Research Article
BibTex RIS Cite

KOENZİM Q0 İNSAN KRONİK MYELOİD LÖSEMİ K562 HÜCRELERİNİN PROLİFERASYONUNU ENGELLER VE MAPK VE AKT SİNYAL YOLAKLARINI MODÜLE EDER

Year 2023, , 761 - 769, 20.09.2023
https://doi.org/10.33483/jfpau.1286359

Abstract

Amaç: Bu çalışma, insan kronik miyeloid lösemi K562 hücre hattında koenzim Q0'ın (CoQ0) antiproliferatif ve proapoptotik etkilerini değerlendirmiştir.
Gereç ve Yöntem: CoQ0'ın insan kronik miyeloid lösemi K562 hücre hattındaki sitotoksik etkisi, MTT testi ile belirlendi. Kaspaz-3 aktivitesi, apoptozis, MAPK ve AKT sinyal yolağı ile ilişkili proteinlerin ekspresyonu sırasıyla enzimatik analiz ve western blot analizi ile belirlendi.
Sonuç ve Tartışma: Sonuçlar, CoQ0’ın K562 hücre canlılığını 5 μM ve daha yüksek konsantrasyonlarda inhibe ettiğini ve Bax protein ekspresyonunu, 12.5 μM konsantrasyonunda önemli ölçüde azalttığını göstermiştir, ancak CoQ0 kaspaz 3 aktivitesini ve Bcl-2 protein ekspresyonunu önemli ölçüde etkilemedi. p-c-Raf (Ser259) protein ekspresyonu, 12.5 μM CoQ0'da önemli ölçüde azaldı. K562 hücre hattında, 10 μM CoQ0, p38 MAPK'nın fosforilasyonunu önemli ölçüde indükledi ve 12,5 μM CoQ0, p-ERK1/2 protein ekspresyonunda anlamlı olmayan bir azalmaya neden oldu. İlginç bir şekilde, 12.5 μM CoQ0 K562 hücrelerinde Akt (Ser473) fosforilasyonu azalttı, ancak p-Akt (Thr308) protein ekspresyonunda gruplar arasında herhangi bir farklılık gözlenmedi. Sonuç olarak, CoQ0, K562 hücrelerinin proliferasyonunu inhibe etti ve c-Raf (Ser259), Akt (Ser473) fosforilasyonunu baskıladı, ancak ERK1/2 fosforilasyonuna etki etmedi. CoQ0'ın antikanser etkisinin altında yatan moleküler mekanizmalara yeni bakış açıları sağlamak ve kronik miyeloid lösemi tedavi stratejilerini geliştirmek için daha fazla araştırmaya hala ihtiyaç bulunmaktadır.

References

  • 1. Faderl, S., Talpaz, M., Estrov, Z., O'Brien, S., Kurzrock, R., Kantarjian, H.M. (1999). The biology of chronic myeloid leukemia. New England Journal of Medicine, 341(3), 164-172. [CrossRef]
  • 2. Chereda, B., Melo, J.V. (2015). Natural course and biology of CML. Annals of Hematology, 94(Suppl 2), S107-121. [CrossRef]
  • 3. Druker, B.J., Talpaz, M., Resta, D.J., Peng, B., Buchdunger, E., Ford, J.M., Lydon, N.B., Kantarjian, H., Capdeville, R., Ohno-Jones, S., Sawyers, C.L. (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. New England Journal of Medicine, 344(14), 1031-1037. [CrossRef]
  • 4. Kantarjian, H.M., Talpaz, M. (2001). Imatinib mesylate: Clinical results in Philadelphia chromosome-positive leukemias. Seminars in Oncology, 28(5 Suppl 17), 9-18. [CrossRef]
  • 5. Mohamed, A.N., Pemberton, P., Zonder, J., Schiffer, C.A. (2003). The effect of imatinib mesylate on patients with Philadelphia chromosome-positive chronic myeloid leukemia with secondary chromosomal aberrations. Clinical Cancer Research, 9(4), 1333-1337.
  • 6. Somers-Edgar, T.J., Rosengren, R.J. (2009). Coenzyme Q0 induces apoptosis and modulates the cell cycle in estrogen receptor negative breast cancer cells. Anticancer Drugs, 20(1), 33-40. [CrossRef]
  • 7. MacDonald, M.J., Husain, R.D., Hoffmann-Benning, S., Baker, T.R. (2004). Immunochemical identification of coenzyme Q0-dihydrolipoamide adducts in the E2 components of the alpha-ketoglutarate and pyruvate dehydrogenase complexes partially explains the cellular toxicity of coenzyme Q0. Journal of Biological Chemistry, 279(26), 27278-27285. [CrossRef]
  • 8. Chung, C.H., Yeh, S.C., Chen, C.J., Lee, K.T. (2014). Coenzyme Q0 from Antrodia cinnamomea in submerged cultures induces reactive oxygen species-mediated apoptosis in A549 human lung cancer cells. Evidence-Based Complementary and Alternative Medicine, 2014, 246748. [CrossRef]
  • 9. MacDonald, M.J. (1991). Stimulation of insulin release from pancreatic islets by quinones. Bioscience Reports, 11(3), 165-170. [CrossRef]
  • 10. Yang, H.L., Korivi M, Lin M.W, Chen S.C, Chou C.W, Hseu Y.C. (2015). Anti-angiogenic properties of coenzyme Q0 through downregulation of MMP-9/NF-kappaB and upregulation of HO-1 signaling in TNF-alpha-activated human endothelial cells. Biochemical Pharmacology, 98(1), 144-156. [CrossRef]
  • 11. Yang, H.L., Lin, M.W., Korivi, M., Wu, J.J., Liao, C.H., Chang, C.T., Liao, J.W., Hseu, Y.C. (2016). Coenzyme Q0 regulates NFkappaB/AP-1 activation and enhances Nrf2 stabilization in attenuation of LPS-induced inflammation and redox imbalance: Evidence from in vitro and in vivo studies. Biochimica et Biophysica Acta, 1859(2), 246-261. [CrossRef]
  • 12. Yang, H.L., Thiyagarajan, V., Shen, P.C., Mathew, D.C., Lin, K.Y., Liao, J.W., Hseu, Y.C. (2019). Anti-EMT properties of CoQ0 attributed to PI3K/AKT/NFKB/MMP-9 signaling pathway through ROS-mediated apoptosis. Journal of Experimental&Clinical Cancer Research, 38(1), 186. [CrossRef]
  • 13. Hseu, Y.C., Thiyagarajan, V., Tsou, H.T., Lin, K.Y., Chen, H.J., Lin, C.M., Liao, J.W., Yang, H.L. (2016). In vitro and in vivo anti-tumor activity of CoQ0 against melanoma cells: Inhibition of metastasis and induction of cell-cycle arrest and apoptosis through modulation of Wnt/beta-catenin signaling pathways. Oncotarget, 7(16), 22409-22426. [CrossRef]
  • 14. Wang, H.M., Yang, H.L., Thiyagarajan, V., Huang, T.H., Huang, P.J., Chen, S.C., Liu, J.Y., Hsu, L.S., Chang, H.W., Hseu, Y.C. (2017). Coenzyme Q0 enhances ultraviolet B-induced apoptosis in human estrogen receptor-positive breast (MCF-7) cancer cells. Integrative Cancer Therapies, 16(3), 385-396. [CrossRef]
  • 15. Esaka, Y., Nagahara, Y., Hasome, Y., Nishio, R., Ikekita, M. (2005). Coenzyme Q2 induced p53-dependent apoptosis. Biochimica et Biophysica Acta, 1724(1-2), 49-58. [CrossRef]
  • 16. Devun, F., Walter, L., Belliere, J., Cottet-Rousselle, C., Leverve, X., Fontaine, E. (2010). Ubiquinone analogs: A mitochondrial permeability transition pore-dependent pathway to selective cell death. PLOS One, 5(7), e11792. [CrossRef]
  • 17. Bold, R.J., Termuhlen, P.M., McConkey, D.J. (1997). Apoptosis, cancer and cancer therapy. Surgical Oncology, 6(3), 133-142. [CrossRef]
  • 18. Kim, E.K., Kwon, K.B., Shin, B.C., Seo, E.A., Lee, Y.R., Kim, J.S., Park, J.W., Park, B.H., Ryu, D.G. (2005). Scopoletin induces apoptosis in human promyeloleukemic cells, accompanied by activations of nuclear factor kappaB and caspase-3. Life Sciences, 77(7), 824-836. [CrossRef]
  • 19. Zhou, Y., Liu, Q.H., Liu, C.L., Lin, L. (2015). Calycosin induces apoptosis in human ovarian cancer SKOV3 cells by activating caspases and Bcl-2 family proteins. Tumour Biology, 36(7), 5333-5339. [CrossRef]
  • 20. Brunelle, J.K., Letai, A. (2009). Control of mitochondrial apoptosis by the Bcl-2 family. Journal of Cell Science, 122(Pt 4), 437-441. [CrossRef]
  • 21. Schaeffer, H.J., Weber, M.J. (1999). Mitogen-activated protein kinases: Specific messages from ubiquitous messengers. Molecular and Cellular Biology, 19(4), 2435-2444. [CrossRef]
  • 22. Platanias, L.C. (2003). Map kinase signaling pathways and hematologic malignancies. Blood, 101(12), 4667-4679. [CrossRef]
  • 23. Dong, C., Davis, R.J., Flavell, R.A. (2002). MAP kinases in the immune response. Annual Review of Immunology, 20, 55-72. [CrossRef]
  • 24. Denhardt, D.T. (1996). Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: The potential for multiplex signalling. Biochemical Journal, 318(Pt 3), 729-747. [CrossRef]
  • 25. Widmann, C., Gibson, S., Jarpe, M.B., Johnson, G.L. (1999). Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiological Reviews, 79(1), 143-180. [CrossRef]
  • 26. Zhang, W., Liu, H.T. (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Research,12(1), 9-18. [CrossRef]
  • 27. Zhang, Z., Zhou, X., Shen, H., Wang, D., Wang, Y. (2009). Phosphorylated ERK is a potential predictor of sensitivity to sorafenib when treating hepatocellular carcinoma: Evidence from an in vitro study. BMC Medicine, 7, 41. [CrossRef]
  • 28. Beeram, M., Patnaik, A., Rowinsky, E.K. (2005). Raf: A strategic target for therapeutic development against cancer. Journal of Clinical Oncology, 23(27), 6771-6790. [CrossRef]
  • 29. Lopez-Bergami, P., Huang, C., Goydos, J.S., Yip, D., Bar-Eli, M., Herlyn, M., Smalley, K.S., Mahale, A., Eroshkin, A., Aaronson, S., Ronai, Z. (2007). Rewired ERK-JNK signaling pathways in melanoma. Cancer Cell, 11(5), 447-460. [CrossRef]
  • 30. Mirmohammadsadegh, A., Mota, R., Gustrau, A., Hassan, M., Nambiar, S., Marini, A., Bojar, H., Tannapfel, A., Hengge, U.R. (2007). ERK1/2 is highly phosphorylated in melanoma metastases and protects melanoma cells from cisplatin-mediated apoptosis. Journal of Investigative Dermatology, 127(9), 2207-2215. [CrossRef]
  • 31. Mendes, O., Kim, H.T., Lungu, G., Stoica, G. (2007). MMP2 role in breast cancer brain metastasis development and its regulation by TIMP2 and ERK1/2. Clinical&Experimental Metastasis, 24, 341-351. [CrossRef]
  • 32. Fransecky, L., Mochmann, L.H., Baldus, C.D. (2015). Outlook on PI3K/AKT/mTOR inhibition in acute leukemia. Molecular and Cellular Therapies, 3, 2. [CrossRef]
  • 33. Kawauchi, K., Ogasawara, T., Yasuyama, M., Otsuka, K., Yamada, O. (2009). Regulation and importance of the PI3K/Akt/mTOR signaling pathway in hematologic malignancies. Anticancer Agents in Medicinal Chemistry, 9(9), 1024-1038. [CrossRef]
  • 34. Min, Y.H., Eom, J.I., Cheong, J.W., Maeng, H.O., Kim, J.Y., Jeung, H.K., Lee, S.T., Lee, M.H., Hahn, J.S., Ko, Y.W. (2003). Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: Its significance as a prognostic variable. Leukemia, 17(5), 995-997. [CrossRef]
  • 35. Kornblau, S.M., Tibes, R, Qiu, Y.H., Chen, W., Kantarjian, H.M., Andreeff, M., Coombes, K.R., Mills, G.B. (2009). Functional proteomic profiling of AML predicts response and survival. Blood, 113(1), 154-164. [CrossRef]
  • 36. Pei, R., Si, T., Lu, Y., Zhou, J.X., Jiang, L. (2018). Salvianolic acid A, a novel PI3K/Akt inhibitor, induces cell apoptosis and suppresses tumor growth in acute myeloid leukemia. Leukemia&Lymphoma, 59(8), 1959-1967. [CrossRef]
  • 37. Zhou, Y., Ho, W.S. (2014). Combination of liquiritin, isoliquiritin and isoliquirigenin induce apoptotic cell death through upregulating p53 and p21 in the A549 non-small cell lung cancer cells. Oncology Reports, 31(1), 298-304. [CrossRef]
  • 38. Hseu, Y.C., Tsai, T.J., Korivi, M., Liu, J.Y., Chen, H.J., Lin, C.M., Shen, Y.C., Yang, H.L. (2017). Antitumor properties of Coenzyme Q0 against human ovarian carcinoma cells via induction of ROS-mediated apoptosis and cytoprotective autophagy. Scientific Reports, 7(1), 8062. [CrossRef]
  • 39. Elumalai, P., Gunadharini, D.N., Senthilkumar, K., Banudevi, S., Arunkumar, R., Benson, C.S., Sharmila, G., Arunakaran, J. (2012). Induction of apoptosis in human breast cancer cells by nimbolide through extrinsic and intrinsic pathway. Toxicology Letters, 215(2), 131-142. [CrossRef]
  • 40. Green, D.R. (2000). Apoptotic pathways: paper wraps stone blunts scissors. Cell, 102(1), 1-4. [CrossRef]
  • 41. McIlwain, D.R., Berger, T., Mak, T.W. (2013). Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 5(4), a008656. [CrossRef]
  • 42. Yang, X., Zheng, F., Xing, H., Gao, Q., Wei, W., Lu, Y., Wang, S., Zhou, J., Hu, W., Ma, D. (2004). Resistance to chemotherapy-induced apoptosis via decreased caspase-3 activity and overexpression of antiapoptotic proteins in ovarian cancer. Journal of Cancer Research and Clinical Oncology, 130(7), 423-428. [CrossRef]
  • 43. Kim, R. (2005). Unknotting the roles of Bcl-2 and Bcl-xL in cell death. Biochemical and Biophysical Research Communication, 333(2), 336-343. [CrossRef]
  • 44. Mayorga, M., Bahi, N., Ballester, M., Comella, J.X., Sanchis, D. (2004). Bcl-2 is a key factor for cardiac fibroblast resistance to programmed cell death. Journal of Biological Chemistry, 279(33), 34882-34889. [CrossRef]
  • 45. Goldsmith, C.D., Bond, D.R., Jankowski, H., Weidenhofer, J., Stathopoulos, C.E., Roach, P.D., Scarlett, C.J. (2018). The olive biophenols oleuropein and hydroxytyrosol selectively reduce proliferation, influence the cell cycle, and induce apoptosis in pancreatic cancer cells. International Journal of Molecular Sciences, 19(7), 1937. [CrossRef]
  • 46. Roberts, P.J., Der, C.J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 26(22), 3291-3310. [CrossRef]
  • 47. Miyata, Y., Nishida, E. (1999). Distantly related cousins of MAP kinase: Biochemical properties and possible physiological functions. Biochemical and Biophysical Research Communication, 266(2), 291-295. [CrossRef]
  • 48. Schulze-Bergkamen, H., Krammer, P.H. (2004). Apoptosis in cancer-implications for therapy. Seminars in Oncology, 31(1), 90-119. [CrossRef]
  • 49. Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J., Greenberg, M.E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 270(5240), 1326-1331. [CrossRef]
  • 50. Weir, N.M., Selvendiran, K., Kutala, V.K., Tong, L., Vishwanath, S., Rajaram, M., Tridandapani, S., Anant, S., Kuppusamy, P. (2007). Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating Akt and p38 MAPK. Cancer Biology&Therapy, 6(2), 178-184. [CrossRef]
  • 51. Shinojima, N., Yokoyama, T., Kondo, Y., Kondo, S. (2007). Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy, 3(6), 635-637. [CrossRef]
  • 52. Juretic, N., Santibanez, J.F., Hurtado, C., Martinez, J. (2001). ERK 1,2 and p38 pathways are involved in the proliferative stimuli mediated by urokinase in osteoblastic SaOS-2 cell line. Journal of Cellular Biochemistry, 83(1), 92-98. [CrossRef]
  • 53. Pugazhenthi, S., Miller, E., Sable, C., Young, P., Heidenreich, K.A., Boxer, L.M., Reusch, J.E. (1999). Insulin-like growth factor-I induces bcl-2 promoter through the transcription factor cAMP-response element-binding protein. Journal of Biological Chemistry, 274(39), 27529-27535. [CrossRef]
  • 54. Wang, Y., Huang, S., Sah, V.P., Ross, J.Jr., Brown, J.H., Han, J., Chien, K.R. (1998). Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. Journal of Biological Chemistry, 273(4), 2161-2168. [CrossRef]
  • 55. Li, L., Zhao, G.D., Shi, Z., Qi, L.L., Zhou, L.Y., Fu, Z.X. (2016). The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncology Letters, 12(5), 3045-3050. [CrossRef]
  • 56. Dhillon, A.S., Meikle, S., Yazici, Z., Eulitz, M., Kolch, W. (2002). Regulation of Raf-1 activation and signalling by dephosphorylation. EMBO Journal, 21(1-2), 64-71. [CrossRef]
  • 57. Rommel, C., Clarke, B.A., Zimmermann, S., Nunez, L., Rossman, R., Reid, K., Moelling, K., Yancopoulos, G.D., Glass, D.J. (1999). Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science, 286(5445), 1738-1741. [CrossRef]
  • 58. Corona, G., Deiana, M., Incani, A., Vauzour, D., Dessi, M.A., Spencer, J.P. (2007). Inhibition of p38/CREB phosphorylation and COX-2 expression by olive oil polyphenols underlies their anti-proliferative effects. Biochemical and Biophysical Research Communication, 362(3), 606-611. [CrossRef]
  • 59. Wang, N., Li, D.Y., Niu, H.Y., Zhang, Y., He, P., Wang, J.H. (2013). 2-Hydroxy-3-methylanthraquinone from Hedyotis diffusa Willd induces apoptosis in human leukemic U937 cells through modulation of MAPK pathways. Archives of Pharmacal Research, 36(6), 752-758. [CrossRef]
  • 60. Fu, Y., Zhang, Y., Gao, M., Quan, L., Gui, R., Liu, J. (2016). Alisertib induces apoptosis and autophagy through targeting the AKT/mTOR/AMPK/p38 pathway in leukemic cells. Molecular Medicine Reports, 14(1), 394-398. [CrossRef]

COENZYME Q0 INHIBITS CELL PROLIFERATION AND MODULATES MAPK AND AKT SIGNALLING PATHWAYS IN HUMAN CHRONIC MYELOID LEUKEMIA K562 CELLS

Year 2023, , 761 - 769, 20.09.2023
https://doi.org/10.33483/jfpau.1286359

Abstract

Objective: This study evaluated the antiproliferative and pro-apoptotic effects of coenzyme Q0 (CoQ0) in human chronic myeloid leukemia K562 cell line.
Material and Method: The cytotoxic effect of CoQ0 on human chronic myeloid leukemia cell line, K562 was determined by MTT test. The activity of caspase-3, expression of proteins involved in apoptosis, MAPK and AKT signaling pathways were determined with enzymatic assay and western blot analysis, respectively.
Result and Discussion: Results showed that CoQ0 inhibited cell viability of K562 cells at 5 μM and higher concentrations and Bax protein expression was significantly decreased at 12.5 μM concentration of CoQ0. However, CoQ0 did not significantly affect caspase 3 activity and Bcl-2 protein expression. p-c-Raf (Ser259) protein expression was significantly decreased at 12.5 μM of CoQ0. Treatment with 10 μM of CoQ0 induced significantly phosphorylation of p38 MAPK and 12.5 μM CoQ0 caused a nonsignificant decrease in p-ERK1/2 protein expression in K562 cell line. Interestingly, in K562 cells, phosphorylation of Akt (Ser473) was diminished at 12.5 μM of CoQ0, with no change observed in p-Akt (Thr308) protein expression among groups. In conclusion, CoQ0 inhibited cell proliferation and suppressed phosphorylation of c-Raf (Ser259), Akt (Ser473), but not ERK1/2 in K562 cells. There is still a need for new insights into the anticancer mechanisms of CoQ0 and develop treatment strategies for chronic myeloid leukemia.

References

  • 1. Faderl, S., Talpaz, M., Estrov, Z., O'Brien, S., Kurzrock, R., Kantarjian, H.M. (1999). The biology of chronic myeloid leukemia. New England Journal of Medicine, 341(3), 164-172. [CrossRef]
  • 2. Chereda, B., Melo, J.V. (2015). Natural course and biology of CML. Annals of Hematology, 94(Suppl 2), S107-121. [CrossRef]
  • 3. Druker, B.J., Talpaz, M., Resta, D.J., Peng, B., Buchdunger, E., Ford, J.M., Lydon, N.B., Kantarjian, H., Capdeville, R., Ohno-Jones, S., Sawyers, C.L. (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. New England Journal of Medicine, 344(14), 1031-1037. [CrossRef]
  • 4. Kantarjian, H.M., Talpaz, M. (2001). Imatinib mesylate: Clinical results in Philadelphia chromosome-positive leukemias. Seminars in Oncology, 28(5 Suppl 17), 9-18. [CrossRef]
  • 5. Mohamed, A.N., Pemberton, P., Zonder, J., Schiffer, C.A. (2003). The effect of imatinib mesylate on patients with Philadelphia chromosome-positive chronic myeloid leukemia with secondary chromosomal aberrations. Clinical Cancer Research, 9(4), 1333-1337.
  • 6. Somers-Edgar, T.J., Rosengren, R.J. (2009). Coenzyme Q0 induces apoptosis and modulates the cell cycle in estrogen receptor negative breast cancer cells. Anticancer Drugs, 20(1), 33-40. [CrossRef]
  • 7. MacDonald, M.J., Husain, R.D., Hoffmann-Benning, S., Baker, T.R. (2004). Immunochemical identification of coenzyme Q0-dihydrolipoamide adducts in the E2 components of the alpha-ketoglutarate and pyruvate dehydrogenase complexes partially explains the cellular toxicity of coenzyme Q0. Journal of Biological Chemistry, 279(26), 27278-27285. [CrossRef]
  • 8. Chung, C.H., Yeh, S.C., Chen, C.J., Lee, K.T. (2014). Coenzyme Q0 from Antrodia cinnamomea in submerged cultures induces reactive oxygen species-mediated apoptosis in A549 human lung cancer cells. Evidence-Based Complementary and Alternative Medicine, 2014, 246748. [CrossRef]
  • 9. MacDonald, M.J. (1991). Stimulation of insulin release from pancreatic islets by quinones. Bioscience Reports, 11(3), 165-170. [CrossRef]
  • 10. Yang, H.L., Korivi M, Lin M.W, Chen S.C, Chou C.W, Hseu Y.C. (2015). Anti-angiogenic properties of coenzyme Q0 through downregulation of MMP-9/NF-kappaB and upregulation of HO-1 signaling in TNF-alpha-activated human endothelial cells. Biochemical Pharmacology, 98(1), 144-156. [CrossRef]
  • 11. Yang, H.L., Lin, M.W., Korivi, M., Wu, J.J., Liao, C.H., Chang, C.T., Liao, J.W., Hseu, Y.C. (2016). Coenzyme Q0 regulates NFkappaB/AP-1 activation and enhances Nrf2 stabilization in attenuation of LPS-induced inflammation and redox imbalance: Evidence from in vitro and in vivo studies. Biochimica et Biophysica Acta, 1859(2), 246-261. [CrossRef]
  • 12. Yang, H.L., Thiyagarajan, V., Shen, P.C., Mathew, D.C., Lin, K.Y., Liao, J.W., Hseu, Y.C. (2019). Anti-EMT properties of CoQ0 attributed to PI3K/AKT/NFKB/MMP-9 signaling pathway through ROS-mediated apoptosis. Journal of Experimental&Clinical Cancer Research, 38(1), 186. [CrossRef]
  • 13. Hseu, Y.C., Thiyagarajan, V., Tsou, H.T., Lin, K.Y., Chen, H.J., Lin, C.M., Liao, J.W., Yang, H.L. (2016). In vitro and in vivo anti-tumor activity of CoQ0 against melanoma cells: Inhibition of metastasis and induction of cell-cycle arrest and apoptosis through modulation of Wnt/beta-catenin signaling pathways. Oncotarget, 7(16), 22409-22426. [CrossRef]
  • 14. Wang, H.M., Yang, H.L., Thiyagarajan, V., Huang, T.H., Huang, P.J., Chen, S.C., Liu, J.Y., Hsu, L.S., Chang, H.W., Hseu, Y.C. (2017). Coenzyme Q0 enhances ultraviolet B-induced apoptosis in human estrogen receptor-positive breast (MCF-7) cancer cells. Integrative Cancer Therapies, 16(3), 385-396. [CrossRef]
  • 15. Esaka, Y., Nagahara, Y., Hasome, Y., Nishio, R., Ikekita, M. (2005). Coenzyme Q2 induced p53-dependent apoptosis. Biochimica et Biophysica Acta, 1724(1-2), 49-58. [CrossRef]
  • 16. Devun, F., Walter, L., Belliere, J., Cottet-Rousselle, C., Leverve, X., Fontaine, E. (2010). Ubiquinone analogs: A mitochondrial permeability transition pore-dependent pathway to selective cell death. PLOS One, 5(7), e11792. [CrossRef]
  • 17. Bold, R.J., Termuhlen, P.M., McConkey, D.J. (1997). Apoptosis, cancer and cancer therapy. Surgical Oncology, 6(3), 133-142. [CrossRef]
  • 18. Kim, E.K., Kwon, K.B., Shin, B.C., Seo, E.A., Lee, Y.R., Kim, J.S., Park, J.W., Park, B.H., Ryu, D.G. (2005). Scopoletin induces apoptosis in human promyeloleukemic cells, accompanied by activations of nuclear factor kappaB and caspase-3. Life Sciences, 77(7), 824-836. [CrossRef]
  • 19. Zhou, Y., Liu, Q.H., Liu, C.L., Lin, L. (2015). Calycosin induces apoptosis in human ovarian cancer SKOV3 cells by activating caspases and Bcl-2 family proteins. Tumour Biology, 36(7), 5333-5339. [CrossRef]
  • 20. Brunelle, J.K., Letai, A. (2009). Control of mitochondrial apoptosis by the Bcl-2 family. Journal of Cell Science, 122(Pt 4), 437-441. [CrossRef]
  • 21. Schaeffer, H.J., Weber, M.J. (1999). Mitogen-activated protein kinases: Specific messages from ubiquitous messengers. Molecular and Cellular Biology, 19(4), 2435-2444. [CrossRef]
  • 22. Platanias, L.C. (2003). Map kinase signaling pathways and hematologic malignancies. Blood, 101(12), 4667-4679. [CrossRef]
  • 23. Dong, C., Davis, R.J., Flavell, R.A. (2002). MAP kinases in the immune response. Annual Review of Immunology, 20, 55-72. [CrossRef]
  • 24. Denhardt, D.T. (1996). Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: The potential for multiplex signalling. Biochemical Journal, 318(Pt 3), 729-747. [CrossRef]
  • 25. Widmann, C., Gibson, S., Jarpe, M.B., Johnson, G.L. (1999). Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiological Reviews, 79(1), 143-180. [CrossRef]
  • 26. Zhang, W., Liu, H.T. (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Research,12(1), 9-18. [CrossRef]
  • 27. Zhang, Z., Zhou, X., Shen, H., Wang, D., Wang, Y. (2009). Phosphorylated ERK is a potential predictor of sensitivity to sorafenib when treating hepatocellular carcinoma: Evidence from an in vitro study. BMC Medicine, 7, 41. [CrossRef]
  • 28. Beeram, M., Patnaik, A., Rowinsky, E.K. (2005). Raf: A strategic target for therapeutic development against cancer. Journal of Clinical Oncology, 23(27), 6771-6790. [CrossRef]
  • 29. Lopez-Bergami, P., Huang, C., Goydos, J.S., Yip, D., Bar-Eli, M., Herlyn, M., Smalley, K.S., Mahale, A., Eroshkin, A., Aaronson, S., Ronai, Z. (2007). Rewired ERK-JNK signaling pathways in melanoma. Cancer Cell, 11(5), 447-460. [CrossRef]
  • 30. Mirmohammadsadegh, A., Mota, R., Gustrau, A., Hassan, M., Nambiar, S., Marini, A., Bojar, H., Tannapfel, A., Hengge, U.R. (2007). ERK1/2 is highly phosphorylated in melanoma metastases and protects melanoma cells from cisplatin-mediated apoptosis. Journal of Investigative Dermatology, 127(9), 2207-2215. [CrossRef]
  • 31. Mendes, O., Kim, H.T., Lungu, G., Stoica, G. (2007). MMP2 role in breast cancer brain metastasis development and its regulation by TIMP2 and ERK1/2. Clinical&Experimental Metastasis, 24, 341-351. [CrossRef]
  • 32. Fransecky, L., Mochmann, L.H., Baldus, C.D. (2015). Outlook on PI3K/AKT/mTOR inhibition in acute leukemia. Molecular and Cellular Therapies, 3, 2. [CrossRef]
  • 33. Kawauchi, K., Ogasawara, T., Yasuyama, M., Otsuka, K., Yamada, O. (2009). Regulation and importance of the PI3K/Akt/mTOR signaling pathway in hematologic malignancies. Anticancer Agents in Medicinal Chemistry, 9(9), 1024-1038. [CrossRef]
  • 34. Min, Y.H., Eom, J.I., Cheong, J.W., Maeng, H.O., Kim, J.Y., Jeung, H.K., Lee, S.T., Lee, M.H., Hahn, J.S., Ko, Y.W. (2003). Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: Its significance as a prognostic variable. Leukemia, 17(5), 995-997. [CrossRef]
  • 35. Kornblau, S.M., Tibes, R, Qiu, Y.H., Chen, W., Kantarjian, H.M., Andreeff, M., Coombes, K.R., Mills, G.B. (2009). Functional proteomic profiling of AML predicts response and survival. Blood, 113(1), 154-164. [CrossRef]
  • 36. Pei, R., Si, T., Lu, Y., Zhou, J.X., Jiang, L. (2018). Salvianolic acid A, a novel PI3K/Akt inhibitor, induces cell apoptosis and suppresses tumor growth in acute myeloid leukemia. Leukemia&Lymphoma, 59(8), 1959-1967. [CrossRef]
  • 37. Zhou, Y., Ho, W.S. (2014). Combination of liquiritin, isoliquiritin and isoliquirigenin induce apoptotic cell death through upregulating p53 and p21 in the A549 non-small cell lung cancer cells. Oncology Reports, 31(1), 298-304. [CrossRef]
  • 38. Hseu, Y.C., Tsai, T.J., Korivi, M., Liu, J.Y., Chen, H.J., Lin, C.M., Shen, Y.C., Yang, H.L. (2017). Antitumor properties of Coenzyme Q0 against human ovarian carcinoma cells via induction of ROS-mediated apoptosis and cytoprotective autophagy. Scientific Reports, 7(1), 8062. [CrossRef]
  • 39. Elumalai, P., Gunadharini, D.N., Senthilkumar, K., Banudevi, S., Arunkumar, R., Benson, C.S., Sharmila, G., Arunakaran, J. (2012). Induction of apoptosis in human breast cancer cells by nimbolide through extrinsic and intrinsic pathway. Toxicology Letters, 215(2), 131-142. [CrossRef]
  • 40. Green, D.R. (2000). Apoptotic pathways: paper wraps stone blunts scissors. Cell, 102(1), 1-4. [CrossRef]
  • 41. McIlwain, D.R., Berger, T., Mak, T.W. (2013). Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 5(4), a008656. [CrossRef]
  • 42. Yang, X., Zheng, F., Xing, H., Gao, Q., Wei, W., Lu, Y., Wang, S., Zhou, J., Hu, W., Ma, D. (2004). Resistance to chemotherapy-induced apoptosis via decreased caspase-3 activity and overexpression of antiapoptotic proteins in ovarian cancer. Journal of Cancer Research and Clinical Oncology, 130(7), 423-428. [CrossRef]
  • 43. Kim, R. (2005). Unknotting the roles of Bcl-2 and Bcl-xL in cell death. Biochemical and Biophysical Research Communication, 333(2), 336-343. [CrossRef]
  • 44. Mayorga, M., Bahi, N., Ballester, M., Comella, J.X., Sanchis, D. (2004). Bcl-2 is a key factor for cardiac fibroblast resistance to programmed cell death. Journal of Biological Chemistry, 279(33), 34882-34889. [CrossRef]
  • 45. Goldsmith, C.D., Bond, D.R., Jankowski, H., Weidenhofer, J., Stathopoulos, C.E., Roach, P.D., Scarlett, C.J. (2018). The olive biophenols oleuropein and hydroxytyrosol selectively reduce proliferation, influence the cell cycle, and induce apoptosis in pancreatic cancer cells. International Journal of Molecular Sciences, 19(7), 1937. [CrossRef]
  • 46. Roberts, P.J., Der, C.J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 26(22), 3291-3310. [CrossRef]
  • 47. Miyata, Y., Nishida, E. (1999). Distantly related cousins of MAP kinase: Biochemical properties and possible physiological functions. Biochemical and Biophysical Research Communication, 266(2), 291-295. [CrossRef]
  • 48. Schulze-Bergkamen, H., Krammer, P.H. (2004). Apoptosis in cancer-implications for therapy. Seminars in Oncology, 31(1), 90-119. [CrossRef]
  • 49. Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J., Greenberg, M.E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 270(5240), 1326-1331. [CrossRef]
  • 50. Weir, N.M., Selvendiran, K., Kutala, V.K., Tong, L., Vishwanath, S., Rajaram, M., Tridandapani, S., Anant, S., Kuppusamy, P. (2007). Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating Akt and p38 MAPK. Cancer Biology&Therapy, 6(2), 178-184. [CrossRef]
  • 51. Shinojima, N., Yokoyama, T., Kondo, Y., Kondo, S. (2007). Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy, 3(6), 635-637. [CrossRef]
  • 52. Juretic, N., Santibanez, J.F., Hurtado, C., Martinez, J. (2001). ERK 1,2 and p38 pathways are involved in the proliferative stimuli mediated by urokinase in osteoblastic SaOS-2 cell line. Journal of Cellular Biochemistry, 83(1), 92-98. [CrossRef]
  • 53. Pugazhenthi, S., Miller, E., Sable, C., Young, P., Heidenreich, K.A., Boxer, L.M., Reusch, J.E. (1999). Insulin-like growth factor-I induces bcl-2 promoter through the transcription factor cAMP-response element-binding protein. Journal of Biological Chemistry, 274(39), 27529-27535. [CrossRef]
  • 54. Wang, Y., Huang, S., Sah, V.P., Ross, J.Jr., Brown, J.H., Han, J., Chien, K.R. (1998). Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. Journal of Biological Chemistry, 273(4), 2161-2168. [CrossRef]
  • 55. Li, L., Zhao, G.D., Shi, Z., Qi, L.L., Zhou, L.Y., Fu, Z.X. (2016). The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncology Letters, 12(5), 3045-3050. [CrossRef]
  • 56. Dhillon, A.S., Meikle, S., Yazici, Z., Eulitz, M., Kolch, W. (2002). Regulation of Raf-1 activation and signalling by dephosphorylation. EMBO Journal, 21(1-2), 64-71. [CrossRef]
  • 57. Rommel, C., Clarke, B.A., Zimmermann, S., Nunez, L., Rossman, R., Reid, K., Moelling, K., Yancopoulos, G.D., Glass, D.J. (1999). Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science, 286(5445), 1738-1741. [CrossRef]
  • 58. Corona, G., Deiana, M., Incani, A., Vauzour, D., Dessi, M.A., Spencer, J.P. (2007). Inhibition of p38/CREB phosphorylation and COX-2 expression by olive oil polyphenols underlies their anti-proliferative effects. Biochemical and Biophysical Research Communication, 362(3), 606-611. [CrossRef]
  • 59. Wang, N., Li, D.Y., Niu, H.Y., Zhang, Y., He, P., Wang, J.H. (2013). 2-Hydroxy-3-methylanthraquinone from Hedyotis diffusa Willd induces apoptosis in human leukemic U937 cells through modulation of MAPK pathways. Archives of Pharmacal Research, 36(6), 752-758. [CrossRef]
  • 60. Fu, Y., Zhang, Y., Gao, M., Quan, L., Gui, R., Liu, J. (2016). Alisertib induces apoptosis and autophagy through targeting the AKT/mTOR/AMPK/p38 pathway in leukemic cells. Molecular Medicine Reports, 14(1), 394-398. [CrossRef]
There are 60 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Research Article
Authors

Ecem Kaya Sezginer 0000-0002-8490-6293

Ali Yaprak 0000-0002-8951-5478

Arzu Zeynep Karabay 0000-0002-2482-0359

Early Pub Date June 12, 2023
Publication Date September 20, 2023
Submission Date April 21, 2023
Acceptance Date May 17, 2023
Published in Issue Year 2023

Cite

APA Kaya Sezginer, E., Yaprak, A., & Karabay, A. Z. (2023). COENZYME Q0 INHIBITS CELL PROLIFERATION AND MODULATES MAPK AND AKT SIGNALLING PATHWAYS IN HUMAN CHRONIC MYELOID LEUKEMIA K562 CELLS. Journal of Faculty of Pharmacy of Ankara University, 47(3), 761-769. https://doi.org/10.33483/jfpau.1286359
AMA Kaya Sezginer E, Yaprak A, Karabay AZ. COENZYME Q0 INHIBITS CELL PROLIFERATION AND MODULATES MAPK AND AKT SIGNALLING PATHWAYS IN HUMAN CHRONIC MYELOID LEUKEMIA K562 CELLS. Ankara Ecz. Fak. Derg. September 2023;47(3):761-769. doi:10.33483/jfpau.1286359
Chicago Kaya Sezginer, Ecem, Ali Yaprak, and Arzu Zeynep Karabay. “COENZYME Q0 INHIBITS CELL PROLIFERATION AND MODULATES MAPK AND AKT SIGNALLING PATHWAYS IN HUMAN CHRONIC MYELOID LEUKEMIA K562 CELLS”. Journal of Faculty of Pharmacy of Ankara University 47, no. 3 (September 2023): 761-69. https://doi.org/10.33483/jfpau.1286359.
EndNote Kaya Sezginer E, Yaprak A, Karabay AZ (September 1, 2023) COENZYME Q0 INHIBITS CELL PROLIFERATION AND MODULATES MAPK AND AKT SIGNALLING PATHWAYS IN HUMAN CHRONIC MYELOID LEUKEMIA K562 CELLS. Journal of Faculty of Pharmacy of Ankara University 47 3 761–769.
IEEE E. Kaya Sezginer, A. Yaprak, and A. Z. Karabay, “COENZYME Q0 INHIBITS CELL PROLIFERATION AND MODULATES MAPK AND AKT SIGNALLING PATHWAYS IN HUMAN CHRONIC MYELOID LEUKEMIA K562 CELLS”, Ankara Ecz. Fak. Derg., vol. 47, no. 3, pp. 761–769, 2023, doi: 10.33483/jfpau.1286359.
ISNAD Kaya Sezginer, Ecem et al. “COENZYME Q0 INHIBITS CELL PROLIFERATION AND MODULATES MAPK AND AKT SIGNALLING PATHWAYS IN HUMAN CHRONIC MYELOID LEUKEMIA K562 CELLS”. Journal of Faculty of Pharmacy of Ankara University 47/3 (September 2023), 761-769. https://doi.org/10.33483/jfpau.1286359.
JAMA Kaya Sezginer E, Yaprak A, Karabay AZ. COENZYME Q0 INHIBITS CELL PROLIFERATION AND MODULATES MAPK AND AKT SIGNALLING PATHWAYS IN HUMAN CHRONIC MYELOID LEUKEMIA K562 CELLS. Ankara Ecz. Fak. Derg. 2023;47:761–769.
MLA Kaya Sezginer, Ecem et al. “COENZYME Q0 INHIBITS CELL PROLIFERATION AND MODULATES MAPK AND AKT SIGNALLING PATHWAYS IN HUMAN CHRONIC MYELOID LEUKEMIA K562 CELLS”. Journal of Faculty of Pharmacy of Ankara University, vol. 47, no. 3, 2023, pp. 761-9, doi:10.33483/jfpau.1286359.
Vancouver Kaya Sezginer E, Yaprak A, Karabay AZ. COENZYME Q0 INHIBITS CELL PROLIFERATION AND MODULATES MAPK AND AKT SIGNALLING PATHWAYS IN HUMAN CHRONIC MYELOID LEUKEMIA K562 CELLS. Ankara Ecz. Fak. Derg. 2023;47(3):761-9.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.