PROPERTIES OF IDEAL WOUND DRESSING
Year 2023,
, 1119 - 1131, 20.09.2023
Seçil Kaya
,
Serap Derman
Abstract
Objective: Many substances have been used for wound-burn treatment to date. Recent studies have focused not only on covering the wound but also on the production of dressings that will provide patient comfort at the highest level. This review mentions the types of dressings and the expected features of an ideal wound dressing. An ideal wound dressing should close the wound and protect against external factors such as microorganisms. It must have an appropriate absorption capacity for the exudate level in terms of not drying the wound. It should mimic healthy skin with mechanical strength and flexibility. Wound dressing is expected to accelerate healing by supporting cell proliferation and migration.
Result and Discussion: One or more of these features come to the fore when the patient's age and chronic diseases, wound depth, degree, and stage are considered. As a result, since many factors are influential in wound dressing selection, it is crucial to examine the properties of materials. Wound dressings should be developed by considering tissue debridement, infection control, moisture balance, and epithelization.
Supporting Institution
Council of Higher Education (YÖK) and Scientific and Technological Research Council of Turkey (TÜBITAK)
Project Number
100/2000 PhD scholarship and BİDEB 2211-C scholarship
Thanks
We appreciate the Council of Higher Education (YÖK) for 100/2000 PhD scholarship and the Scientific and Technological Research Council of Turkey (TÜBITAK) for BİDEB 2211-C scholarship.
References
- 1. Hwa, C., Bauer, E.A., Cohen, D.E. (2011). Skin biology. Dermatologic Therapy, 24(5), 464-470. [CrossRef]
- 2. Lai-Cheong, J.E., McGrath, J.A. (2013). Structure and function of skin, hair and nails. Medicine, 41(6), 317-320. [CrossRef]
- 3. Rodrigues, M., Kosaric, N., Bonham, C.A., Gurtner, G.C. (2019). Wound healing: A cellular perspective. Physiological Reviews, 99(1), 665-706. [CrossRef]
- 4. Dhivya, S., Padma, V.V., Santhini, E. (2015). Wound dressings-A review. BioMedicine, 5(4), 22. [CrossRef]
- 5. Homaeigohar, S., Boccaccini, A.R. (2020). Antibacterial biohybrid nanofibers for wound dressings. Acta Biomaterialia, 107, 25-49. [CrossRef]
- 6. Cañedo-Dorantes, L., Cañedo-Ayala, M. (2019). Skin acute wound healing: A comprehensive review. International Journal of Inflammation, 2019, 3706315. [CrossRef]
- 7. Gonzalez, A.C.D.O., Costa, T.F., Andrade, Z.D.A., Medrado, A.R.A.P. (2016). Wound healing-A literature review. Anais Brasileiros de Dermatologia, 91(5), 614-620. [CrossRef]
- 8. Zaman, H.U., Islam, J.M.M., Khan, M.A., Khan, R.A. (2011). Physico-mechanical properties of wound dressing material and its biomedical application. Journal of the Mechanical Behavior of Biomedical Materials, 4(7), 1369-1375. [CrossRef]
- 9. Parham, S., Kharazi, A.Z., Bakhsheshi-Rad, H.R., Kharaziha, M., Ismail, A.F., Sharif, S., Razzaghi, M., RamaKrishna, S., Berto, F. (2022). Antimicrobial synthetic and natural polymeric nanofibers as wound dressing: A review. Advanced Engineering Materials, 24(6), 2101460. [CrossRef]
- 10. Carta, T., Gawaziuk, J.P., Diaz-Abele, J., Liu, S., Jeschke, M., Logsetty, S. (2019). Properties of an ideal burn dressing: A survey of burn survivors and front-line burn healthcare providers. Burns, 45(2), 364-368. [CrossRef]
- 11. Nguyen, H.M., Le, T.T.N., Nguyen, A.T., Le, H.N.T., Pham, T.T. (2023). Biomedical materials for wound dressing: Recent advances and applications. RSC Advances, 13(8), 5509-5528. [CrossRef]
- 12. Rezvani Ghomi, E., Niazi, M., Ramakrishna, S. (2023). The evolution of wound dressings: From traditional to smart dressings. Polymers for Advanced Technologies, 34(2), 520-530. [CrossRef]
- 13. Ahmed, A., Boateng, J. (2020). Treatment of mixed infections in wounds. In: J. Boateng (Ed.), Therapeutic Dressings and Wound Healing Applications. (pp. 91-113), Wiley.
- 14. Jones, V., Grey, J.E., Harding, K.G. (2006). Wound dressings. Bmj, 332(7544), 777-780. [CrossRef]
- 15. Bianchera, A., Catanzano, O., Boateng, J., Elviri, L. (2020). The place of biomaterials in wound healing. In: J. Boateng (Ed.), Therapeutic Dressings and Wound Healing Applications, (pp. 337-366). Wiley. [CrossRef]
- 16. Chin, C.Y., Jalil, J., Ng, P.Y., Ng, S.F. (2018). Development and formulation of Moringa oleifera standardised leaf extract film dressing for wound healing application. Journal of ethnopharmacology, 212, 188-199. [CrossRef]
- 17. Li, M., Chen, J., Shi, M., Zhang, H., Ma, P.X., Guo, B. (2019). Electroactive anti-oxidant polyurethane elastomers with shape memory property as non-adherent wound dressing to enhance wound healing. Chemical Engineering Journal, 375, 121999. [CrossRef]
- 18. Contardi, M., Heredia-Guerrero, J.A., Guzman-Puyol, S., Summa, M., Benítez, J.J., Goldoni, L., Caputo, G., Cusimano, G., Picone, P., Di Carlo, M. (2019). Combining dietary phenolic antioxidants with polyvinylpyrrolidone: Transparent biopolymer films based on p-coumaric acid for controlled release. Journal of Materials Chemistry B., 7(9), 1384-1396. [CrossRef]
- 19. Yasuda, K., Ogushi, M., Nakashima, A., Nakano, Y., Suzuki, K. (2018). Accelerated wound healing on the skin using a film dressing with β-glucan paramylon. In vivo, 32(4), 799-805. [CrossRef]
- 20. Forni, C., D'Alessandro, F., Gallerani, P., Genco, R., Bolzon, A., Bombino, C., Mini, S., Rocchegiani, L., Notarnicola, T., Vitulli, A. (2018). Effectiveness of using a new polyurethane foam multi‐layer dressing in the sacral area to prevent the onset of pressure ulcer in the elderly with hip fractures: A pragmatic randomised controlled trial. International Wound Journal, 15(3), 383-390. [CrossRef]
- 21. Namviriyachote, N., Lipipun, V., Akkhawattanangkul, Y., Charoonrut, P., Ritthidej, G.C. (2019). Development of polyurethane foam dressing containing silver and asiaticoside for healing of dermal wound. Asian Journal of Pharmaceutical Sciences, 14(1), 63-77. [CrossRef]
- 22. Chaganti, P., Gordon, I., Chao, J.H., Zehtabchi, S. (2019). A systematic review of foam dressings for partial thickness burns. The American Journal of Emergency Medicine, 37(6), 1184-1190. [CrossRef]
- 23. Shitole, A.A., Raut, P., Giram, P., Rade, P., Khandwekar, A., Garnaik, B., Sharma, N. (2020). Poly (vinylpyrrolidone)‑iodine engineered poly (ε-caprolactone) nanofibers as potential wound dressing materials. Materials Science and Engineering: C., 110, 110731. [CrossRef]
- 24. Yu, D.G., Wang, M., Li, X., Liu, X., Zhu, L.M., Annie Bligh, S.W. (2020). Multifluid electrospinning for the generation of complex nanostructures. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 12(3), e1601. [CrossRef]
- 25. Yang, J., Wang, K., Yu, D.G., Yang, Y., Bligh, S.W.A., Williams, G.R. (2020). Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Materials Science and Engineering: C, 110805. [CrossRef]
- 26. Behrens, A.M., Casey, B.J., Sikorski, M.J., Wu, K.L., Tutak, W., Sandler, A.D., Kofinas, P. (2014). In situ deposition of PLGA nanofibers via solution blow spinning. ACS Macro Letters, 3(3), 249-254. [CrossRef]
- 27. Gao, Y., Xiang, H.-F., Wang, X.X., Yan, K., Liu, Q., Li, X., Liu, R.Q., Yu, M., Long, Y.Z. (2020). A portable solution blow spinning device for minimally invasive surgery hemostasis. Chemical Engineering Journal, 387, 124052. [CrossRef]
- 28. Chen, K., Hu, H., Zeng, Y., Pan, H., Wang, S., Zhang, Y., Shi, L., Tan, G., Pan, W., Liu, H. (2022). Recent advances in electrospun nanofibers for wound dressing. European Polymer Journal, 111490. [CrossRef]
- 29. Ghomi, E.R., Khosravi, F., Neisiany, R.E., Shakiba, M., Zare, M., Lakshminarayanan, R., Chellappan, V., Abdouss, M., Ramakrishna, S. (2022). Advances in electrospinning of aligned nanofiber scaffolds used for wound dressings. Current Opinion in Biomedical Engineering, 100393. [CrossRef]
- 30. Tabriz, A.G., Douroumis, D., Boateng, J. (2020). 3D printed scaffolds for wound healing and tissue regeneration. Therapeutic Dressings and Wound Healing Applications, 385-398. [CrossRef]
- 31. Maver, T., Smrke, D., Kurečič, M., Gradišnik, L., Maver, U., Kleinschek, K.S. (2018). Combining 3D printing and electrospinning for preparation of pain-relieving wound-dressing materials. Journal of Sol-Gel Science and Technology, 88(1), 33-48. [CrossRef]
- 32. Long, J., Etxeberria, A.E., Nand, A.V., Bunt, C.R., Ray, S., Seyfoddin, A. (2019). A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Materials Science and Engineering: C, 104, 109873. [CrossRef]
- 33. Radmanesh, S., Shabangiz, S., Koupaei, N., Hassanzadeh-Tabrizi, S.A. (2022). 3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: A review. Journal of Polymer Research, 29(2), 50. [CrossRef]
- 34. Ahmed, A., Niazi, M.B.K., Jahan, Z., Ahmad, T., Hussain, A., Pervaiz, E., Janjua, H.A., Hussain, Z. (2020). In-vitro and in-vivo study of superabsorbent PVA/Starch/g-C3N4/Ag@ TiO2 NPs hydrogel membranes for wound dressing. European Polymer Journal, 130, 109650. [CrossRef]
- 35. He, J., Shi, M., Liang, Y., Guo, B. (2020). Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chemical Engineering Journal, 394, 124888. [CrossRef]
- 36. Gupta, A., Briffa, S.M., Swingler, S., Gibson, H., Kannappan, V., Adamus, G., Kowalczuk, M., Martin, C., Radecka, I. (2020). Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications. Biomacromolecules, 21(5), 1802-1811. [CrossRef]
- 37. Wei, D., Zhu, J., Luo, L., Huang, H., Li, L., Yu, X. (2020). Fabrication of poly (vinyl alcohol)-graphene oxide-polypyrrole composite hydrogel for elastic supercapacitors. Journal of Materials Science, 55, 11779-11791. [CrossRef]
- 38. Zhang, M., Chen, S., Zhong, L., Wang, B., Wang, H., Hong, F. (2020). Zn2+-loaded TOBC nanofiber-reinforced biomimetic calcium alginate hydrogel for antibacterial wound dressing. International Journal of Biological Macromolecules, 143, 235-242. [CrossRef]
- 39. Nešović, K., Janković, A., Radetić, T., Vukašinović-Sekulić, M., Kojić, V., Živković, L., Perić-Grujić, A., Rhee, K.Y., Mišković-Stanković, V. (2019). Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles-In vitro study. European Polymer Journal, 121, 109257. [CrossRef]
- 40. Zeng, Z., Zhu, M., Chen, L., Zhang, Y., Lu, T., Deng, Y., Ma, W., Xu, J., Huang, C., Xiong, R. (2022). Design the molecule structures to achieve functional advantages of hydrogel wound dressings: Advances and strategies. Composites Part B: Engineering, 110313. [CrossRef]
- 41. Sun, X., Jia, P., Zhang, H., Dong, M., Wang, J., Li, L., Bu, T., Wang, X., Wang, L., Lu, Q., Wang, J. (2022). Green regenerative hydrogel wound dressing functionalized by natural drug‐food homologous small molecule self‐assembled nanospheres. Advanced Functional Materials, 32(7), 2106572. [CrossRef]
- 42. Morgado, P.I., Lisboa, P.F., Ribeiro, M.P., Miguel, S.P., Simões, P.C., Correia, I.J., Aguiar-Ricardo, A. (2014). Poly (vinyl alcohol)/chitosan asymmetrical membranes: Highly controlled morphology toward the ideal wound dressing. Journal of Membrane Science, 469, 262-271. [CrossRef]
- 43. Zarrintaj, P., Moghaddam, A.S., Manouchehri, S., Atoufi, Z., Amiri, A., Amirkhani, M.A., Nilforoushzadeh, M.A., Saeb, M.R., Hamblin, M.R., Mozafari, M. (2017). Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine, 12(19), 2403-2422. [CrossRef]
- 44. Harries, R.L., Bosanquet, D.C., Harding, K.G. (2016). Wound bed preparation: TIME for an update. International Wound Journal, 13(S3), 8-14. [CrossRef]
- 45. Ousey, K., Gilchrist, B., James, H. (2018). Understanding clinical practice challenges: A survey performed with wound care clinicians to explore wound assessment frameworks. Wounds International, 9(4), 58-62.
- 46. Peng, W., Li, D., Dai, K., Wang, Y., Song, P., Li, H., Tang, P., Zhang, Z., Li, Z., Zhou, Y., Zhou, C. (2022). Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. International Journal of Biological Macromolecules, 208, 400-408. [CrossRef]
- 47. Evranos, B., Aycan, D., Alemdar, N. (2019). Production of ciprofloxacin loaded chitosan/gelatin/bone ash wound dressing with improved mechanical properties. Carbohydrate Polymers, 222, 115007. [CrossRef]
- 48. Hughes, J., Thomas, R., Byun, Y., Whiteside, S. (2012). Improved flexibility of thermally stable poly-lactic acid (PLA). Carbohydrate Polymers, 88(1), 165-172. [CrossRef]
- 49. Jahandari, S., Li, J., Saberian, M., Shahsavarigoughari, M. (2017). Experimental study of the effects of geogrids on elasticity modulus, brittleness, strength, and stress-strain behavior of lime stabilized kaolinitic clay. GeoResJ, 13, 49-58. [CrossRef]
- 50. Ma, R., Wang, Y., Qi, H., Shi, C., Wei, G., Xiao, L., Huang, Z., Liu, S., Yu, H., Teng, C. (2019). Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: In vitro and in vivo evaluation. Composites Part B: Engineering, 167, 396-405. [CrossRef]
- 51. Feng, Y., Li, X., Zhang, Q., Yan, S., Guo, Y., Li, M., You, R. (2019). Mechanically robust and flexible silk protein/polysaccharide composite sponges for wound dressing. Carbohydrate polymers, 216, 17-24. [CrossRef]
- 52. Srivastava, C.M., Purwar, R., Kannaujia, R., Sharma, D. (2015). Flexible silk fibroin films for wound dressing. Fibers and Polymers, 16(5), 1020-1030. [CrossRef]
- 53. Foam Lite™ ConvaTec Web site. (2023). From https://www.convatec.co.uk/wound-skin/foam-lite-convatec/application/#. Accessed date: 18.01.2023.
- 54. Jørgensen, B., Friis, G.J., Gottrup, F. (2006). Pain and quality of life for patients with venous leg ulcers: proof of concept of the efficacy of Biatain®‐Ibu, a new pain reducing wound dressing. Wound Repair and Regeneration, 14(3), 233-239. [CrossRef]
- 55. de Oca Durán, E.M., Medina, M.A.R., Ayala, A.R., Ortiz, J.A.R. (2016). Case report: Deep neck abscess and mediastinitis with exposed carotid sheath treated with vacuum assisted closure. International Journal of Surgery Open, 5, 20-22. [CrossRef]
- 56. Wound Source Web site. (2022). From https://www.woundsource.com/product/acticoat-flex-3. Accessed date: 07.01.2023.
- 57. Daristotle, J.L., Lau, L.W., Erdi, M., Hunter, J., Djoum Jr, A., Srinivasan, P., Wu, X., Basu, M., Ayyub, O.B., Sandler, A.D. (2020). Sprayable and biodegradable, intrinsically adhesive wound dressing with antimicrobial properties. Bioengineering & Translational Medicine, 5(1), e10149. [CrossRef]
- 58. Yang, M., Ward, J., Choy, K.L. (2020). Nature‐Inspired Bacterial Cellulose/Methylglyoxal (BC/MGO) Nanocomposite for Broad‐Spectrum Antimicrobial Wound Dressing. Macromolecular Bioscience, 20(8), 2000070. [CrossRef]
- 59. Simões, D., Miguel, S.P., Ribeiro, M.P., Coutinho, P., Mendonça, A.G., Correia, I.J. (2018). Recent advances on antimicrobial wound dressing: A review. European Journal of Pharmaceutics and Biopharmaceutics, 127, 130-141. [CrossRef]
- 60. Sinha, M., Banik, R.M., Haldar, C., Maiti, P. (2013). Development of ciprofloxacin hydrochloride loaded poly (ethylene glycol)/chitosan scaffold as wound dressing. Journal of Porous Materials, 20, 799-807. [CrossRef]
- 61. Pawar, H.V., Tetteh, J., Boateng, J.S. (2013). Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids and Surfaces B: Biointerfaces, 102, 102-110. [CrossRef]
- 62. Stinner, D.J., Noel, S.P., Haggard, W.O., Watson, J.T., Wenke, J.C. (2010). Local antibiotic delivery using tailorable chitosan sponges: The future of infection control? Journal of Orthopaedic Trauma, 24(9), 592-597. [CrossRef]
- 63. Mirani, B., Pagan, E., Currie, B., Siddiqui, M.A., Hosseinzadeh, R., Mostafalu, P., Zhang, Y.S., Ghahary, A., Akbari, M. (2017). An advanced multifunctional hydrogel‐based dressing for wound monitoring and drug delivery. Advanced Healthcare Materials, 6(19), 1700718. [CrossRef]
- 64. BAND-AID® Brand INFECTION DEFENSE™ Large Antibiotic Wound Covers Web Site (2023). from https://www.band-aid.com/products/adhesive-bandages/infection-defense-antibiotic-large-wound-covers. Accessed date: 01.05.2023.
- 65. Kenawy, E., Omer, A., Tamer, T., Elmeligy, M., Eldin, M.M. (2019). Fabrication of biodegradable gelatin/chitosan/cinnamaldehyde crosslinked membranes for antibacterial wound dressing applications. International Journal of Biological Macromolecules, 139, 440-448. [CrossRef]
- 66. Dong, W.H., Liu, J.X., Mou, X.J., Liu, G.S., Huang, X.W., Yan, X., Ning, X., Russell, S.J., Long, Y.Z. (2020). Performance of polyvinyl pyrrolidone-isatis root antibacterial wound dressings produced in situ by handheld electrospinner. Colloids and Surfaces B: Biointerfaces, 188, 110766. [CrossRef]
- 67. Anand, S., Deighton, M., Livanos, G., Morrison, P.D., Pang, E.C., Mantri, N. (2019). Antimicrobial activity of Agastache honey and characterization of its bioactive compounds in comparison with important commercial honeys. Frontiers in Microbiology, 10, 263. [CrossRef]
- 68. Ullah, A., Ullah, S., Khan, M.Q., Hashmi, M., Nam, P.D., Kato, Y., Tamada, Y., Kim, I.S. (2020). Manuka honey incorporated cellulose acetate nanofibrous mats: Fabrication and in vitro evaluation as a potential wound dressing. International Journal of Biological Macromolecules, 155, 479-489. [CrossRef]
- 69. Manuka Honey Dressing For Ulcers Web site. (2023). From https://www.roosinmedical.com/manuka-honey-gauze/62809403.html. Accessed date: 03.02.2023.
- 70. Hundeshagen, G., Collins, V.N., Wurzer, P., Sherman, W., Voigt, C.D., Cambiaso-Daniel, J., Nunez Lopez, O., Sheaffer, J., Herndon, D.N., Finnerty, C.C. (2018). A prospective, randomized, controlled trial comparing the outpatient treatment of pediatric and adult partial-thickness burns with Suprathel or Mepilex Ag. Journal of Burn Care & Research, 39(2), 261-267. [CrossRef]
- 71. Ovington, L.G. (2007). Advances in wound dressings. Clinics in Dermatology, 25(1), 33-38. [CrossRef]
- 72. Qu, J., Zhao, X., Liang, Y., Xu, Y., Ma, P.X., Guo, B. (2019). Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chemical Engineering Journal, 362, 548-560. [CrossRef]
- 73. Capanema, N.S., Mansur, A.A., de Jesus, A.C., Carvalho, S.M., de Oliveira, L.C., Mansur, H.S. (2018). Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International Journal of Biological Macromolecules, 106, 1218-1234. [CrossRef]
- 74. Mutlu, G., Calamak, S., Ulubayram, K., Guven, E. (2018). Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material. Journal of Drug Delivery Science and Technology, 43, 185-193. [CrossRef]
- 75. Çay, A., Miraftab, M., Kumbasar, E.P.A. (2014). Characterization and swelling performance of physically stabilized electrospun poly (vinyl alcohol)/chitosan nanofibres. European Polymer Journal, 61, 253-262. [CrossRef]
- 76. Anjum, S., Arora, A., Alam, M., Gupta, B. (2016). Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. International Journal of Pharmaceutics, 508(1-2), 92-101. [CrossRef]
- 77. Kleintjes, W.G., Schoeman, D., Collier, L. (2017). A pilot study of Cutimed® Sorbact® versus ACTICOAT™ versus Silverlon® for the treatment of burn wounds in a South African adult burn unit: Wound caare/stoma care. Professional Nursing Today, 21(3), 36-44.
- 78. Braunberger, T.L., Fatima, S., Vellaichamy, G., Nahhas, A.F., Parks-Miller, A., Hamzavi, I.H. (2018). Dress for Success: A Review of Dressings and Wound Care in Hidradenitis Suppurativa. Current Dermatology Reports, 7(4), 269-277. [CrossRef]
- 79. Glover, D. (2013). The Wound Dressing Maze: Selection Made Easy. Dermatological Nursing, 12(4), 29-34.
- 80. Baba, A., Matsushita, S., Kitayama, K., Asakura, T., Sezutsu, H., Tanimoto, A., Kanekura, T. (2019). Silk fibroin produced by transgenic silkworms overexpressing the Arg‐Gly‐Asp motif accelerates cutaneous wound healing in mice. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(1), 97-103. [CrossRef]
- 81. Konop, M., Czuwara, J., Kłodzińska, E., Laskowska, A.K., Sulejczak, D., Damps, T., Zielenkiewicz, U., Brzozowska, I., Sureda, A., Kowalkowski, T. (2020). Evaluation of keratin biomaterial containing silver nanoparticles as a potential wound dressing in full‐thickness skin wound model in diabetic mice. Journal of Tissue Engineering and Regenerative Medicine, 14(2), 334-346. [CrossRef]
- 82. Eğri, Ö., Erdemir, N., Gevrek, F. (2020). Effect of H. perforatum oil containing membranes on the second degree burn wounds in rats. Materials Today Communications, 24, 100954. [CrossRef]
- 83. Ousey, K., Rogers, A. A., Rippon, M. G. (2016). HydroClean® plus: A new perspective to wound cleansing and debridement. Wounds UK, 12(1), 78-87.
- 84. Ren, J., Yang, M., Chen, J., Ma, S., Wang, N. (2020). Anti-inflammatory and wound healing potential of kirenol in diabetic rats through the suppression of inflammatory markers and matrix metalloproteinase expressions. Biomedicine & Pharmacotherapy, 129, 110475. [CrossRef]
- 85. Chopra, H., Kumar, S., Singh, I. (2022). Strategies and therapies for wound healing: A review. Current Drug Targets, 23(1), 87-98. [CrossRef]
- 86. Tan, C., Yuan, Z., Xu, F., Xie, X. (2022). Electrospun cellulose acetate wound dressings loaded with Pramipexole for diabetic wound healing: An in vitro and in vivo study. Cellulose, 29(6), 3407-3422. [CrossRef]
- 87. Minsart, M., Van Vlierberghe, S., Dubruel, P., Mignon, A. (2022). Commercial wound dressings for the treatment of exuding wounds: An in-depth physico-chemical comparative study. Burns & Trauma, 10, tkac024. [CrossRef]
- 88. Hemamalini, T., Vrishni Ritvic, J., Premitha, R., Divya Dharshini, A.K., Giri Dev, V.R. (2022). Facile and cost-effective development of silver based cellulosic wound dressing using electrospraying process. Journal of Natural Fibers, 19(14), 7436-7444. [CrossRef]
- 89. Li, H., Dai, J., Yi, X., Cheng, F. (2022). Generation of cost-effective MXene@ polydopamine-decorated chitosan nanofibrous wound dressing for promoting wound healing. Biomaterials Advances, 140, 213055. [CrossRef]
İDEAL YARA ÖRTÜSÜNÜN ÖZELLİKLERİ
Year 2023,
, 1119 - 1131, 20.09.2023
Seçil Kaya
,
Serap Derman
Abstract
Amaç: Yara ve yanık tedavisinde günümüze kadar birçok madde kullanılmıştır. Son yıllardaki çalışmalar yaranın yalnızca kapatılmasına değil hasta konforunu en üst düzeyde tutacak malzemelerin üretilmesine de odaklanmaktadır. Bu derleme makalesinde yara örtüsü türlerinden ve ideal bir yara örtüsünden beklenen özelliklerden bahsedilmektedir. İdeal bir yara örtüsü yarayı kapatmalı, yarayı dış faktörlerden ve mikroorganizmalardan korumalıdır. Yarayı kurutmaması açısından eksuda düzeyine uygun emilim kapasitesine sahip olmalıdır. Mekanik mukavemet ve esneklik konusunda sağlıklı cildi taklit etmelidir. Yara örtüsünün hücre çoğalmasını ve göçünü destekleyerek iyileşme sürecini hızlandırması beklenmektedir.
Sonuç ve Tartışma: Hastanın yaşı ve kronik hastalıkları, yaranın derinliği, derecesi ve evresi dikkate alındığında bu özelliklerden bir veya birkaçı ön plana çıkmaktadır. Sonuç olarak yara örtüsü seçiminde pek çok faktör etkili olduğu için malzemelerin özelliklerinin incelenmesi büyük önem taşımaktadır. Yara pansumanları doku debridmanı, enfeksiyon kontrolü, nem dengesi ve epitelizasyon dikkate alınarak geliştirilmelidir.
Project Number
100/2000 PhD scholarship and BİDEB 2211-C scholarship
References
- 1. Hwa, C., Bauer, E.A., Cohen, D.E. (2011). Skin biology. Dermatologic Therapy, 24(5), 464-470. [CrossRef]
- 2. Lai-Cheong, J.E., McGrath, J.A. (2013). Structure and function of skin, hair and nails. Medicine, 41(6), 317-320. [CrossRef]
- 3. Rodrigues, M., Kosaric, N., Bonham, C.A., Gurtner, G.C. (2019). Wound healing: A cellular perspective. Physiological Reviews, 99(1), 665-706. [CrossRef]
- 4. Dhivya, S., Padma, V.V., Santhini, E. (2015). Wound dressings-A review. BioMedicine, 5(4), 22. [CrossRef]
- 5. Homaeigohar, S., Boccaccini, A.R. (2020). Antibacterial biohybrid nanofibers for wound dressings. Acta Biomaterialia, 107, 25-49. [CrossRef]
- 6. Cañedo-Dorantes, L., Cañedo-Ayala, M. (2019). Skin acute wound healing: A comprehensive review. International Journal of Inflammation, 2019, 3706315. [CrossRef]
- 7. Gonzalez, A.C.D.O., Costa, T.F., Andrade, Z.D.A., Medrado, A.R.A.P. (2016). Wound healing-A literature review. Anais Brasileiros de Dermatologia, 91(5), 614-620. [CrossRef]
- 8. Zaman, H.U., Islam, J.M.M., Khan, M.A., Khan, R.A. (2011). Physico-mechanical properties of wound dressing material and its biomedical application. Journal of the Mechanical Behavior of Biomedical Materials, 4(7), 1369-1375. [CrossRef]
- 9. Parham, S., Kharazi, A.Z., Bakhsheshi-Rad, H.R., Kharaziha, M., Ismail, A.F., Sharif, S., Razzaghi, M., RamaKrishna, S., Berto, F. (2022). Antimicrobial synthetic and natural polymeric nanofibers as wound dressing: A review. Advanced Engineering Materials, 24(6), 2101460. [CrossRef]
- 10. Carta, T., Gawaziuk, J.P., Diaz-Abele, J., Liu, S., Jeschke, M., Logsetty, S. (2019). Properties of an ideal burn dressing: A survey of burn survivors and front-line burn healthcare providers. Burns, 45(2), 364-368. [CrossRef]
- 11. Nguyen, H.M., Le, T.T.N., Nguyen, A.T., Le, H.N.T., Pham, T.T. (2023). Biomedical materials for wound dressing: Recent advances and applications. RSC Advances, 13(8), 5509-5528. [CrossRef]
- 12. Rezvani Ghomi, E., Niazi, M., Ramakrishna, S. (2023). The evolution of wound dressings: From traditional to smart dressings. Polymers for Advanced Technologies, 34(2), 520-530. [CrossRef]
- 13. Ahmed, A., Boateng, J. (2020). Treatment of mixed infections in wounds. In: J. Boateng (Ed.), Therapeutic Dressings and Wound Healing Applications. (pp. 91-113), Wiley.
- 14. Jones, V., Grey, J.E., Harding, K.G. (2006). Wound dressings. Bmj, 332(7544), 777-780. [CrossRef]
- 15. Bianchera, A., Catanzano, O., Boateng, J., Elviri, L. (2020). The place of biomaterials in wound healing. In: J. Boateng (Ed.), Therapeutic Dressings and Wound Healing Applications, (pp. 337-366). Wiley. [CrossRef]
- 16. Chin, C.Y., Jalil, J., Ng, P.Y., Ng, S.F. (2018). Development and formulation of Moringa oleifera standardised leaf extract film dressing for wound healing application. Journal of ethnopharmacology, 212, 188-199. [CrossRef]
- 17. Li, M., Chen, J., Shi, M., Zhang, H., Ma, P.X., Guo, B. (2019). Electroactive anti-oxidant polyurethane elastomers with shape memory property as non-adherent wound dressing to enhance wound healing. Chemical Engineering Journal, 375, 121999. [CrossRef]
- 18. Contardi, M., Heredia-Guerrero, J.A., Guzman-Puyol, S., Summa, M., Benítez, J.J., Goldoni, L., Caputo, G., Cusimano, G., Picone, P., Di Carlo, M. (2019). Combining dietary phenolic antioxidants with polyvinylpyrrolidone: Transparent biopolymer films based on p-coumaric acid for controlled release. Journal of Materials Chemistry B., 7(9), 1384-1396. [CrossRef]
- 19. Yasuda, K., Ogushi, M., Nakashima, A., Nakano, Y., Suzuki, K. (2018). Accelerated wound healing on the skin using a film dressing with β-glucan paramylon. In vivo, 32(4), 799-805. [CrossRef]
- 20. Forni, C., D'Alessandro, F., Gallerani, P., Genco, R., Bolzon, A., Bombino, C., Mini, S., Rocchegiani, L., Notarnicola, T., Vitulli, A. (2018). Effectiveness of using a new polyurethane foam multi‐layer dressing in the sacral area to prevent the onset of pressure ulcer in the elderly with hip fractures: A pragmatic randomised controlled trial. International Wound Journal, 15(3), 383-390. [CrossRef]
- 21. Namviriyachote, N., Lipipun, V., Akkhawattanangkul, Y., Charoonrut, P., Ritthidej, G.C. (2019). Development of polyurethane foam dressing containing silver and asiaticoside for healing of dermal wound. Asian Journal of Pharmaceutical Sciences, 14(1), 63-77. [CrossRef]
- 22. Chaganti, P., Gordon, I., Chao, J.H., Zehtabchi, S. (2019). A systematic review of foam dressings for partial thickness burns. The American Journal of Emergency Medicine, 37(6), 1184-1190. [CrossRef]
- 23. Shitole, A.A., Raut, P., Giram, P., Rade, P., Khandwekar, A., Garnaik, B., Sharma, N. (2020). Poly (vinylpyrrolidone)‑iodine engineered poly (ε-caprolactone) nanofibers as potential wound dressing materials. Materials Science and Engineering: C., 110, 110731. [CrossRef]
- 24. Yu, D.G., Wang, M., Li, X., Liu, X., Zhu, L.M., Annie Bligh, S.W. (2020). Multifluid electrospinning for the generation of complex nanostructures. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 12(3), e1601. [CrossRef]
- 25. Yang, J., Wang, K., Yu, D.G., Yang, Y., Bligh, S.W.A., Williams, G.R. (2020). Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Materials Science and Engineering: C, 110805. [CrossRef]
- 26. Behrens, A.M., Casey, B.J., Sikorski, M.J., Wu, K.L., Tutak, W., Sandler, A.D., Kofinas, P. (2014). In situ deposition of PLGA nanofibers via solution blow spinning. ACS Macro Letters, 3(3), 249-254. [CrossRef]
- 27. Gao, Y., Xiang, H.-F., Wang, X.X., Yan, K., Liu, Q., Li, X., Liu, R.Q., Yu, M., Long, Y.Z. (2020). A portable solution blow spinning device for minimally invasive surgery hemostasis. Chemical Engineering Journal, 387, 124052. [CrossRef]
- 28. Chen, K., Hu, H., Zeng, Y., Pan, H., Wang, S., Zhang, Y., Shi, L., Tan, G., Pan, W., Liu, H. (2022). Recent advances in electrospun nanofibers for wound dressing. European Polymer Journal, 111490. [CrossRef]
- 29. Ghomi, E.R., Khosravi, F., Neisiany, R.E., Shakiba, M., Zare, M., Lakshminarayanan, R., Chellappan, V., Abdouss, M., Ramakrishna, S. (2022). Advances in electrospinning of aligned nanofiber scaffolds used for wound dressings. Current Opinion in Biomedical Engineering, 100393. [CrossRef]
- 30. Tabriz, A.G., Douroumis, D., Boateng, J. (2020). 3D printed scaffolds for wound healing and tissue regeneration. Therapeutic Dressings and Wound Healing Applications, 385-398. [CrossRef]
- 31. Maver, T., Smrke, D., Kurečič, M., Gradišnik, L., Maver, U., Kleinschek, K.S. (2018). Combining 3D printing and electrospinning for preparation of pain-relieving wound-dressing materials. Journal of Sol-Gel Science and Technology, 88(1), 33-48. [CrossRef]
- 32. Long, J., Etxeberria, A.E., Nand, A.V., Bunt, C.R., Ray, S., Seyfoddin, A. (2019). A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Materials Science and Engineering: C, 104, 109873. [CrossRef]
- 33. Radmanesh, S., Shabangiz, S., Koupaei, N., Hassanzadeh-Tabrizi, S.A. (2022). 3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: A review. Journal of Polymer Research, 29(2), 50. [CrossRef]
- 34. Ahmed, A., Niazi, M.B.K., Jahan, Z., Ahmad, T., Hussain, A., Pervaiz, E., Janjua, H.A., Hussain, Z. (2020). In-vitro and in-vivo study of superabsorbent PVA/Starch/g-C3N4/Ag@ TiO2 NPs hydrogel membranes for wound dressing. European Polymer Journal, 130, 109650. [CrossRef]
- 35. He, J., Shi, M., Liang, Y., Guo, B. (2020). Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chemical Engineering Journal, 394, 124888. [CrossRef]
- 36. Gupta, A., Briffa, S.M., Swingler, S., Gibson, H., Kannappan, V., Adamus, G., Kowalczuk, M., Martin, C., Radecka, I. (2020). Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications. Biomacromolecules, 21(5), 1802-1811. [CrossRef]
- 37. Wei, D., Zhu, J., Luo, L., Huang, H., Li, L., Yu, X. (2020). Fabrication of poly (vinyl alcohol)-graphene oxide-polypyrrole composite hydrogel for elastic supercapacitors. Journal of Materials Science, 55, 11779-11791. [CrossRef]
- 38. Zhang, M., Chen, S., Zhong, L., Wang, B., Wang, H., Hong, F. (2020). Zn2+-loaded TOBC nanofiber-reinforced biomimetic calcium alginate hydrogel for antibacterial wound dressing. International Journal of Biological Macromolecules, 143, 235-242. [CrossRef]
- 39. Nešović, K., Janković, A., Radetić, T., Vukašinović-Sekulić, M., Kojić, V., Živković, L., Perić-Grujić, A., Rhee, K.Y., Mišković-Stanković, V. (2019). Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles-In vitro study. European Polymer Journal, 121, 109257. [CrossRef]
- 40. Zeng, Z., Zhu, M., Chen, L., Zhang, Y., Lu, T., Deng, Y., Ma, W., Xu, J., Huang, C., Xiong, R. (2022). Design the molecule structures to achieve functional advantages of hydrogel wound dressings: Advances and strategies. Composites Part B: Engineering, 110313. [CrossRef]
- 41. Sun, X., Jia, P., Zhang, H., Dong, M., Wang, J., Li, L., Bu, T., Wang, X., Wang, L., Lu, Q., Wang, J. (2022). Green regenerative hydrogel wound dressing functionalized by natural drug‐food homologous small molecule self‐assembled nanospheres. Advanced Functional Materials, 32(7), 2106572. [CrossRef]
- 42. Morgado, P.I., Lisboa, P.F., Ribeiro, M.P., Miguel, S.P., Simões, P.C., Correia, I.J., Aguiar-Ricardo, A. (2014). Poly (vinyl alcohol)/chitosan asymmetrical membranes: Highly controlled morphology toward the ideal wound dressing. Journal of Membrane Science, 469, 262-271. [CrossRef]
- 43. Zarrintaj, P., Moghaddam, A.S., Manouchehri, S., Atoufi, Z., Amiri, A., Amirkhani, M.A., Nilforoushzadeh, M.A., Saeb, M.R., Hamblin, M.R., Mozafari, M. (2017). Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine, 12(19), 2403-2422. [CrossRef]
- 44. Harries, R.L., Bosanquet, D.C., Harding, K.G. (2016). Wound bed preparation: TIME for an update. International Wound Journal, 13(S3), 8-14. [CrossRef]
- 45. Ousey, K., Gilchrist, B., James, H. (2018). Understanding clinical practice challenges: A survey performed with wound care clinicians to explore wound assessment frameworks. Wounds International, 9(4), 58-62.
- 46. Peng, W., Li, D., Dai, K., Wang, Y., Song, P., Li, H., Tang, P., Zhang, Z., Li, Z., Zhou, Y., Zhou, C. (2022). Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. International Journal of Biological Macromolecules, 208, 400-408. [CrossRef]
- 47. Evranos, B., Aycan, D., Alemdar, N. (2019). Production of ciprofloxacin loaded chitosan/gelatin/bone ash wound dressing with improved mechanical properties. Carbohydrate Polymers, 222, 115007. [CrossRef]
- 48. Hughes, J., Thomas, R., Byun, Y., Whiteside, S. (2012). Improved flexibility of thermally stable poly-lactic acid (PLA). Carbohydrate Polymers, 88(1), 165-172. [CrossRef]
- 49. Jahandari, S., Li, J., Saberian, M., Shahsavarigoughari, M. (2017). Experimental study of the effects of geogrids on elasticity modulus, brittleness, strength, and stress-strain behavior of lime stabilized kaolinitic clay. GeoResJ, 13, 49-58. [CrossRef]
- 50. Ma, R., Wang, Y., Qi, H., Shi, C., Wei, G., Xiao, L., Huang, Z., Liu, S., Yu, H., Teng, C. (2019). Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: In vitro and in vivo evaluation. Composites Part B: Engineering, 167, 396-405. [CrossRef]
- 51. Feng, Y., Li, X., Zhang, Q., Yan, S., Guo, Y., Li, M., You, R. (2019). Mechanically robust and flexible silk protein/polysaccharide composite sponges for wound dressing. Carbohydrate polymers, 216, 17-24. [CrossRef]
- 52. Srivastava, C.M., Purwar, R., Kannaujia, R., Sharma, D. (2015). Flexible silk fibroin films for wound dressing. Fibers and Polymers, 16(5), 1020-1030. [CrossRef]
- 53. Foam Lite™ ConvaTec Web site. (2023). From https://www.convatec.co.uk/wound-skin/foam-lite-convatec/application/#. Accessed date: 18.01.2023.
- 54. Jørgensen, B., Friis, G.J., Gottrup, F. (2006). Pain and quality of life for patients with venous leg ulcers: proof of concept of the efficacy of Biatain®‐Ibu, a new pain reducing wound dressing. Wound Repair and Regeneration, 14(3), 233-239. [CrossRef]
- 55. de Oca Durán, E.M., Medina, M.A.R., Ayala, A.R., Ortiz, J.A.R. (2016). Case report: Deep neck abscess and mediastinitis with exposed carotid sheath treated with vacuum assisted closure. International Journal of Surgery Open, 5, 20-22. [CrossRef]
- 56. Wound Source Web site. (2022). From https://www.woundsource.com/product/acticoat-flex-3. Accessed date: 07.01.2023.
- 57. Daristotle, J.L., Lau, L.W., Erdi, M., Hunter, J., Djoum Jr, A., Srinivasan, P., Wu, X., Basu, M., Ayyub, O.B., Sandler, A.D. (2020). Sprayable and biodegradable, intrinsically adhesive wound dressing with antimicrobial properties. Bioengineering & Translational Medicine, 5(1), e10149. [CrossRef]
- 58. Yang, M., Ward, J., Choy, K.L. (2020). Nature‐Inspired Bacterial Cellulose/Methylglyoxal (BC/MGO) Nanocomposite for Broad‐Spectrum Antimicrobial Wound Dressing. Macromolecular Bioscience, 20(8), 2000070. [CrossRef]
- 59. Simões, D., Miguel, S.P., Ribeiro, M.P., Coutinho, P., Mendonça, A.G., Correia, I.J. (2018). Recent advances on antimicrobial wound dressing: A review. European Journal of Pharmaceutics and Biopharmaceutics, 127, 130-141. [CrossRef]
- 60. Sinha, M., Banik, R.M., Haldar, C., Maiti, P. (2013). Development of ciprofloxacin hydrochloride loaded poly (ethylene glycol)/chitosan scaffold as wound dressing. Journal of Porous Materials, 20, 799-807. [CrossRef]
- 61. Pawar, H.V., Tetteh, J., Boateng, J.S. (2013). Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids and Surfaces B: Biointerfaces, 102, 102-110. [CrossRef]
- 62. Stinner, D.J., Noel, S.P., Haggard, W.O., Watson, J.T., Wenke, J.C. (2010). Local antibiotic delivery using tailorable chitosan sponges: The future of infection control? Journal of Orthopaedic Trauma, 24(9), 592-597. [CrossRef]
- 63. Mirani, B., Pagan, E., Currie, B., Siddiqui, M.A., Hosseinzadeh, R., Mostafalu, P., Zhang, Y.S., Ghahary, A., Akbari, M. (2017). An advanced multifunctional hydrogel‐based dressing for wound monitoring and drug delivery. Advanced Healthcare Materials, 6(19), 1700718. [CrossRef]
- 64. BAND-AID® Brand INFECTION DEFENSE™ Large Antibiotic Wound Covers Web Site (2023). from https://www.band-aid.com/products/adhesive-bandages/infection-defense-antibiotic-large-wound-covers. Accessed date: 01.05.2023.
- 65. Kenawy, E., Omer, A., Tamer, T., Elmeligy, M., Eldin, M.M. (2019). Fabrication of biodegradable gelatin/chitosan/cinnamaldehyde crosslinked membranes for antibacterial wound dressing applications. International Journal of Biological Macromolecules, 139, 440-448. [CrossRef]
- 66. Dong, W.H., Liu, J.X., Mou, X.J., Liu, G.S., Huang, X.W., Yan, X., Ning, X., Russell, S.J., Long, Y.Z. (2020). Performance of polyvinyl pyrrolidone-isatis root antibacterial wound dressings produced in situ by handheld electrospinner. Colloids and Surfaces B: Biointerfaces, 188, 110766. [CrossRef]
- 67. Anand, S., Deighton, M., Livanos, G., Morrison, P.D., Pang, E.C., Mantri, N. (2019). Antimicrobial activity of Agastache honey and characterization of its bioactive compounds in comparison with important commercial honeys. Frontiers in Microbiology, 10, 263. [CrossRef]
- 68. Ullah, A., Ullah, S., Khan, M.Q., Hashmi, M., Nam, P.D., Kato, Y., Tamada, Y., Kim, I.S. (2020). Manuka honey incorporated cellulose acetate nanofibrous mats: Fabrication and in vitro evaluation as a potential wound dressing. International Journal of Biological Macromolecules, 155, 479-489. [CrossRef]
- 69. Manuka Honey Dressing For Ulcers Web site. (2023). From https://www.roosinmedical.com/manuka-honey-gauze/62809403.html. Accessed date: 03.02.2023.
- 70. Hundeshagen, G., Collins, V.N., Wurzer, P., Sherman, W., Voigt, C.D., Cambiaso-Daniel, J., Nunez Lopez, O., Sheaffer, J., Herndon, D.N., Finnerty, C.C. (2018). A prospective, randomized, controlled trial comparing the outpatient treatment of pediatric and adult partial-thickness burns with Suprathel or Mepilex Ag. Journal of Burn Care & Research, 39(2), 261-267. [CrossRef]
- 71. Ovington, L.G. (2007). Advances in wound dressings. Clinics in Dermatology, 25(1), 33-38. [CrossRef]
- 72. Qu, J., Zhao, X., Liang, Y., Xu, Y., Ma, P.X., Guo, B. (2019). Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chemical Engineering Journal, 362, 548-560. [CrossRef]
- 73. Capanema, N.S., Mansur, A.A., de Jesus, A.C., Carvalho, S.M., de Oliveira, L.C., Mansur, H.S. (2018). Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International Journal of Biological Macromolecules, 106, 1218-1234. [CrossRef]
- 74. Mutlu, G., Calamak, S., Ulubayram, K., Guven, E. (2018). Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material. Journal of Drug Delivery Science and Technology, 43, 185-193. [CrossRef]
- 75. Çay, A., Miraftab, M., Kumbasar, E.P.A. (2014). Characterization and swelling performance of physically stabilized electrospun poly (vinyl alcohol)/chitosan nanofibres. European Polymer Journal, 61, 253-262. [CrossRef]
- 76. Anjum, S., Arora, A., Alam, M., Gupta, B. (2016). Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. International Journal of Pharmaceutics, 508(1-2), 92-101. [CrossRef]
- 77. Kleintjes, W.G., Schoeman, D., Collier, L. (2017). A pilot study of Cutimed® Sorbact® versus ACTICOAT™ versus Silverlon® for the treatment of burn wounds in a South African adult burn unit: Wound caare/stoma care. Professional Nursing Today, 21(3), 36-44.
- 78. Braunberger, T.L., Fatima, S., Vellaichamy, G., Nahhas, A.F., Parks-Miller, A., Hamzavi, I.H. (2018). Dress for Success: A Review of Dressings and Wound Care in Hidradenitis Suppurativa. Current Dermatology Reports, 7(4), 269-277. [CrossRef]
- 79. Glover, D. (2013). The Wound Dressing Maze: Selection Made Easy. Dermatological Nursing, 12(4), 29-34.
- 80. Baba, A., Matsushita, S., Kitayama, K., Asakura, T., Sezutsu, H., Tanimoto, A., Kanekura, T. (2019). Silk fibroin produced by transgenic silkworms overexpressing the Arg‐Gly‐Asp motif accelerates cutaneous wound healing in mice. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(1), 97-103. [CrossRef]
- 81. Konop, M., Czuwara, J., Kłodzińska, E., Laskowska, A.K., Sulejczak, D., Damps, T., Zielenkiewicz, U., Brzozowska, I., Sureda, A., Kowalkowski, T. (2020). Evaluation of keratin biomaterial containing silver nanoparticles as a potential wound dressing in full‐thickness skin wound model in diabetic mice. Journal of Tissue Engineering and Regenerative Medicine, 14(2), 334-346. [CrossRef]
- 82. Eğri, Ö., Erdemir, N., Gevrek, F. (2020). Effect of H. perforatum oil containing membranes on the second degree burn wounds in rats. Materials Today Communications, 24, 100954. [CrossRef]
- 83. Ousey, K., Rogers, A. A., Rippon, M. G. (2016). HydroClean® plus: A new perspective to wound cleansing and debridement. Wounds UK, 12(1), 78-87.
- 84. Ren, J., Yang, M., Chen, J., Ma, S., Wang, N. (2020). Anti-inflammatory and wound healing potential of kirenol in diabetic rats through the suppression of inflammatory markers and matrix metalloproteinase expressions. Biomedicine & Pharmacotherapy, 129, 110475. [CrossRef]
- 85. Chopra, H., Kumar, S., Singh, I. (2022). Strategies and therapies for wound healing: A review. Current Drug Targets, 23(1), 87-98. [CrossRef]
- 86. Tan, C., Yuan, Z., Xu, F., Xie, X. (2022). Electrospun cellulose acetate wound dressings loaded with Pramipexole for diabetic wound healing: An in vitro and in vivo study. Cellulose, 29(6), 3407-3422. [CrossRef]
- 87. Minsart, M., Van Vlierberghe, S., Dubruel, P., Mignon, A. (2022). Commercial wound dressings for the treatment of exuding wounds: An in-depth physico-chemical comparative study. Burns & Trauma, 10, tkac024. [CrossRef]
- 88. Hemamalini, T., Vrishni Ritvic, J., Premitha, R., Divya Dharshini, A.K., Giri Dev, V.R. (2022). Facile and cost-effective development of silver based cellulosic wound dressing using electrospraying process. Journal of Natural Fibers, 19(14), 7436-7444. [CrossRef]
- 89. Li, H., Dai, J., Yi, X., Cheng, F. (2022). Generation of cost-effective MXene@ polydopamine-decorated chitosan nanofibrous wound dressing for promoting wound healing. Biomaterials Advances, 140, 213055. [CrossRef]