Review
BibTex RIS Cite

THE PROMISING ROLE OF iNOS INHIBITORS IN ALZHEIMERS DISEASE

Year 2024, , 289 - 299, 20.01.2024
https://doi.org/10.33483/jfpau.1314900

Abstract

Objective: This study aims to explore the role of iNOS inhibitors in Alzheimer's disease (AD), a neurodegenerative disorder affecting millions worldwide. The main symptoms of AD include memory loss, cognitive decline, and behavioral changes. While the exact cause remains uncertain, both genetic and environmental factors are believed to contribute. Recent research has emphasized the significance of nitric oxide (NO) in AD development. Specifically, the upregulation of inducible nitric oxide synthase (iNOS) in AD patients leads to excessive NO production during neuronal inflammation, exacerbating AD and dementia. Therefore, the investigation focuses on the potential of iNOS inhibitors as a novel therapeutic approach for AD treatment.
Result and Discussion: In this review, we present the current therapeutic strategies available for Alzheimer's disease (AD) and explore the promising potential of iNOS inhibitors in AD treatment. Specifically, we will focus on their capacity to mitigate NO production and examine their potential neuroprotective effects. Additionally, this review will offer an overview of both natural and synthetic iNOS inhibitors, emphasizing the importance of safety considerations during the development of iNOS inhibitors as therapeutic interventions for AD.

References

  • 1. Lane, C.A., Hardy, J., Schott, J.M. (2017). Alzheimer’s disease. European Journal of Neurology, 25(1), 59-70. [CrossRef]
  • 2. Marhánková, J.H. (2023). The role of dementia and Alzheimer’s disease in older adults’ representations of aging and anxieties regarding one’s own future. Journal of Aging Studies, 65, 101127. [CrossRef]
  • 3. Sramek, J.J., Cutler, N.R. (1999). Recent developments in the drug treatment of Alzheimer’s disease. Drugs & Aging, 14(5), 359-373. [CrossRef]
  • 4. Rich, M.B., Blout Zawatsky, C.L., Botta, J.J., Christensen, K.D. (2023). Public perspective on medications to delay Alzheimer’s disease symptoms. Journal of Genetic Counseling, 32(5), 1009-1017. [CrossRef]
  • 5. Lanctôt, K.L., Amatniek, J., Ancoli-Israel, S., Arnold, S.E., Ballard, C., Cohen-Mansfield, J., Ismail, Z., Lyketsos, C., Miller, D.S., Musiek, E., Osorio, R.S., Rosenberg, P.B., Satlin, A., Steffens, D., Tariot, P., Bain, L.J., Carrillo, M.C., Hendrix, J.A., Jurgens, H., Boot, B. (2017). Neuropsychiatric signs and symptoms of Alzheimer’s disease: New treatment paradigms. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 3(3), 440-449. [CrossRef]
  • 6. Lyketsos, C.G., Carrillo, M.C., Ryan, J.M., Khachaturian, A.S., Trzepacz, P., Amatniek, J., Cedarbaum, J., Brashear, R., Miller, D.S. (2011). Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimer’s Dementia, 7(5), 532-539. [CrossRef]
  • 7. Li, L., He, R., Yan, H., Leng, Z., Zhu, S., Gu, Z. (2022). Nanotechnology for the diagnosis and treatment of Alzheimer's disease: A bibliometric analysis. Nano Today, 47, 101654. [CrossRef]
  • 8. De-Paula, V.J., Radanovic, M., Diniz, B.S., Forlenza, O.V. (2012). Alzheimer’s disease. Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease, 329-352. [CrossRef]
  • 9. Iseki, E., Tsunoda, S., Suzuki, K., Takayama, N., Akatsu, H., Yamamoto, T., Kosaka, K. (2002). Regional quantitative analysis of NFT in brains of non-demented elderly persons: Comparisons with findings in brains of late-onset Alzheimer’s disease and limbic NFT dementia. Neuropathology, 22(1), 34-39. [CrossRef]
  • 10. De Loof, A., Schoofs, L. (2019). Alzheimer’s disease: Is a dysfunctional mevalonate biosynthetic pathway the master-inducer of deleterious changes in cell physiology? OBM Neurobiology, 3(4), 26. [CrossRef]
  • 11. Rojas-Fernandez, C.H., Chen, M., Fernandez, H.L. (2002). Implications of amyloid precursor protein and subsequent β-amyloid production to the pharmacotherapy of Alzheimer’s disease. Pharmacotherapy, 22(12), 1547-1563. [CrossRef]
  • 12. Kumar, V., Saha, A., Roy, K. (2020). In silico modeling for dual inhibition of acetylcholinesterase (ache) and butyrylcholinesterase (buche) enzymes in Alzheimer’s disease. Computational Biology and Chemistry, 88, 107355. [CrossRef]
  • 13. Yiannopoulou, K.G., Anastasiou, A.I., Zachariou, V., Pelidou, S.H. (2019). Reasons for failed trials of disease-modifying treatments for Alzheimer disease and their contribution in recent research. Biomedicines, 7(4), 97. [CrossRef]
  • 14. Wang, M., Fang, L., Liu, T., Chen, X., Zheng, Y., Zhang, Y., Chen, S., Li, Z. (2021). Discovery of 7-O-1, 2, 3-triazole hesperetin derivatives as multi-target-directed ligands against Azheimer's disease. Chemico-Biological Interaction, 342, 109489. [CrossRef]
  • 15. Heneka, M.T., Kummer, M.P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A., Axt, D., Remus, A., Tzeng, T.C., Gelpi, E., Halle, A., Korte, M., Latz, E., Golenbock, D.T. (2012). NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 493(7434), 674-678. [CrossRef]
  • 16. Welikovitch, L.A., Do Carmo, S., Maglóczky, Z., Malcolm, J.C., Lőke, J., Klein, W.L., Freund, T., Cuello, A.C. (2020). Early intraneuronal amyloid triggers neuron-derived inflammatory signaling in app transgenic rats and human brain. Proceedings of the National Academy of Sciences, 117(12), 6844-6854. [CrossRef]
  • 17. Newcombe, E.A., Camats-Perna, J., Silva, M.L., Valmas, N., Huat, T.J., Medeiros, R. (2018). Inflammation: The link between comorbidities, genetics, and Alzheimer’s disease. Journal of Neuroinflammation, 15(1), 276. [CrossRef]
  • 18. Xue, F., Du, H. (2021). Trem2 mediates microglial anti-inflammatory activations in Alzheimer’s disease: Lessons learned from transcriptomics. Cells, 10(2), 321. [CrossRef]
  • 19. Yang, Y., Zhang, Z. (2020). Microglia and wnt pathways: Prospects for inflammation in Alzheimer’s disease. Frontiers in Aging Neuroscience, 12, 110 [CrossRef]
  • 20. Hampel, H., Caraci, F., Cuello, A.C., Caruso, G., Nisticò, R., Corbo, M., Baldacci, F., Toschi, N., Garaci, F., Chiesa, P.A., Verdooner, S.R., Akman-Anderson, L., Hernández, F., Ávila, J., Emanuele, E., Valenzuela, P.L., Lucía, A., Watling, M., Imbimbo, B.P., Lista, S. (2020). A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer's disease. Frontiers in Immunology, 11, 456. [CrossRef]
  • 21. Ndoja, A., Reja, R., Lee, S.H., Webster, J.D., Ngu, H., Rose, C.M., Kirkpatrick, D.S., Modrusan, Z., Chen, Y.J.J., Dugger, D.L., Gandham, V., Xie, L., Newton, K., Dixit, V.M. (2020). Ubiquitin ligase COP1 suppresses neuroinflammation by degrading C/EBPΒ in Microglia. Cell, 182(5), 1156-1169. [CrossRef]
  • 22. Blanchard, J.W., Bula, M., Davila-Velderrain, J., Akay, L.A., Zhu, L., Frank, A., Victor, M.B., Bonner, J. M., Mathys, H., Lin, Y.T., Ko, T., Bennett, D.A., Cam, H.P., Kellis, M., Tsai, L.H. (2020). Reconstruction of the human blood-brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. Nature Medicine, 26(6), 952-963. [CrossRef]
  • 23. Sweeney, M.D., Sagare, A.P., Zlokovic, B.V. (2018). Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews Neurology, 14(3), 133-150. [CrossRef]
  • 24. Whitson, H.E., Colton, C., El Khoury, J., Gate, D., Goate, A., Heneka, M.T., Kaddurah-Daouk, R., Klein, R.S., Shinohara, M.L., Sisodia, S., Spudich, S.S., Stevens, B., Tanzi, R., Ting, J.P., Garden, G., Aiello, A., Chiba-Falek, O., Heitman, J., Johnson, K.G., Terrando, N. (2022). Infection and inflammation: New perspectives on Alzheimer's disease. Brain, Behavior, & Immunity - Health, 22, 100462. [CrossRef]
  • 25. Cinelli, M.A., Do, H.T., Miley, G.P., Silverman, R.B. (2019). Inducible nitric oxide synthase: Regulation, structure, and inhibition. Medicinal Research Reviews, 40(1), 158-189. [CrossRef]
  • 26. Minhas, R., Bansal, Y., Bansal, G. (2019). Inducible nitric oxide synthase inhibitors: A comprehensive update. Medicinal Research Reviews, 40(3), 823-855. [CrossRef]
  • 27. Liu, F., Dong, B., Yang, X., Yang, Y., Zhang, J., Jin, D.Q., Ohizumi, Y., Lee, D., Xu, J., Guo, Y. (2018). No inhibitors function as potential anti-neuroinflammatory agents for ad from the flowers of Inula japonica. Bioorganic Chemistry, 77, 168-175. [CrossRef]
  • 28. Kim, J.Y., Lim, H.J., Lee, D.Y., Kim, J.S., Kim, D.H., Lee, H.J., Kim, H.D., Jeon, R., Ryu, J.H. (2009). In vitro anti-inflammatory activity of lignans isolated from Magnolia fargesii. Bioorganic Medicinal Chemistry Letters, 19(3), 937-940. [CrossRef]
  • 29. Kohno, S., Murata, T., Sugiura, A., Ito, C., Iranshahi, M., Hikita, K., Kaneda, N. (2011). Methyl galbanate, a novel inhibitor of nitric oxide production in mouse macrophage raw264.7 cells. Journal of Natural Medicines, 65(2), 353-359. [CrossRef]
  • 30. Liu, F., Yang, X., Ma, J., Yang, Y., Xie, C., Tuerhong, M., Jin, D.Q., Xu, J., Lee, D., Ohizumi, Y., Guo, Y. (2017). Nitric oxide inhibitory daphnane diterpenoids as potential anti-neuroinflammatory agents for AD from the twigs of Trigonostemon thyrsoideus. Bioorganic Chemistry, 75, 149-156. [CrossRef]
  • 31. Ma, J., Ren, Q., Dong, B., Shi, Z., Zhang, J., Jin, D.Q., Xu, J., Ohizumi, Y., Lee, D., Guo, Y. (2018). No inhibitory constituents as potential anti-neuroinflammatory agents for AD from Blumea balsamifera. Bioorganic Chemistry, 76, 449-457. [CrossRef]
  • 32. Zhao, H.Y., Wang, Y.Q., Li, Y.C., Lan, Q., Liao, H.B., Wang, H.S., Liang, D. (2021). Flavonol glycosides and phenylpropanoid glycosides with inhibitory effects on microglial nitric oxide production from Neoshirakia japonica. Fitoterapia, 151, 104877. [CrossRef]
  • 33. Dukic-Stefanovic, S., Gasic-Milenkovic, J., Deuther-Conrad, W., Münch, G. (2003). Signal transduction pathways in mouse microglia N-11 cells activated by advanced glycation endproducts (ages). Journal of Neurochemistry, 87(1), 44-55. [CrossRef]
  • 34. Esposito, G., De Filippis, D., Maiuri, M.C., De Stefano, D., Carnuccio, R., Iuvone, T. (2006). Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in β-amyloid stimulated PC12 neurons through P38 MAP kinase and NF-ΚB involvement. Neuroscience Letters, 399(1-2), 91-95. [CrossRef]
  • 35. Yan, A., Liu, Z., Song, L., Wang, X., Zhang, Y., Wu, N., Lin, J., Liu, Y., Liu, Z. (2019). Idebenone alleviates neuroinflammation and modulates microglial polarization in LPS-stimulated BV2 cells and MPTP-induced parkinson’s disease mice. Frontiers in Cellular Neuroscience, 12. [CrossRef]
  • 36. Wang, M., Liu, T., Chen, S., Wu, M., Han, J., Li, Z. (2021). Design and synthesis of 3-(4-pyridyl)-5-(4-sulfamido-phenyl)-1,2,4-oxadiazole derivatives as novel GSK-3Β inhibitors and evaluation of their potential as multifunctional anti-alzheimer agents. European Journal of Medicinal Chemistry, 209, 112874. [CrossRef]
  • 37. Liu, T., Chen, S., Du, J., Xing, S., Li, R., Li, Z. (2022). Design, synthesis, and biological evaluation of novel (4-(1,2,4-oxadiazol-5-yl)phenyl)-2-aminoacetamide derivatives as multifunctional agents for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 227, 113973. [CrossRef]
  • 38. Yang, Y.X., Zheng, L.T., Shi, J.J., Gao, B., Chen, Y.K., Yang, H.C., Chen, H.L., Li, Y.C., Zhen, X.C. (2014). Synthesis of 5α-cholestan-6-one derivatives and their inhibitory activities of no production in activated microglia: Discovery of a novel neuroinflammation inhibitor. Bioorganic Medicinal Chemistry Letters, 24(4), 1222-1227. [CrossRef]
  • 39. Watterson, D.M., Mirzoeva, S., Guo, L., Whyte, A., Bourguignon, J.J., Hibert, M., Haiech, J., Van Eldik, L.J. (2001). Ligand modulation of glial activation: Cell permeable, small molecule inhibitors of serine-threonine protein kinases can block induction of interleukin 1β and nitric oxide synthase II. Neurochemistry International, 39(5-6), 459-468. [CrossRef]
  • 40. Zhuo, Y., Guo, H., Cheng, Y., Wang, C., Wang, C., Wu, J., Zou, Z., Gan, D., Li, Y., Xu, J. (2016). Inhibition of phosphodiesterase-4 reverses the cognitive dysfunction and oxidative stress induced by AΒ25-35 in rats. Metabolic Brain Disease, 31(4), 779-791. [CrossRef]

ALZHEIMER HASTALIĞINDA iNOS İNHİBİTÖRLERİNİN UMUT VERİCİ ROLÜ

Year 2024, , 289 - 299, 20.01.2024
https://doi.org/10.33483/jfpau.1314900

Abstract

Amaç: Bu çalışma, milyonlarca insanı etkileyen Alzheimer hastalığı (AD) ve iNOS inhibitörlerinin rolünü araştırmayı amaçlamaktadır. AD'nin temel belirtileri arasında hafıza kaybı, bilişsel gerileme ve davranış değişiklikleri bulunmaktadır. Kesin neden belirsiz olsa da, genetik ve çevresel faktörlerin katkıda bulunduğu düşünülmektedir. Son araştırmalar, nitrik oksit (NO)'nin AD gelişimindeki önemini vurgulamıştır. Özellikle, AD hastalarında induklenebilir nitrik oksit sentaz (iNOS) aktivasyonu, nöronal iltihaplanma sırasında aşırı NO üretimine neden olarak AD ve bunamayı kötüleştirmektedir. Bu nedenle, bu araştırma, iNOS inhibitörlerinin AD tedavisinde yeni bir terapötik yaklaşım olarak potansiyelini incelemektedir.
Sonuç ve Tartışma: Bu derleme, Alzheimer hastalığı (AD) için mevcut terapötik stratejileri sunuyor ve AD tedavisinde iNOS inhibitörlerinin umut verici potansiyelini araştırıyoruz. Özellikle, iNOS inhibitörlerinin NO üretimini azaltma kapasitelerine odaklanacak ve potansiyel nörokoruyucu etkilerini inceleyeceğiz. Ayrıca, bu derleme doğal ve sentetik iNOS inhibitörlerinin genel bir bakışını sunacak ve AD için terapötik müdahaleler olarak iNOS inhibitörlerinin geliştirilmesi sürecinde güvenlik değerlendirmelerinin önemini vurgulayacaktır.

Supporting Institution

istanbul yeditepe university

References

  • 1. Lane, C.A., Hardy, J., Schott, J.M. (2017). Alzheimer’s disease. European Journal of Neurology, 25(1), 59-70. [CrossRef]
  • 2. Marhánková, J.H. (2023). The role of dementia and Alzheimer’s disease in older adults’ representations of aging and anxieties regarding one’s own future. Journal of Aging Studies, 65, 101127. [CrossRef]
  • 3. Sramek, J.J., Cutler, N.R. (1999). Recent developments in the drug treatment of Alzheimer’s disease. Drugs & Aging, 14(5), 359-373. [CrossRef]
  • 4. Rich, M.B., Blout Zawatsky, C.L., Botta, J.J., Christensen, K.D. (2023). Public perspective on medications to delay Alzheimer’s disease symptoms. Journal of Genetic Counseling, 32(5), 1009-1017. [CrossRef]
  • 5. Lanctôt, K.L., Amatniek, J., Ancoli-Israel, S., Arnold, S.E., Ballard, C., Cohen-Mansfield, J., Ismail, Z., Lyketsos, C., Miller, D.S., Musiek, E., Osorio, R.S., Rosenberg, P.B., Satlin, A., Steffens, D., Tariot, P., Bain, L.J., Carrillo, M.C., Hendrix, J.A., Jurgens, H., Boot, B. (2017). Neuropsychiatric signs and symptoms of Alzheimer’s disease: New treatment paradigms. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 3(3), 440-449. [CrossRef]
  • 6. Lyketsos, C.G., Carrillo, M.C., Ryan, J.M., Khachaturian, A.S., Trzepacz, P., Amatniek, J., Cedarbaum, J., Brashear, R., Miller, D.S. (2011). Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimer’s Dementia, 7(5), 532-539. [CrossRef]
  • 7. Li, L., He, R., Yan, H., Leng, Z., Zhu, S., Gu, Z. (2022). Nanotechnology for the diagnosis and treatment of Alzheimer's disease: A bibliometric analysis. Nano Today, 47, 101654. [CrossRef]
  • 8. De-Paula, V.J., Radanovic, M., Diniz, B.S., Forlenza, O.V. (2012). Alzheimer’s disease. Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease, 329-352. [CrossRef]
  • 9. Iseki, E., Tsunoda, S., Suzuki, K., Takayama, N., Akatsu, H., Yamamoto, T., Kosaka, K. (2002). Regional quantitative analysis of NFT in brains of non-demented elderly persons: Comparisons with findings in brains of late-onset Alzheimer’s disease and limbic NFT dementia. Neuropathology, 22(1), 34-39. [CrossRef]
  • 10. De Loof, A., Schoofs, L. (2019). Alzheimer’s disease: Is a dysfunctional mevalonate biosynthetic pathway the master-inducer of deleterious changes in cell physiology? OBM Neurobiology, 3(4), 26. [CrossRef]
  • 11. Rojas-Fernandez, C.H., Chen, M., Fernandez, H.L. (2002). Implications of amyloid precursor protein and subsequent β-amyloid production to the pharmacotherapy of Alzheimer’s disease. Pharmacotherapy, 22(12), 1547-1563. [CrossRef]
  • 12. Kumar, V., Saha, A., Roy, K. (2020). In silico modeling for dual inhibition of acetylcholinesterase (ache) and butyrylcholinesterase (buche) enzymes in Alzheimer’s disease. Computational Biology and Chemistry, 88, 107355. [CrossRef]
  • 13. Yiannopoulou, K.G., Anastasiou, A.I., Zachariou, V., Pelidou, S.H. (2019). Reasons for failed trials of disease-modifying treatments for Alzheimer disease and their contribution in recent research. Biomedicines, 7(4), 97. [CrossRef]
  • 14. Wang, M., Fang, L., Liu, T., Chen, X., Zheng, Y., Zhang, Y., Chen, S., Li, Z. (2021). Discovery of 7-O-1, 2, 3-triazole hesperetin derivatives as multi-target-directed ligands against Azheimer's disease. Chemico-Biological Interaction, 342, 109489. [CrossRef]
  • 15. Heneka, M.T., Kummer, M.P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A., Axt, D., Remus, A., Tzeng, T.C., Gelpi, E., Halle, A., Korte, M., Latz, E., Golenbock, D.T. (2012). NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 493(7434), 674-678. [CrossRef]
  • 16. Welikovitch, L.A., Do Carmo, S., Maglóczky, Z., Malcolm, J.C., Lőke, J., Klein, W.L., Freund, T., Cuello, A.C. (2020). Early intraneuronal amyloid triggers neuron-derived inflammatory signaling in app transgenic rats and human brain. Proceedings of the National Academy of Sciences, 117(12), 6844-6854. [CrossRef]
  • 17. Newcombe, E.A., Camats-Perna, J., Silva, M.L., Valmas, N., Huat, T.J., Medeiros, R. (2018). Inflammation: The link between comorbidities, genetics, and Alzheimer’s disease. Journal of Neuroinflammation, 15(1), 276. [CrossRef]
  • 18. Xue, F., Du, H. (2021). Trem2 mediates microglial anti-inflammatory activations in Alzheimer’s disease: Lessons learned from transcriptomics. Cells, 10(2), 321. [CrossRef]
  • 19. Yang, Y., Zhang, Z. (2020). Microglia and wnt pathways: Prospects for inflammation in Alzheimer’s disease. Frontiers in Aging Neuroscience, 12, 110 [CrossRef]
  • 20. Hampel, H., Caraci, F., Cuello, A.C., Caruso, G., Nisticò, R., Corbo, M., Baldacci, F., Toschi, N., Garaci, F., Chiesa, P.A., Verdooner, S.R., Akman-Anderson, L., Hernández, F., Ávila, J., Emanuele, E., Valenzuela, P.L., Lucía, A., Watling, M., Imbimbo, B.P., Lista, S. (2020). A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer's disease. Frontiers in Immunology, 11, 456. [CrossRef]
  • 21. Ndoja, A., Reja, R., Lee, S.H., Webster, J.D., Ngu, H., Rose, C.M., Kirkpatrick, D.S., Modrusan, Z., Chen, Y.J.J., Dugger, D.L., Gandham, V., Xie, L., Newton, K., Dixit, V.M. (2020). Ubiquitin ligase COP1 suppresses neuroinflammation by degrading C/EBPΒ in Microglia. Cell, 182(5), 1156-1169. [CrossRef]
  • 22. Blanchard, J.W., Bula, M., Davila-Velderrain, J., Akay, L.A., Zhu, L., Frank, A., Victor, M.B., Bonner, J. M., Mathys, H., Lin, Y.T., Ko, T., Bennett, D.A., Cam, H.P., Kellis, M., Tsai, L.H. (2020). Reconstruction of the human blood-brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. Nature Medicine, 26(6), 952-963. [CrossRef]
  • 23. Sweeney, M.D., Sagare, A.P., Zlokovic, B.V. (2018). Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews Neurology, 14(3), 133-150. [CrossRef]
  • 24. Whitson, H.E., Colton, C., El Khoury, J., Gate, D., Goate, A., Heneka, M.T., Kaddurah-Daouk, R., Klein, R.S., Shinohara, M.L., Sisodia, S., Spudich, S.S., Stevens, B., Tanzi, R., Ting, J.P., Garden, G., Aiello, A., Chiba-Falek, O., Heitman, J., Johnson, K.G., Terrando, N. (2022). Infection and inflammation: New perspectives on Alzheimer's disease. Brain, Behavior, & Immunity - Health, 22, 100462. [CrossRef]
  • 25. Cinelli, M.A., Do, H.T., Miley, G.P., Silverman, R.B. (2019). Inducible nitric oxide synthase: Regulation, structure, and inhibition. Medicinal Research Reviews, 40(1), 158-189. [CrossRef]
  • 26. Minhas, R., Bansal, Y., Bansal, G. (2019). Inducible nitric oxide synthase inhibitors: A comprehensive update. Medicinal Research Reviews, 40(3), 823-855. [CrossRef]
  • 27. Liu, F., Dong, B., Yang, X., Yang, Y., Zhang, J., Jin, D.Q., Ohizumi, Y., Lee, D., Xu, J., Guo, Y. (2018). No inhibitors function as potential anti-neuroinflammatory agents for ad from the flowers of Inula japonica. Bioorganic Chemistry, 77, 168-175. [CrossRef]
  • 28. Kim, J.Y., Lim, H.J., Lee, D.Y., Kim, J.S., Kim, D.H., Lee, H.J., Kim, H.D., Jeon, R., Ryu, J.H. (2009). In vitro anti-inflammatory activity of lignans isolated from Magnolia fargesii. Bioorganic Medicinal Chemistry Letters, 19(3), 937-940. [CrossRef]
  • 29. Kohno, S., Murata, T., Sugiura, A., Ito, C., Iranshahi, M., Hikita, K., Kaneda, N. (2011). Methyl galbanate, a novel inhibitor of nitric oxide production in mouse macrophage raw264.7 cells. Journal of Natural Medicines, 65(2), 353-359. [CrossRef]
  • 30. Liu, F., Yang, X., Ma, J., Yang, Y., Xie, C., Tuerhong, M., Jin, D.Q., Xu, J., Lee, D., Ohizumi, Y., Guo, Y. (2017). Nitric oxide inhibitory daphnane diterpenoids as potential anti-neuroinflammatory agents for AD from the twigs of Trigonostemon thyrsoideus. Bioorganic Chemistry, 75, 149-156. [CrossRef]
  • 31. Ma, J., Ren, Q., Dong, B., Shi, Z., Zhang, J., Jin, D.Q., Xu, J., Ohizumi, Y., Lee, D., Guo, Y. (2018). No inhibitory constituents as potential anti-neuroinflammatory agents for AD from Blumea balsamifera. Bioorganic Chemistry, 76, 449-457. [CrossRef]
  • 32. Zhao, H.Y., Wang, Y.Q., Li, Y.C., Lan, Q., Liao, H.B., Wang, H.S., Liang, D. (2021). Flavonol glycosides and phenylpropanoid glycosides with inhibitory effects on microglial nitric oxide production from Neoshirakia japonica. Fitoterapia, 151, 104877. [CrossRef]
  • 33. Dukic-Stefanovic, S., Gasic-Milenkovic, J., Deuther-Conrad, W., Münch, G. (2003). Signal transduction pathways in mouse microglia N-11 cells activated by advanced glycation endproducts (ages). Journal of Neurochemistry, 87(1), 44-55. [CrossRef]
  • 34. Esposito, G., De Filippis, D., Maiuri, M.C., De Stefano, D., Carnuccio, R., Iuvone, T. (2006). Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in β-amyloid stimulated PC12 neurons through P38 MAP kinase and NF-ΚB involvement. Neuroscience Letters, 399(1-2), 91-95. [CrossRef]
  • 35. Yan, A., Liu, Z., Song, L., Wang, X., Zhang, Y., Wu, N., Lin, J., Liu, Y., Liu, Z. (2019). Idebenone alleviates neuroinflammation and modulates microglial polarization in LPS-stimulated BV2 cells and MPTP-induced parkinson’s disease mice. Frontiers in Cellular Neuroscience, 12. [CrossRef]
  • 36. Wang, M., Liu, T., Chen, S., Wu, M., Han, J., Li, Z. (2021). Design and synthesis of 3-(4-pyridyl)-5-(4-sulfamido-phenyl)-1,2,4-oxadiazole derivatives as novel GSK-3Β inhibitors and evaluation of their potential as multifunctional anti-alzheimer agents. European Journal of Medicinal Chemistry, 209, 112874. [CrossRef]
  • 37. Liu, T., Chen, S., Du, J., Xing, S., Li, R., Li, Z. (2022). Design, synthesis, and biological evaluation of novel (4-(1,2,4-oxadiazol-5-yl)phenyl)-2-aminoacetamide derivatives as multifunctional agents for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 227, 113973. [CrossRef]
  • 38. Yang, Y.X., Zheng, L.T., Shi, J.J., Gao, B., Chen, Y.K., Yang, H.C., Chen, H.L., Li, Y.C., Zhen, X.C. (2014). Synthesis of 5α-cholestan-6-one derivatives and their inhibitory activities of no production in activated microglia: Discovery of a novel neuroinflammation inhibitor. Bioorganic Medicinal Chemistry Letters, 24(4), 1222-1227. [CrossRef]
  • 39. Watterson, D.M., Mirzoeva, S., Guo, L., Whyte, A., Bourguignon, J.J., Hibert, M., Haiech, J., Van Eldik, L.J. (2001). Ligand modulation of glial activation: Cell permeable, small molecule inhibitors of serine-threonine protein kinases can block induction of interleukin 1β and nitric oxide synthase II. Neurochemistry International, 39(5-6), 459-468. [CrossRef]
  • 40. Zhuo, Y., Guo, H., Cheng, Y., Wang, C., Wang, C., Wu, J., Zou, Z., Gan, D., Li, Y., Xu, J. (2016). Inhibition of phosphodiesterase-4 reverses the cognitive dysfunction and oxidative stress induced by AΒ25-35 in rats. Metabolic Brain Disease, 31(4), 779-791. [CrossRef]
There are 40 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Sciences
Journal Section Collection
Authors

Shkar Marıwan Ahmed 0009-0002-1482-6324

Gulcin Tugcu 0000-0002-9750-6563

Meric Koksal Akkoc 0000-0001-7662-9364

Early Pub Date October 23, 2023
Publication Date January 20, 2024
Submission Date June 15, 2023
Acceptance Date September 26, 2023
Published in Issue Year 2024

Cite

APA Marıwan Ahmed, S., Tugcu, G., & Koksal Akkoc, M. (2024). THE PROMISING ROLE OF iNOS INHIBITORS IN ALZHEIMERS DISEASE. Journal of Faculty of Pharmacy of Ankara University, 48(1), 289-299. https://doi.org/10.33483/jfpau.1314900
AMA Marıwan Ahmed S, Tugcu G, Koksal Akkoc M. THE PROMISING ROLE OF iNOS INHIBITORS IN ALZHEIMERS DISEASE. Ankara Ecz. Fak. Derg. January 2024;48(1):289-299. doi:10.33483/jfpau.1314900
Chicago Marıwan Ahmed, Shkar, Gulcin Tugcu, and Meric Koksal Akkoc. “THE PROMISING ROLE OF INOS INHIBITORS IN ALZHEIMERS DISEASE”. Journal of Faculty of Pharmacy of Ankara University 48, no. 1 (January 2024): 289-99. https://doi.org/10.33483/jfpau.1314900.
EndNote Marıwan Ahmed S, Tugcu G, Koksal Akkoc M (January 1, 2024) THE PROMISING ROLE OF iNOS INHIBITORS IN ALZHEIMERS DISEASE. Journal of Faculty of Pharmacy of Ankara University 48 1 289–299.
IEEE S. Marıwan Ahmed, G. Tugcu, and M. Koksal Akkoc, “THE PROMISING ROLE OF iNOS INHIBITORS IN ALZHEIMERS DISEASE”, Ankara Ecz. Fak. Derg., vol. 48, no. 1, pp. 289–299, 2024, doi: 10.33483/jfpau.1314900.
ISNAD Marıwan Ahmed, Shkar et al. “THE PROMISING ROLE OF INOS INHIBITORS IN ALZHEIMERS DISEASE”. Journal of Faculty of Pharmacy of Ankara University 48/1 (January 2024), 289-299. https://doi.org/10.33483/jfpau.1314900.
JAMA Marıwan Ahmed S, Tugcu G, Koksal Akkoc M. THE PROMISING ROLE OF iNOS INHIBITORS IN ALZHEIMERS DISEASE. Ankara Ecz. Fak. Derg. 2024;48:289–299.
MLA Marıwan Ahmed, Shkar et al. “THE PROMISING ROLE OF INOS INHIBITORS IN ALZHEIMERS DISEASE”. Journal of Faculty of Pharmacy of Ankara University, vol. 48, no. 1, 2024, pp. 289-9, doi:10.33483/jfpau.1314900.
Vancouver Marıwan Ahmed S, Tugcu G, Koksal Akkoc M. THE PROMISING ROLE OF iNOS INHIBITORS IN ALZHEIMERS DISEASE. Ankara Ecz. Fak. Derg. 2024;48(1):289-9.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.