Pınar Erkekoğlu 0000-0003-4713-7672

Belma Koçer Gümüşel 0000-0003-4311-2291

Early Pub Date May 17, 2023
Publication Date May 20, 2023
Submission Date December 12, 2022
Acceptance Date January 28, 2023
Published in Issue Year 2023

Cite

APA Balcı Özyurt, A., Özkemahlı, G., Yaman, Ü., Aşcı, A., et al. (2023). TOXIC EFFECTS OF AROCLOR 1254 ON RAT HEART AND THYROID AND MODIFYING ROLE OF SELENIUM STATUS. Journal of Faculty of Pharmacy of Ankara University, 47(2), 408-419. https://doi.org/10.33483/jfpau.1217709
AMA Balcı Özyurt A, Özkemahlı G, Yaman Ü, Aşcı A, Kızılgün M, Erkekoğlu P, Koçer Gümüşel B. TOXIC EFFECTS OF AROCLOR 1254 ON RAT HEART AND THYROID AND MODIFYING ROLE OF SELENIUM STATUS. Ankara Ecz. Fak. Derg. May 2023;47(2):408-419. doi:10.33483/jfpau.1217709
Chicago Balcı Özyurt, Aylin, Gizem Özkemahlı, Ünzile Yaman, Ali Aşcı, Murat Kızılgün, Pınar Erkekoğlu, and Belma Koçer Gümüşel. “TOXIC EFFECTS OF AROCLOR 1254 ON RAT HEART AND THYROID AND MODIFYING ROLE OF SELENIUM STATUS”. Journal of Faculty of Pharmacy of Ankara University 47, no. 2 (May 2023): 408-19. https://doi.org/10.33483/jfpau.1217709.
EndNote Balcı Özyurt A, Özkemahlı G, Yaman Ü, Aşcı A, Kızılgün M, Erkekoğlu P, Koçer Gümüşel B (May 1, 2023) TOXIC EFFECTS OF AROCLOR 1254 ON RAT HEART AND THYROID AND MODIFYING ROLE OF SELENIUM STATUS. Journal of Faculty of Pharmacy of Ankara University 47 2 408–419.
IEEE A. Balcı Özyurt, G. Özkemahlı, Ü. Yaman, A. Aşcı, M. Kızılgün, P. Erkekoğlu, and B. Koçer Gümüşel, “TOXIC EFFECTS OF AROCLOR 1254 ON RAT HEART AND THYROID AND MODIFYING ROLE OF SELENIUM STATUS”, Ankara Ecz. Fak. Derg., vol. 47, no. 2, pp. 408–419, 2023, doi: 10.33483/jfpau.1217709.
ISNAD Balcı Özyurt, Aylin et al. “TOXIC EFFECTS OF AROCLOR 1254 ON RAT HEART AND THYROID AND MODIFYING ROLE OF SELENIUM STATUS”. Journal of Faculty of Pharmacy of Ankara University 47/2 (May 2023), 408-419. https://doi.org/10.33483/jfpau.1217709.
JAMA Balcı Özyurt A, Özkemahlı G, Yaman Ü, Aşcı A, Kızılgün M, Erkekoğlu P, Koçer Gümüşel B. TOXIC EFFECTS OF AROCLOR 1254 ON RAT HEART AND THYROID AND MODIFYING ROLE OF SELENIUM STATUS. Ankara Ecz. Fak. Derg. 2023;47:408–419.
MLA Balcı Özyurt, Aylin et al. “TOXIC EFFECTS OF AROCLOR 1254 ON RAT HEART AND THYROID AND MODIFYING ROLE OF SELENIUM STATUS”. Journal of Faculty of Pharmacy of Ankara University, vol. 47, no. 2, 2023, pp. 408-19, doi:10.33483/jfpau.1217709.
Vancouver Balcı Özyurt A, Özkemahlı G, Yaman Ü, Aşcı A, Kızılgün M, Erkekoğlu P, Koçer Gümüşel B. TOXIC EFFECTS OF AROCLOR 1254 ON RAT HEART AND THYROID AND MODIFYING ROLE OF SELENIUM STATUS. Ankara Ecz. Fak. Derg. 2023;47(2):408-19.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.