Research Article
BibTex RIS Cite

THE EFFECT OF ESCHERICHIA COLI BACTERIOPHAGE COCKTAIL ON BACTERIAL CONTAMINATION IN WATER

Year 2024, , 242 - 250, 20.01.2024
https://doi.org/10.33483/jfpau.1390191

Abstract

Objective: Wastewater and environmental water resources are treated to eliminate pathogenic microorganisms but contamination is still a significant problem. In particular, the presence of contamination with Escherichia coli (E. coli) is an important indicator of fecal contamination. Due to increasing antimicrobial resistance and failures of new antimicrobial processes, interest in bacteriophages in pathogen control has increased. Therefore, in our study, phage-based bacteria control in environmental waters was investigated as a natural solution.
Material and Method: In our study, E. coli and lytic bacteriophages specific to these E. coli were isolated from environmental water samples in Ankara. The lytic activities of the isolated phages were determined on environmental and clinical extended-spectrum β-lactamases E. coli isolates. Three phages with high lytic activity were selected, and the effectiveness of the single phage and their mixtures on E. coli contamination in water was tested.
Result and Discussion: As a result of the study, 17 E. coli strains were isolated from 30 environmental water samples. Lytic bacteriophages in 30 different plaque structures were also isolated from water samples. The isolated phages were found to have lytic activity in the range of 32-70% on the tested bacteria. The effectiveness of three selected phages and their cocktail on E. coli contamination in water was measured at 6th and 24th. As a result, it was observed that the cocktail application reduced the number of host bacteria in the water below detectable limits, also provided a 5-log reduction in non-host test bacteria and maintained its effect for 24 hours. When the results are evaluated, it is thought that cocktail phage application will be an effective method against E. coli contamination in water.

Ethical Statement

Gerekmemektedir.

Supporting Institution

TÜBİTAK

Project Number

1919B012213181

References

  • 1. Lewoyehu, M. (2021). Evaluation of drinking water quality in rural area of amhara region, ethiopia: The case of mecha district. Journal of Chemistry, 9911838. [CrossRef]
  • 2. Moe, C.L., Rheingans, R.D. (2006). Global challenges in water, sanitation and health. Journal of Water and Health, 4(1), 41-57. [CrossRef]
  • 3. Qadir, M., Drechsel, P., Jiménez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., Olaniyan, O. (2020). Global and regional potential of wastewater as a water, nutrient and energy source. Natural Resources Forum, 44(1), 40-51. [CrossRef]
  • 4. Wen, X., Chen, F., Lin, Y., Zhu, H., Yuan, F., Kuang, D., Yuan, Z. (2020). Microbial indicators and their use for monitoring drinking water quality-a review. Sustainability, 12(6), 2249. [CrossRef]
  • 5. Soliman, R.M., Othman, B.A., Shoman, S.A., Azzam, M.I., Gado, M.M. (2023). Biocontrol of multi-drug resistant pathogenic bacteria in drainage water by locally isolated bacteriophage. BMC Microbiology, 23(1), 1-11. [CrossRef]
  • 6. Gao, Y.X., Li, X., Fan, X.Y., Zhao, J.R., Zhang, Z.X. (2022). Wastewater treatment plants as reservoirs and sources for antibiotic resistance genes: A review on occurrence, transmission and removal. Journal of Water Process Engineering, 46, 102539. [CrossRef]
  • 7. Rogovski, P., Cadamuro, R.D., Souza, D.S.M., Souza, E.B., da Silva, R., Silva, M.A., Fongaro, G. (2021). Perspectives of biological bacteriophage-based tools for wastewater systems monitoring and sanitary control. In The Future of Effluent Treatment Plants, 33-50. [CrossRef]
  • 8. Mathieu, J., Yu, P., Zuo, P., Da Silva, M. L., Alvarez, P.J. (2019). Going viral: emerging opportunities for phage-based bacterial control in water treatment and reuse. Accounts of Chemical Research, 52(4), 849-857. [CrossRef]
  • 9. Kotay, S.M., Datta, T., Choi, J., Goel, R. (2011). Biocontrol of biomass bulking caused by Haliscomenobacter hydrossis using a newly isolated lytic bacteriophage. Water Research, 45(2), 694-704. [CrossRef]
  • 10. Aminov, R.I. (2010). A brief history of the antibiotic era: Lessons learned and challenges for the future. Frontiers in Microbiolology, 1, 134. [CrossRef]
  • 11. Şen Karaman, D., Ercan, U.K., Bakay, E., Topaloğlu, N., Rosenholm, J.M. (2020). Evolving technologies and strategies for combating antibacterial resistance in the advent of the postantibiotic era. Advanced Functional Materials, 30(15), 1908783. [CrossRef]
  • 12. Ling, H., Lou, X., Luo, Q., He, Z., Sun, M., Sun, J. (2022). Recent advances in bacteriophage-based therapeutics: Insight into the post-antibiotic era. Acta Pharmaceutica Sinica B, 12(12), 4348-4364. [CrossRef]
  • 13. Jassim, S.A., Limoges, R.G. (2013). Impact of external forces on cyanophage-host interactions in aquatic ecosystems. World Journal of Microbiologu and Biotechnology, 29(10), 1751-1762. [CrossRef]
  • 14. Clark, J.R., March, J.B. (2006). Bacteriophages and biotechnology: Vaccines, gene therapy and antibacterials. Trends in Biotechnology, 24(5), 212-218. [CrossRef]
  • 15. Knowles, B., Silveira, C.B., Bailey, B.A., Barott, K., Cantu, V. A., Cobián-Güemes, A.G., Rohwer, F. (2016). Lytic to temperate switching of viral communities. Nature, 531(7595), 466-470. [CrossRef]
  • 16. Torres-Barceló, C. (2018). The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerging Microbes Infection, 7(1), 168. [CrossRef]
  • 17. Wittebole, X., De Roock, S., Opal, S.M. (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 5(1), 226-235. [CrossRef]
  • 18. Strathdee, S.A., Hatfull, G.F., Mutalik, V.K., Schooley, R.T. (2023). Phage therapy: From biological mechanisms to future directions. Cell, 186(1), 17-31. [CrossRef]
  • 19. Ngwa, G.A., Schop, R., Weir, S., León-Velarde, C.G., Odumeru, J.A. (2013). Detection and enumeration of E. coli O157:H7 in water samples by culture and molecular methods. Journal of Microbiological Methods, 92(2), 164-172. [CrossRef]
  • 20. Merabishvili, M., Pirnay, J.P., Verbeken, G., Chanishvili, N., Tediashvili, M., Lashkhi, N., Vaneechoutte, M. (2009). Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PloS One, 4(3), e4944. [CrossRef]
  • 21. Garbe, J., Wesche, A., Bunk, B., Kazmierczak, M., Selezska, K., Rohde, C., Schobert, M. (2010). Characterization of JG024, a Pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions. BMC Microbiology, 10(1), 1-10. [CrossRef]
  • 22. Kauppinen, A., Siponen, S., Pitkänen, T., Holmfeldt, K., Pursiainen, A., Torvinen, E., Miettinen, I.T. (2021). Phage biocontrol of Pseudomonas aeruginosa in water. Viruses 2021, 13, 928. [CrossRef]
  • 23. Reid, G., Howard, J., Gan, B.S. (2001). Can bacterial interference prevent infection? Trends in Microbiolology, 9(9), 424-428. [CrossRef]
  • 24. Liu, R., Li, Z., Han, G., Cun, S., Yang, M., Liu, X. (2021). Bacteriophage ecology in biological wastewater treatment systems. Applied Microbiology and Biotechnology, 105, 5299-5307. [CrossRef]
  • 25. Kristensen, J.M., Nierychlo, M., Albertsen, M., Nielsen, P.H. (2020). Bacteria from the genus Arcobacter are abundant in effluent from wastewater treatment plants. Applied and Environmental Microbiology, 86(9), e03044-19. [CrossRef]
  • 26. Kutateladze, M., Adamia, R. (2010). Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends in Biotechnolology, 28(12), 591-595. [CrossRef]
  • 27. Withey, S., Cartmell, E., Avery, L.M., Stephenson, T. (2005). Bacteriophages—potential for application in wastewater treatment processes. Science of The Total Environment, 339(1-3), 1-18. [CrossRef]
  • 28. de Jonge, P.A., Nobrega, F.L., Brouns, S.J., Dutilh, B.E. (2019). Molecular and evolutionary determinants of bacteriophage host range. Trends in Microbiology, 27(1), 51-63. [CrossRef]
  • 29. Yamaki, S., Yamazaki, K., Kawai, Y. (2022). Broad host range bacteriophage, EscoHU1, infecting Escherichia coli O157:H7 and Salmonella enterica: Characterization, comparative genomics, and applications in food safety. International Journal of Food Microbiology, 372, 109680. [CrossRef]
  • 30. Ribeiro, J.M., Pereira, G.N., Durli Junior, I., Teixeira, G.M., Bertozzi, M.M., Verri Jr, W.A., Nakazato, G. (2023). Comparative analysis of effectiveness for phage cocktail development against multiple Salmonella serovars and its biofilm control activity. Scientific Reports, 13(1), 13054. [CrossRef]
  • 31. Turki, Y., Ouzari, H., Mehri, I., Ammar, A.B., Hassen, A. (2012). Evaluation of a cocktail of three bacteriophages for the biocontrol of Salmonella of wastewater. Food Research International, 45(2), 1099-1105. [CrossRef]
  • 32. Yu, P., Mathieu, J., Lu, G.W., Gabiatti, N., Alvarez, P.J. (2017). Control of antibiotic-resistant bacteria in activated sludge using polyvalent phages in conjunction with a production host. Environmental Science & Technology Letters, 4(4), 137-142. [CrossRef]
  • 33. Periasamy, D., Sundaram, A. (2013). A novel approach for pathogen reduction in wastewater treatment. Journal of Environmental Health Science and Engineering, 11(1), 12. [CrossRef]
  • 34. Maal, K.B., Delfan, A.S., Salmanizadeh, S. (2015). Isolation and identification of two novel Escherichia coli bacteriophages and their application in wastewater treatment and coliform's phage therapy. Jundishapur Journal of Microbiology, 8(3), e14945. [CrossRef]

ESCHERICHIA COLI BAKTERİYOFAJ KOKTEYLİNİN SUDAKİ BAKTERİ KONTAMİNASYONU ÜZERİNE ETKİSİ

Year 2024, , 242 - 250, 20.01.2024
https://doi.org/10.33483/jfpau.1390191

Abstract

Amaç: Atık su ve çevresel su kaynaklarında patojen mikroorganizmaları ortadan kaldırmak için arıtma yapılsa da bulaş hâlâ önemli bir sorundur. Özellikle Escherichia coli (E. coli) ile kontaminasyonun varlığı dışkı ile kontaminasyonun önemli bir göstergesidir. Artan antimikrobiyal direnç ve yeni antimikrobiyal geliştirme süreçlerindeki başarısızlıklar nedeniyle patojen kontrolünde bakteriyofajlara olan ilgi artmıştır. Bu nedenle çalışmamızda doğal bir çözüm önerisi olarak çevresel sularda faj bazlı bakteri kontrolü araştırılmıştır.
Gereç ve Yöntem: Çalışmamızda Ankara ili çevresel su örneklerinden E. coli ve bu bakterilere özgü litik bakteriyofajlar izole edilmiştir. İzole edilen fajların litik etkinlikleri çevresel ve klinik E. coli izolatları üzerinde belirlenmiştir. Yüksek litik etkinliğe sahip 3 faj seçilerek, fajların tek tek ve karışımlarından hazırlanan kokteylinin sudaki E. coli kontaminasyonu üzerine etkinlikleri test edilmiştir.
Sonuç ve Tartışma: Çalışma sonucunda 30 çevresel su örneğinden 17 E. coli suşu izole edilmiştir. Su örneklerinden aynı zamanda 30 farklı plak yapısında litik bakteriyofaj izolasyonu sağlanmıştır. İzole edilen fajların test edilen bakteriler üzerinde %32-70 aralığında litik etkinliğe sahip oldukları bulunmuştur. Seçilen üç fajın ve bunlardan hazırlanan kokteylin sudaki E. coli kontaminasyonu üzerine etkinliği 6 ve 24. saatte ölçülmüştür. Bunun sonucunda kokteyl uygulamasının sudaki konak bakteri sayısını tespit edilebilen sınırların altına düşürdüğü ayrıca konak olmayan test bakterilerinde 5 log azalma sağladığı ve etkisini 24 saat süresince de koruduğu görülmüştür. Sonuçlar değerlendirildiğinde kokteyl faj uygulamasının sudaki E. coli kontaminasyonuna karşı etkin bir yöntem olacağı düşünülmektedir.

Project Number

1919B012213181

References

  • 1. Lewoyehu, M. (2021). Evaluation of drinking water quality in rural area of amhara region, ethiopia: The case of mecha district. Journal of Chemistry, 9911838. [CrossRef]
  • 2. Moe, C.L., Rheingans, R.D. (2006). Global challenges in water, sanitation and health. Journal of Water and Health, 4(1), 41-57. [CrossRef]
  • 3. Qadir, M., Drechsel, P., Jiménez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., Olaniyan, O. (2020). Global and regional potential of wastewater as a water, nutrient and energy source. Natural Resources Forum, 44(1), 40-51. [CrossRef]
  • 4. Wen, X., Chen, F., Lin, Y., Zhu, H., Yuan, F., Kuang, D., Yuan, Z. (2020). Microbial indicators and their use for monitoring drinking water quality-a review. Sustainability, 12(6), 2249. [CrossRef]
  • 5. Soliman, R.M., Othman, B.A., Shoman, S.A., Azzam, M.I., Gado, M.M. (2023). Biocontrol of multi-drug resistant pathogenic bacteria in drainage water by locally isolated bacteriophage. BMC Microbiology, 23(1), 1-11. [CrossRef]
  • 6. Gao, Y.X., Li, X., Fan, X.Y., Zhao, J.R., Zhang, Z.X. (2022). Wastewater treatment plants as reservoirs and sources for antibiotic resistance genes: A review on occurrence, transmission and removal. Journal of Water Process Engineering, 46, 102539. [CrossRef]
  • 7. Rogovski, P., Cadamuro, R.D., Souza, D.S.M., Souza, E.B., da Silva, R., Silva, M.A., Fongaro, G. (2021). Perspectives of biological bacteriophage-based tools for wastewater systems monitoring and sanitary control. In The Future of Effluent Treatment Plants, 33-50. [CrossRef]
  • 8. Mathieu, J., Yu, P., Zuo, P., Da Silva, M. L., Alvarez, P.J. (2019). Going viral: emerging opportunities for phage-based bacterial control in water treatment and reuse. Accounts of Chemical Research, 52(4), 849-857. [CrossRef]
  • 9. Kotay, S.M., Datta, T., Choi, J., Goel, R. (2011). Biocontrol of biomass bulking caused by Haliscomenobacter hydrossis using a newly isolated lytic bacteriophage. Water Research, 45(2), 694-704. [CrossRef]
  • 10. Aminov, R.I. (2010). A brief history of the antibiotic era: Lessons learned and challenges for the future. Frontiers in Microbiolology, 1, 134. [CrossRef]
  • 11. Şen Karaman, D., Ercan, U.K., Bakay, E., Topaloğlu, N., Rosenholm, J.M. (2020). Evolving technologies and strategies for combating antibacterial resistance in the advent of the postantibiotic era. Advanced Functional Materials, 30(15), 1908783. [CrossRef]
  • 12. Ling, H., Lou, X., Luo, Q., He, Z., Sun, M., Sun, J. (2022). Recent advances in bacteriophage-based therapeutics: Insight into the post-antibiotic era. Acta Pharmaceutica Sinica B, 12(12), 4348-4364. [CrossRef]
  • 13. Jassim, S.A., Limoges, R.G. (2013). Impact of external forces on cyanophage-host interactions in aquatic ecosystems. World Journal of Microbiologu and Biotechnology, 29(10), 1751-1762. [CrossRef]
  • 14. Clark, J.R., March, J.B. (2006). Bacteriophages and biotechnology: Vaccines, gene therapy and antibacterials. Trends in Biotechnology, 24(5), 212-218. [CrossRef]
  • 15. Knowles, B., Silveira, C.B., Bailey, B.A., Barott, K., Cantu, V. A., Cobián-Güemes, A.G., Rohwer, F. (2016). Lytic to temperate switching of viral communities. Nature, 531(7595), 466-470. [CrossRef]
  • 16. Torres-Barceló, C. (2018). The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerging Microbes Infection, 7(1), 168. [CrossRef]
  • 17. Wittebole, X., De Roock, S., Opal, S.M. (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 5(1), 226-235. [CrossRef]
  • 18. Strathdee, S.A., Hatfull, G.F., Mutalik, V.K., Schooley, R.T. (2023). Phage therapy: From biological mechanisms to future directions. Cell, 186(1), 17-31. [CrossRef]
  • 19. Ngwa, G.A., Schop, R., Weir, S., León-Velarde, C.G., Odumeru, J.A. (2013). Detection and enumeration of E. coli O157:H7 in water samples by culture and molecular methods. Journal of Microbiological Methods, 92(2), 164-172. [CrossRef]
  • 20. Merabishvili, M., Pirnay, J.P., Verbeken, G., Chanishvili, N., Tediashvili, M., Lashkhi, N., Vaneechoutte, M. (2009). Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PloS One, 4(3), e4944. [CrossRef]
  • 21. Garbe, J., Wesche, A., Bunk, B., Kazmierczak, M., Selezska, K., Rohde, C., Schobert, M. (2010). Characterization of JG024, a Pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions. BMC Microbiology, 10(1), 1-10. [CrossRef]
  • 22. Kauppinen, A., Siponen, S., Pitkänen, T., Holmfeldt, K., Pursiainen, A., Torvinen, E., Miettinen, I.T. (2021). Phage biocontrol of Pseudomonas aeruginosa in water. Viruses 2021, 13, 928. [CrossRef]
  • 23. Reid, G., Howard, J., Gan, B.S. (2001). Can bacterial interference prevent infection? Trends in Microbiolology, 9(9), 424-428. [CrossRef]
  • 24. Liu, R., Li, Z., Han, G., Cun, S., Yang, M., Liu, X. (2021). Bacteriophage ecology in biological wastewater treatment systems. Applied Microbiology and Biotechnology, 105, 5299-5307. [CrossRef]
  • 25. Kristensen, J.M., Nierychlo, M., Albertsen, M., Nielsen, P.H. (2020). Bacteria from the genus Arcobacter are abundant in effluent from wastewater treatment plants. Applied and Environmental Microbiology, 86(9), e03044-19. [CrossRef]
  • 26. Kutateladze, M., Adamia, R. (2010). Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends in Biotechnolology, 28(12), 591-595. [CrossRef]
  • 27. Withey, S., Cartmell, E., Avery, L.M., Stephenson, T. (2005). Bacteriophages—potential for application in wastewater treatment processes. Science of The Total Environment, 339(1-3), 1-18. [CrossRef]
  • 28. de Jonge, P.A., Nobrega, F.L., Brouns, S.J., Dutilh, B.E. (2019). Molecular and evolutionary determinants of bacteriophage host range. Trends in Microbiology, 27(1), 51-63. [CrossRef]
  • 29. Yamaki, S., Yamazaki, K., Kawai, Y. (2022). Broad host range bacteriophage, EscoHU1, infecting Escherichia coli O157:H7 and Salmonella enterica: Characterization, comparative genomics, and applications in food safety. International Journal of Food Microbiology, 372, 109680. [CrossRef]
  • 30. Ribeiro, J.M., Pereira, G.N., Durli Junior, I., Teixeira, G.M., Bertozzi, M.M., Verri Jr, W.A., Nakazato, G. (2023). Comparative analysis of effectiveness for phage cocktail development against multiple Salmonella serovars and its biofilm control activity. Scientific Reports, 13(1), 13054. [CrossRef]
  • 31. Turki, Y., Ouzari, H., Mehri, I., Ammar, A.B., Hassen, A. (2012). Evaluation of a cocktail of three bacteriophages for the biocontrol of Salmonella of wastewater. Food Research International, 45(2), 1099-1105. [CrossRef]
  • 32. Yu, P., Mathieu, J., Lu, G.W., Gabiatti, N., Alvarez, P.J. (2017). Control of antibiotic-resistant bacteria in activated sludge using polyvalent phages in conjunction with a production host. Environmental Science & Technology Letters, 4(4), 137-142. [CrossRef]
  • 33. Periasamy, D., Sundaram, A. (2013). A novel approach for pathogen reduction in wastewater treatment. Journal of Environmental Health Science and Engineering, 11(1), 12. [CrossRef]
  • 34. Maal, K.B., Delfan, A.S., Salmanizadeh, S. (2015). Isolation and identification of two novel Escherichia coli bacteriophages and their application in wastewater treatment and coliform's phage therapy. Jundishapur Journal of Microbiology, 8(3), e14945. [CrossRef]
There are 34 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Microbiology
Journal Section Research Article
Authors

Hilal Basak Erol 0000-0002-7943-755X

Aylin Keskin This is me 0009-0004-0610-2590

Project Number 1919B012213181
Early Pub Date December 29, 2023
Publication Date January 20, 2024
Submission Date November 13, 2023
Acceptance Date December 22, 2023
Published in Issue Year 2024

Cite

APA Erol, H. B., & Keskin, A. (2024). THE EFFECT OF ESCHERICHIA COLI BACTERIOPHAGE COCKTAIL ON BACTERIAL CONTAMINATION IN WATER. Journal of Faculty of Pharmacy of Ankara University, 48(1), 242-250. https://doi.org/10.33483/jfpau.1390191
AMA Erol HB, Keskin A. THE EFFECT OF ESCHERICHIA COLI BACTERIOPHAGE COCKTAIL ON BACTERIAL CONTAMINATION IN WATER. Ankara Ecz. Fak. Derg. January 2024;48(1):242-250. doi:10.33483/jfpau.1390191
Chicago Erol, Hilal Basak, and Aylin Keskin. “THE EFFECT OF ESCHERICHIA COLI BACTERIOPHAGE COCKTAIL ON BACTERIAL CONTAMINATION IN WATER”. Journal of Faculty of Pharmacy of Ankara University 48, no. 1 (January 2024): 242-50. https://doi.org/10.33483/jfpau.1390191.
EndNote Erol HB, Keskin A (January 1, 2024) THE EFFECT OF ESCHERICHIA COLI BACTERIOPHAGE COCKTAIL ON BACTERIAL CONTAMINATION IN WATER. Journal of Faculty of Pharmacy of Ankara University 48 1 242–250.
IEEE H. B. Erol and A. Keskin, “THE EFFECT OF ESCHERICHIA COLI BACTERIOPHAGE COCKTAIL ON BACTERIAL CONTAMINATION IN WATER”, Ankara Ecz. Fak. Derg., vol. 48, no. 1, pp. 242–250, 2024, doi: 10.33483/jfpau.1390191.
ISNAD Erol, Hilal Basak - Keskin, Aylin. “THE EFFECT OF ESCHERICHIA COLI BACTERIOPHAGE COCKTAIL ON BACTERIAL CONTAMINATION IN WATER”. Journal of Faculty of Pharmacy of Ankara University 48/1 (January 2024), 242-250. https://doi.org/10.33483/jfpau.1390191.
JAMA Erol HB, Keskin A. THE EFFECT OF ESCHERICHIA COLI BACTERIOPHAGE COCKTAIL ON BACTERIAL CONTAMINATION IN WATER. Ankara Ecz. Fak. Derg. 2024;48:242–250.
MLA Erol, Hilal Basak and Aylin Keskin. “THE EFFECT OF ESCHERICHIA COLI BACTERIOPHAGE COCKTAIL ON BACTERIAL CONTAMINATION IN WATER”. Journal of Faculty of Pharmacy of Ankara University, vol. 48, no. 1, 2024, pp. 242-50, doi:10.33483/jfpau.1390191.
Vancouver Erol HB, Keskin A. THE EFFECT OF ESCHERICHIA COLI BACTERIOPHAGE COCKTAIL ON BACTERIAL CONTAMINATION IN WATER. Ankara Ecz. Fak. Derg. 2024;48(1):242-50.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.