Research Article
BibTex RIS Cite

STRUCTURAL INSIGHTS AND ANTICANCER POTENTIAL OF MELITTIN IN CD147 INTERACTION

Year 2024, , 912 - 919, 10.09.2024
https://doi.org/10.33483/jfpau.1405409

Abstract

Objective: This study investigates the interaction between melittin (PDB ID: 2MLT), a bioactive peptide from honeybee venom, and CD147 (PDB ID: 5XF0), a glycosylated transmembrane protein implicated in tumor progression.
Material and Method: Employing molecular docking and bioinformatics tools, our structural analysis reveals diverse binding features, including hydrogen bonds, salt bridges, and non-bonded contacts, between the CD147 complex and melittin.
Result and Discussion: Non-bonded interactions between 2MLT and specific amino acids (Gly181 and Arg201) of CD147 are highlighted, resembling aspects of the CypA/CD147 binding mechanism (Pro180-Gly181 and Arg201). The elevated anticancer potential of 2MLT was substantiated by utilizing the AntiCP 2.0 server and the ENNAACT server, employing machine learning and artificial neural network algorithms. Additionally, hydrophobicity analysis aligns with characteristics associated with anticancer peptides. Notably, thermodynamic stability variations with temperature underscore the robust binding affinity of 2MLT to the 5XF0 receptor. While our study comprehensively explores molecular interactions and predictive analyses, further in vitro and in vivo investigations are crucial to validate these findings for potential therapeutic applications.

References

  • 1. Han, J.M., Jung, H.J. (2022). Cyclophilin A/CD147 interaction: A promising target for anticancer therapy. International Journal of Molecular Sciences, 23(16), 9341. [CrossRef]
  • 2. Pandey, P., Khan, F., Khan, M.A., Kumar, R., Upadhyay, T.K. (2023). An updated review summarizing the anticancer efficacy of melittin from bee venom in several models of human cancers. Nutrients, 15(14), 3111. [CrossRef]
  • 3. Zhang, S., Liu, Y., Ye, Y., Wang, X.R., Lin, L.T., Xiao, L.Y., Zhou, P., Shi, G.X., Liu, C.Z. (2018). Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon, 148, 64-73. [CrossRef]
  • 4. Maani, Z., Farajnia, S., Rahbarnia, L., Hosseingholi, E.Z., Khajehnasiri, N., Mansouri, P. (2023). Rational design of an anti-cancer peptide inhibiting CD147/Cyp A interaction. Journal of Molecular Structure, 1272, 134160. [CrossRef]
  • 5. Wang, X., Yang, X., Wang, Q., Meng, D. (2023). Unnatural amino acids: Promising implications for the development of new antimicrobial peptides. Critical Reviews in Microbiology, 49(2), 231-255. [CrossRef]
  • 6. Kuchinka, E., Seelig, J. (1989). Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid head-group conformation. Biochemistry, 28(10), 4216-4221. [CrossRef]
  • 7. Sabapathy, T., Deplazes, E., Mancera, R.L. (2020). Revisiting the interaction of melittin with phospholipid bilayers: The effects of concentration and ionic strength. International Journal of Molecular Sciences, 21(3), 746. [CrossRef]
  • 8. Sahsuvar, S., Guner, R., Gok, O., Can, O. (2023). Development and pharmaceutical investigation of novel cervical cancer-targeting and redox-responsive melittin conjugates. Scientific Reports, 13(1), 18225. [CrossRef]
  • 9. Haque, S., Hussain, A., Joshi, H., Sharma, U., Sharma, B., Aggarwal, D., Rani, I., Ramniwas, S., Gupta, M., Tuli, H.S. (2023). Melittin: A possible regulator of cancer proliferation in preclinical cell culture and animal models. Journal of Cancer Research and Clinical Oncology, 149(19), 17709-17726.
  • 10. Dabbagh Moghaddam, F., Akbarzadeh, I., Marzbankia, E., Farid, M., Khaledi, L., Reihani, A.H., Javidfar, M., Mortazavi, P. (2021). Delivery of melittin-loaded niosomes for breast cancer treatment: An in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnology, 12(1), 14. [CrossRef]
  • 11. Huang, D., Rao, D., Jin, Q., Lai, M., Zhang, J., Lai, Z., Shen, H., Zhong, T. (2023). Role of CD147 in the development and diagnosis of hepatocellular carcinoma. Frontiers in Immunology, 14, 1149931. [CrossRef]
  • 12. Li, F., Wang, J., Yan, Y., Bai, C., Guo, J. (2023). CD147 promotes breast cancer migration and invasion by inducing epithelial-mesenchymal transition via the MAPK/ERK signaling pathway. BMC Cancer, 23(1), 1214. [CrossRef]
  • 13. Nyalali, A.M.K., Leonard, A.U., Xu, Y., Li, H., Zhou, J., Zhang, X., Rugambwa, T.K., Shi, X., Li, F. (2023). CD147: An integral and potential molecule to abrogate hallmarks of cancer. Frontiers in Oncology, 13. [CrossRef]
  • 14. Jin, S., Ding, P., Chu, P., Li, H., Sun, J., Liang, D., Song, F., Xia, B. (2018). Zn(II) can mediate self-association of the extracellular C-terminal domain of CD147. Protein & Cell, 9(3), 310-315. [CrossRef]
  • 15. Eisenberg, D., Gribskov, M., Terwilliger, T.C. (1990). Melittin. Worldwide PDB Protein Data Bank [CrossRef]
  • 16. Agrawal, P., Bhagat, D., Mahalwal, M., Sharma, N., Raghava, G.P.S. (2021). AntiCP 2.0: An updated model for predicting anticancer peptides. Briefings in Bioinformatics, 22(3), bbaa153. [CrossRef]
  • 17. Timmons, P.B., Hewage, C.M. (2021). ENNAACT is a novel tool which employs neural networks for anticancer activity classification for therapeutic peptides. Biomedicine & Pharmacotherapy, 133, 111051. [CrossRef]
  • 18. Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S.E., Xia, B., Hall, D.R., Vajda, S. (2013). How good is automated protein docking? Proteins: Structure, Function, and Bioinformatics, 81(12), 2159-2166. [CrossRef]
  • 19. Desta, I.T., Porter, K.A., Xia, B., Kozakov, D., Vajda, S. (2020). Performance and its limits in rigid body protein-protein docking. Structure, 28(9), 1071-1081. [CrossRef]
  • 20. Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S.E., Xia, B., Hall, D.R., Kozakov, D. (2017). New additions to the ClusPro server motivated by CAPRI. Proteins: Structure, Function, and Bioinformatics, 85(3), 435-444. [CrossRef]
  • 21. Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D., Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255-278. [CrossRef]
  • 22. Yurchenko, V., Constant, S., Eisenmesser, E., Bukrinsky, M. (2010). Cyclophilin-CD147 interactions: A new target for anti-inflammatory therapeutics. Clinical & Experimental Immunology, 160(3), 305-317. [CrossRef]
  • 23. Yang, Z., Zang, Y., Wang, H., Kang, Y., Zhang, J., Li, X., Zhang, L., Zhang, S. (2022). Recognition between CD147 and cyclophilin A deciphered by accelerated molecular dynamics simulations. Physical Chemistry Chemical Physics, 24(31), 18905-18914. [CrossRef]

MELİTTİN’İN CD147 İLE ETKİLEŞİMİNE YAPISAL BAKIŞ VE ANTİKANSER POTANSİYELİ

Year 2024, , 912 - 919, 10.09.2024
https://doi.org/10.33483/jfpau.1405409

Abstract

Amaç: Bu çalışma, arı zehrinden elde edilen biyoaktif bir peptit olan melittin (PDB ID: 2MLT) ile tümör ilerlemesinde rol oynayan bir glikozile transmembran protein olan CD147 (PDB ID: 5XF0) arasındaki etkileşimi incelemektedir.
Gereç ve Yöntem: Moleküler bağlanma ve biyoinformatik araçlar kullanılarak yürütülen yapısal analizimiz, CD147 kompleksi ile melittin arasında hidrojen bağları, tuz köprüleri ve bağlanmamış temaslar dahil olmak üzere çeşitli bağlanma özelliklerini ortaya çıkarmaktadır.
Sonuç ve Tartışma: 2MLT ile CD147'nin belirli amino asitleri (Gly181 ve Arg201) arasındaki etkileşimlerin, CypA/CD147 bağlanma mekanizmasına (Pro180-Gly181 ve Arg201) benzer şekilde oluştuğu gözlemlenmiştir. 2MLT'nin yüksek antikanser potansiyeli, AntiCP 2.0 server ve ENNAACT server kullanılarak, makine öğrenimi ve yapay sinir ağı algoritmalarını içeren yöntemlerle desteklenmiştir. Ayrıca, hidrofobiklik analizi, antikanser peptitlerle ilişkilendirilen özelliklerle uyumludur. Özellikle, sıcaklıkla olan termodinamik stabilite değişiklikleri, 2MLT'nin 5XF0 reseptörüne güçlü bağlanma eğilimini vurgulamaktadır. Çalışmamız, moleküler etkileşimlerin kapsamlı bir keşfini ve analizlerini sunarken, bu bulguların potansiyel terapötik uygulamalar için geçerliliğini doğrulamak için ileri in vitro ve in vivo çalışmalarının zorunlu olduğunu belirtmektedir.

References

  • 1. Han, J.M., Jung, H.J. (2022). Cyclophilin A/CD147 interaction: A promising target for anticancer therapy. International Journal of Molecular Sciences, 23(16), 9341. [CrossRef]
  • 2. Pandey, P., Khan, F., Khan, M.A., Kumar, R., Upadhyay, T.K. (2023). An updated review summarizing the anticancer efficacy of melittin from bee venom in several models of human cancers. Nutrients, 15(14), 3111. [CrossRef]
  • 3. Zhang, S., Liu, Y., Ye, Y., Wang, X.R., Lin, L.T., Xiao, L.Y., Zhou, P., Shi, G.X., Liu, C.Z. (2018). Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon, 148, 64-73. [CrossRef]
  • 4. Maani, Z., Farajnia, S., Rahbarnia, L., Hosseingholi, E.Z., Khajehnasiri, N., Mansouri, P. (2023). Rational design of an anti-cancer peptide inhibiting CD147/Cyp A interaction. Journal of Molecular Structure, 1272, 134160. [CrossRef]
  • 5. Wang, X., Yang, X., Wang, Q., Meng, D. (2023). Unnatural amino acids: Promising implications for the development of new antimicrobial peptides. Critical Reviews in Microbiology, 49(2), 231-255. [CrossRef]
  • 6. Kuchinka, E., Seelig, J. (1989). Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid head-group conformation. Biochemistry, 28(10), 4216-4221. [CrossRef]
  • 7. Sabapathy, T., Deplazes, E., Mancera, R.L. (2020). Revisiting the interaction of melittin with phospholipid bilayers: The effects of concentration and ionic strength. International Journal of Molecular Sciences, 21(3), 746. [CrossRef]
  • 8. Sahsuvar, S., Guner, R., Gok, O., Can, O. (2023). Development and pharmaceutical investigation of novel cervical cancer-targeting and redox-responsive melittin conjugates. Scientific Reports, 13(1), 18225. [CrossRef]
  • 9. Haque, S., Hussain, A., Joshi, H., Sharma, U., Sharma, B., Aggarwal, D., Rani, I., Ramniwas, S., Gupta, M., Tuli, H.S. (2023). Melittin: A possible regulator of cancer proliferation in preclinical cell culture and animal models. Journal of Cancer Research and Clinical Oncology, 149(19), 17709-17726.
  • 10. Dabbagh Moghaddam, F., Akbarzadeh, I., Marzbankia, E., Farid, M., Khaledi, L., Reihani, A.H., Javidfar, M., Mortazavi, P. (2021). Delivery of melittin-loaded niosomes for breast cancer treatment: An in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnology, 12(1), 14. [CrossRef]
  • 11. Huang, D., Rao, D., Jin, Q., Lai, M., Zhang, J., Lai, Z., Shen, H., Zhong, T. (2023). Role of CD147 in the development and diagnosis of hepatocellular carcinoma. Frontiers in Immunology, 14, 1149931. [CrossRef]
  • 12. Li, F., Wang, J., Yan, Y., Bai, C., Guo, J. (2023). CD147 promotes breast cancer migration and invasion by inducing epithelial-mesenchymal transition via the MAPK/ERK signaling pathway. BMC Cancer, 23(1), 1214. [CrossRef]
  • 13. Nyalali, A.M.K., Leonard, A.U., Xu, Y., Li, H., Zhou, J., Zhang, X., Rugambwa, T.K., Shi, X., Li, F. (2023). CD147: An integral and potential molecule to abrogate hallmarks of cancer. Frontiers in Oncology, 13. [CrossRef]
  • 14. Jin, S., Ding, P., Chu, P., Li, H., Sun, J., Liang, D., Song, F., Xia, B. (2018). Zn(II) can mediate self-association of the extracellular C-terminal domain of CD147. Protein & Cell, 9(3), 310-315. [CrossRef]
  • 15. Eisenberg, D., Gribskov, M., Terwilliger, T.C. (1990). Melittin. Worldwide PDB Protein Data Bank [CrossRef]
  • 16. Agrawal, P., Bhagat, D., Mahalwal, M., Sharma, N., Raghava, G.P.S. (2021). AntiCP 2.0: An updated model for predicting anticancer peptides. Briefings in Bioinformatics, 22(3), bbaa153. [CrossRef]
  • 17. Timmons, P.B., Hewage, C.M. (2021). ENNAACT is a novel tool which employs neural networks for anticancer activity classification for therapeutic peptides. Biomedicine & Pharmacotherapy, 133, 111051. [CrossRef]
  • 18. Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S.E., Xia, B., Hall, D.R., Vajda, S. (2013). How good is automated protein docking? Proteins: Structure, Function, and Bioinformatics, 81(12), 2159-2166. [CrossRef]
  • 19. Desta, I.T., Porter, K.A., Xia, B., Kozakov, D., Vajda, S. (2020). Performance and its limits in rigid body protein-protein docking. Structure, 28(9), 1071-1081. [CrossRef]
  • 20. Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S.E., Xia, B., Hall, D.R., Kozakov, D. (2017). New additions to the ClusPro server motivated by CAPRI. Proteins: Structure, Function, and Bioinformatics, 85(3), 435-444. [CrossRef]
  • 21. Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D., Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255-278. [CrossRef]
  • 22. Yurchenko, V., Constant, S., Eisenmesser, E., Bukrinsky, M. (2010). Cyclophilin-CD147 interactions: A new target for anti-inflammatory therapeutics. Clinical & Experimental Immunology, 160(3), 305-317. [CrossRef]
  • 23. Yang, Z., Zang, Y., Wang, H., Kang, Y., Zhang, J., Li, X., Zhang, L., Zhang, S. (2022). Recognition between CD147 and cyclophilin A deciphered by accelerated molecular dynamics simulations. Physical Chemistry Chemical Physics, 24(31), 18905-18914. [CrossRef]
There are 23 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Biochemistry, Pharmaceutical Analytical Chemistry, Toxicology
Journal Section Research Article
Authors

Barış Denk 0000-0002-7586-0895

Early Pub Date July 24, 2024
Publication Date September 10, 2024
Submission Date December 15, 2023
Acceptance Date July 3, 2024
Published in Issue Year 2024

Cite

APA Denk, B. (2024). STRUCTURAL INSIGHTS AND ANTICANCER POTENTIAL OF MELITTIN IN CD147 INTERACTION. Journal of Faculty of Pharmacy of Ankara University, 48(3), 912-919. https://doi.org/10.33483/jfpau.1405409
AMA Denk B. STRUCTURAL INSIGHTS AND ANTICANCER POTENTIAL OF MELITTIN IN CD147 INTERACTION. Ankara Ecz. Fak. Derg. September 2024;48(3):912-919. doi:10.33483/jfpau.1405409
Chicago Denk, Barış. “STRUCTURAL INSIGHTS AND ANTICANCER POTENTIAL OF MELITTIN IN CD147 INTERACTION”. Journal of Faculty of Pharmacy of Ankara University 48, no. 3 (September 2024): 912-19. https://doi.org/10.33483/jfpau.1405409.
EndNote Denk B (September 1, 2024) STRUCTURAL INSIGHTS AND ANTICANCER POTENTIAL OF MELITTIN IN CD147 INTERACTION. Journal of Faculty of Pharmacy of Ankara University 48 3 912–919.
IEEE B. Denk, “STRUCTURAL INSIGHTS AND ANTICANCER POTENTIAL OF MELITTIN IN CD147 INTERACTION”, Ankara Ecz. Fak. Derg., vol. 48, no. 3, pp. 912–919, 2024, doi: 10.33483/jfpau.1405409.
ISNAD Denk, Barış. “STRUCTURAL INSIGHTS AND ANTICANCER POTENTIAL OF MELITTIN IN CD147 INTERACTION”. Journal of Faculty of Pharmacy of Ankara University 48/3 (September 2024), 912-919. https://doi.org/10.33483/jfpau.1405409.
JAMA Denk B. STRUCTURAL INSIGHTS AND ANTICANCER POTENTIAL OF MELITTIN IN CD147 INTERACTION. Ankara Ecz. Fak. Derg. 2024;48:912–919.
MLA Denk, Barış. “STRUCTURAL INSIGHTS AND ANTICANCER POTENTIAL OF MELITTIN IN CD147 INTERACTION”. Journal of Faculty of Pharmacy of Ankara University, vol. 48, no. 3, 2024, pp. 912-9, doi:10.33483/jfpau.1405409.
Vancouver Denk B. STRUCTURAL INSIGHTS AND ANTICANCER POTENTIAL OF MELITTIN IN CD147 INTERACTION. Ankara Ecz. Fak. Derg. 2024;48(3):912-9.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.