Review
BibTex RIS Cite

ALZHEIMER’S DISEASE, RISK FACTORS AND THERAPY

Year 2024, , 766 - 790, 20.05.2024
https://doi.org/10.33483/jfpau.1441827

Abstract

Objective: Alzheimer's Disease is a progressive and challenging disease whose incidence is increasing day by day with the increase in the average age both in our country and around the world. The causes of the disease and the pathology of the disease are still not fully clarified, a way to prevent the disease has not been found, and a molecule that has been proven to completely cure the patient if used after the disease has not been discovered. Treatment with conventional drugs is still the most commonly used treatment method in clinics and provides only symptomatic benefit. Today, innovative drug studies continue to shed light on Alzheimer's Disease.
Result and Discussion: Although it is not possible to treat the disease without fully understanding its pathophysiology, promising new molecules have been put into use in the clinic with developing drug technology. If they continue to be found to be effective and safe and strengthen their place in the pharmaceutical market they will be a hope for patients.

References

  • 1. Uddin, M.S., Kabir, M.T., Tewari, D., Mamun, A.A., Mathew, B., Aleya, L., Barreto, G.E., Bin-Jumah, M.N., Abdel-Daim, M.M., Ashraf, G.M. (2020). Revisiting the role of brain and peripheral Aβ in the pathogenesis of Alzheimer's disease. Journal of the Neurological Sciences, 416, 116974. [CrossRef]
  • 2. Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., Jones, E. (2011). Alzheimer's disease. Lancet. 377(9770), 1019-31. [CrossRef]
  • 3. Povova, J., Ambroz, P., Bar, M., Pavukova, V., Sery, O., Tomaskova, H., Janout, V. (2012).Epidemiological of and risk factors for Alzheimer's disease: A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 156(2), 108-114. [CrossRef]
  • 4. Oboudiyat, C., Glazer, H., Seifan, A., Greer, C. (2013). Isaacson, R.S. Alzheimer's disease. Seminars in Neurology, 33(04), 313-324. [CrossRef]
  • 5. Robinson, M., Lee, B.Y., Hane, F.T. (2017). Recent progress in Alzheimer's disease research, Part 2: Genetics and Epidemiology. Journal of Alzheimer's Disease, 57(2), 317-330. [CrossRef]
  • 6. Langa, K.M., Larson, E.B., Crimmins, E.M., Faul, J.D., Levine, D.A., Kabeto, M.U., Weir, D.R. (2017). A comparison of the prevalence of dementia in the United States in 2000 and 2012. JAMA Internal Medicine, 177(1), 51-58. [CrossRef]
  • 7. Qiu, C., Kivipelto, M., von Strauss, E. (2009). Epidemiology of Alzheimer's disease: Occurrence, determinants, and strategies toward intervention. Dialogues in Clinical Neuroscience, 11(2), 111-128. [CrossRef]
  • 8. Kalaria, R.N., Maestre, G.E., Arizaga, R., Friedland, R.P., Galasko, D., Hall, K., Luchsinger, J.A., Ogunniyi, A., Perry, E.K., Potocnik, F. (2008). Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors. The Lancet Neurology, 7(9), 812-826. [CrossRef]
  • 9. Blaikie, L., Kay, G., Lin, P.K.T. (2019).Current and emerging therapeutic targets of alzheimer's disease for the design of multi-target directed ligands. MedChemComm, 10(12), 2052-2072. [CrossRef]
  • 10. Hebert, L.E., Scherr, P.A., McCann, J.J., Beckett, L.A., Evans, D.A. (2001). Is the risk of developing Alzheimer's disease greater for women than for men? American Journal of Epidemiology, 153(2), 132-136. [CrossRef]
  • 11. Plassman, B.L., Langa, K.M., Fisher, G.G., Heeringa, S.G., Weir, D.R., Ofstedal, M.B., Burke, J.R., Hurd, M.D., Potter, G.G., Rodgers, W.L. (2007). Prevalence of dementia in the United States: The aging, demographics, and memory study. Neuroepidemiology, 29(1-2), 125-132. [CrossRef]
  • 12. Zhao, L., Woody, S.K., Chhibber, A. (2015). Estrogen receptor β in Alzheimer’s disease: From mechanisms to therapeutics. Ageing Research Reviews, 24, 178-190. [CrossRef]
  • 13. Sundermann, E.E., Maki, P.M., Bishop, J.R. (2010).A review of estrogen receptor α gene (ESR1) polymorphisms, mood, and cognition. Menopause (New York, NY), 17(4), 874. [CrossRef]
  • 14. Mendez, M.F. (2017). Early-onset Alzheimer disease. Neurologic Clinics, 35(2), 263-281. [CrossRef]
  • 15. Bateman, R.J., Aisen, P.S., De Strooper, B., Fox, N.C., Lemere, C.A., Ringman, J.M., Salloway, S., Sperling, R.A., Windisch, M., Xiong, C. (2011). Autosomal-dominant Alzheimer's disease: A review and proposal for the prevention of Alzheimer's disease. Alzheimer's Research & Therapy, 3(1), 1-13. [CrossRef]
  • 16. Soria Lopez, J.A., González, H.M., Léger, G.C., Chapter 13 - Alzheimer's disease, in Handbook of Clinical Neurology, S.T. Dekosky and S. Asthana, Editors. 2019, Elsevier. p. 231-255.
  • 17. Campion, D., Dumanchin, C., Hannequin, D., Dubois, B., Belliard, S., Puel, M., Thomas-Anterion, C., Michon, A., Martin, C., Charbonnier, F. (1999). Early-onset autosomal dominant Alzheimer disease: Prevalence, genetic heterogeneity, and mutation spectrum. The American Journal of Human Genetics, 65(3), 664-670. [CrossRef]
  • 18. Bates, K., Verdile, G., Li, Q., Ames, D., Hudson, P., Masters, C., Martins, R. (2009). Clearance mechanisms of Alzheimer's amyloid-β peptide: Implications for therapeutic design and diagnostic tests. Molecular Psychiatry, 14(5), 469-486. [CrossRef]
  • 19. Marshall, G.A., Fairbanks, L.A., Tekin, S., Vinters, H.V., Cummings, J.L. (2007). Early-onset Alzheimer’s disease is associated with greater pathologic burden. Journal of Geriatric Psychiatry and Neurology, 20(1), 29-33. [CrossRef]
  • 20. Belloy, M.E., Napolioni, V., Greicius, M.D. (2019). A quarter century of APOE and Alzheimer’s disease: Progress to date and the path forward. Neuron, 101(5), 820-838. [CrossRef]
  • 21. Namba, Y., Tomonaga, M., Kawasaki, H., Otomo, E., Ikeda, K. (1991). Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Research, 541(1), 163-166. [CrossRef]
  • 22. Koffie, R.M., Hashimoto, T., Tai, H.-C., Kay, K.R., Serrano-Pozo, A., Joyner, D., Hou, S., Kopeikina, K.J., Frosch, M.P., Lee, V.M. (2012). Apolipoprotein E4 effects in Alzheimer’s disease are mediated by synaptotoxic oligomeric amyloid-β. Brain, 135(7), 2155-2168. [CrossRef]
  • 23. Morris, J.C., Roe, C.M., Xiong, C., Fagan, A.M., Goate, A.M., Holtzman, D.M., Mintun, M.A. (2010). APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Annals of Neurology, 67(1), 122-31. [CrossRef]
  • 24. Fleisher, A.S., Chen, K., Liu, X., Ayutyanont, N., Roontiva, A., Thiyyagura, P., Protas, H., Joshi, A.D., Sabbagh, M., Sadowsky, C.H., Sperling, R.A., Clark, C.M., Mintun, M.A., Pontecorvo, M.J., Coleman, R.E., Doraiswamy, P.M., Johnson, K.A., Carpenter, A.P., Skovronsky, D.M., Reiman, E.M. (2013). Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol Aging, 34(1), 1-12. [CrossRef]
  • 25. Roses, M., Allen D. (1996). Apolipoprotein E alleles as risk factors in Alzheimer's disease. Annual Review of Medicine, 47(1), 387-400. [CrossRef]
  • 26. Farrer, L.A., Cupples, L.A., Haines, J.L., Hyman, B., Kukull, W.A., Mayeux, R., Myers, R.H., Pericak-Vance, M.A., Risch, N., Van Duijn, C.M. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. Jama, 278(16), 1349-1356. [CrossRef]
  • 27. Ittner, L.M.,Götz, J. (2011). Amyloid-β and tau-a toxic pas de deux in Alzheimer's disease. Nature Reviews Neuroscience, 12(2), 67-72. [CrossRef]
  • 28. Drummond, E.,Wisniewski, T. (2017). Alzheimer’s disease: Experimental models and reality. Acta Neuropathologica, 133, 155-175. [CrossRef]
  • 29. Holtzman, D.M., Herz, J., Bu, G. (2012). Apolipoprotein E and apolipoprotein E receptors: Normal biology and roles in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(3), a006312. [CrossRef]
  • 30. M Di Battista, A., M Heinsinger, N., William Rebeck, G. (2016). Alzheimer’s disease genetic risk factor APOE-ε4 also affects normal brain function. Current Alzheimer Research, 13(11), 1200-1207. [CrossRef]
  • 31. Zigman, W.B., Devenny, D.A., Krinsky‐McHale, S.J., Jenkins, E.C., Urv, T.K., Wegiel, J., Schupf, N., Silverman, W. (2008). Alzheimer's disease in adults with Down syndrome. International Review of Research in Mental Retardation, 36, 103-145. [CrossRef]
  • 32. Wiseman, F.K., Pulford, L.J., Barkus, C., Liao, F., Portelius, E., Webb, R., Chávez-Gutiérrez, L., Cleverley, K., Noy, S., Sheppard, O., Collins, T., Powell, C., Sarell, C.J., Rickman, M., Choong, X., Tosh, J.L., Siganporia, C., Whittaker, H.T., Stewart, F., Szaruga, M., et al. (2018). Trisomy of human chromosome 21 enhances amyloid-β deposition independently of an extra copy of APP. Brain, 141(8), 2457-2474. [CrossRef]
  • 33. Ricciarelli, R.,Fedele, E. (2017). The amyloid cascade hypothesis in Alzheimer's disease: It's time to change our mind. Current Neuropharmacology, 15(6), 926-935. [CrossRef]
  • 34. Cortes-Canteli, M.,Iadecola, C. (2020). Alzheimer’s disease and vascular aging: JACC focus seminar. Journal of the American College of Cardiology, 75(8), 942-951. [CrossRef]
  • 35. Crous-Bou, M., Minguillón, C., Gramunt, N., Molinuevo, J.L. (2017). Alzheimer’s disease prevention: From risk factors to early intervention. Alzheimer's Research & Therapy, 9, 1-9. [CrossRef]
  • 36. Fratiglioni, L., Paillard-Borg, S., Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. The Lancet Neurology, 3(6), 343-353. [CrossRef]
  • 37. Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer's disease. The Lancet Neurology, 11(11), 1006-1012. [CrossRef]
  • 38. Fleminger, S., Oliver, D., Lovestone, S., Rabe-Hesketh, S., Giora, A. (2003). Head injury as a risk factor for Alzheimer's disease: The evidence 10 years on; a partial replication. Journal of Neurology, Neurosurgery, and Psychiatry, 74(7), 857. [CrossRef]
  • 39. de Bruijn, R.F.,Ikram, M.A. (2014). Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Medicine, 12, 1-9. [CrossRef]
  • 40. Elrod, K., Buccafusco, J.J., Jackson, W.J. (1988). Nicotine enhances delayed matching-to-sample performance by primates. Life Sciences, 43(3), 277-287. [CrossRef]
  • 41. Salomon, A.R., Marcinowski, K.J., Friedland, R.P., Zagorski, M.G. (1996). Nicotine inhibits amyloid formation by the β-peptide. Biochemistry, 35(42), 13568-13578. [CrossRef]
  • 42. Brayne, C. (2000). Smoking and the brain: no good evidence exists that smoking protects against dementia. British Medical Journal Publishing Group. p. 1087-1088. [CrossRef]
  • 43. Anstey, K.J., von Sanden, C., Salim, A., O'Kearney, R. (2007). Smoking as a risk factor for dementia and cognitive decline: A meta-analysis of prospective studies. American Journal of Epidemiology, 166(4), 367-378. [CrossRef]
  • 44. Tyas, S.L., White, L.R., Petrovitch, H., Ross, G.W., Foley, D.J., Heimovitz, H.K., Launer, L.J. (2003). Mid-life smoking and late-life dementia: The Honolulu-Asia aging study. Neurobiology of Aging, 24(4), 589-596. [CrossRef]
  • 45. Langballe, E.M., Ask, H., Holmen, J., Stordal, E., Saltvedt, I., Selbæk, G., Fikseaunet, A., Bergh, S., Nafstad, P., Tambs, K. (2015). Alcohol consumption and risk of dementia up to 27 years later in a large, population-based sample: The HUNT study, Norway. European Journal of Epidemiology, 30, 1049-1056. [CrossRef]
  • 46. Fukuda, T., Ohnuma, T., Obara, K., Kondo, S., Arai, H., Ano, Y. (2020). Supplementation with matured hop bitter acids improves cognitive performance and mood state in healthy older adults with subjective cognitive decline. Journal of Alzheimer's Disease, 76(1), 387-398. [CrossRef]
  • 47. Xu, W., Wang, H., Wan, Y., Tan, C., Li, J., Tan, L., Yu, J.-T. (2017). Alcohol consumption and dementia risk: a dose–response meta-analysis of prospective studies. European Journal of Epidemiology, 32, 31-42. [CrossRef]
  • 48. Handing, E.P., Andel, R., Kadlecova, P., Gatz, M., Pedersen, N.L. (2015). Midlife alcohol consumption and risk of dementia over 43 years of follow-up: a population-based study from the Swedish twin registry. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 70(10), 1248-1254. [CrossRef]
  • 49. Reale, M., Constantini, E., Jagarlapoodi, S., Khan, H., Belwal, T., Cichelli, A. (2020). Relationship of Wine Consumption with Alzheimer’s Disease. Nutrients, 12, 206. [CrossRef]
  • 50. Sharma, A., Brenner, M., Wang, P. (2020).Potential role of extracellular CIRP in alcohol-induced Alzheimer’s disease. Molecular Neurobiology, 57(12), 5000-5010. [CrossRef]
  • 51. Anttila, T., Helkala, E.-L., Viitanen, M., Kåreholt, I., Fratiglioni, L., Winblad, B., Soininen, H., Tuomilehto, J., Nissinen, A., Kivipelto, M. (2004). Alcohol drinking in middle age and subsequent risk of mild cognitive impairment and dementia in old age: a prospective population based study. BMJ, 329(7465), 539. [CrossRef]
  • 52. Andersen, K., Lolk, A., Kragh-Sørensen, P., Petersen, N.E., Green, A. (2005). Depression and the risk of Alzheimer disease. Epidemiology, 233-238. [CrossRef]
  • 53. Ferreira, S.T., Lourenco, M.V., Oliveira, M.M., De Felice, F.G. (2015). Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer’s disease. Frontiers in Cellular Neuroscience, 9, 191. [CrossRef]
  • 54. Ferreira, S.T.,Klein, W.L. (2011). The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiology of Learning and Memory, 96(4), 529-543. [CrossRef]
  • 55. Koffie, R.M., Hyman, B.T., Spires-Jones, T.L. (2011). Alzheimer's disease: Synapses gone cold. Molecular Neurodegeneration, 6(1), 1-9. [CrossRef]
  • 56. Forman, M.S., Trojanowski, J.Q., Lee, V.M. (2004). Neurodegenerative diseases: A decade of discoveries paves the way for therapeutic breakthroughs. Nature Medicine, 10(10), 1055-1063. [CrossRef]
  • 57. Serpente, M., Bonsi, R., Scarpini, E., Galimberti, D. (2014). Innate immune system and inflammation in Alzheimer's disease: From pathogenesis to treatment. Neuroimmunomodulation, 21(2-3), 79-87. [CrossRef]
  • 58. Robert, R.,Wark, K.L. (2012). Engineered antibody approaches for Alzheimer’s disease immunotherapy. Archives of Biochemistry and Biophysics, 526(2), 132-138. [CrossRef]
  • 59. Finch, C.E.,Morgan, T.E. (2007). Systemic inflammation, infection, ApoE alleles, and Alzheimer disease: A position paper. Current Alzheimer Research, 4(2), 185-189. [CrossRef]
  • 60. Tuppo, E.E.,Arias, H.R. (2005). The role of inflammation in Alzheimer's disease. The International Journal of Biochemistry & Cell Biology, 37(2), 289-305. [CrossRef]
  • 61. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M., Cooper, N.R., Eikelenboom, P., Emmerling, M., Fiebich, B.L. (2000). Inflammation and Alzheimer’s disease. Neurobiology of Aging, 21(3), 383-421. [CrossRef]
  • 62. Atwood, C.S., Obrenovich, M.E., Liu, T., Chan, H., Perry, G., Smith, M.A., Martins, R.N. (2003). Amyloid-β: A chameleon walking in two worlds: A review of the trophic and toxic properties of amyloid-β. Brain Research Reviews, 43(1), 1-16. [CrossRef]
  • 63. Lim, S.L., Rodriguez-Ortiz, C.J., Kitazawa, M. (2015). Infection, systemic inflammation, and Alzheimer's disease. Microbes and Infection, 17(8), 549-556. [CrossRef]
  • 64. Sochocka, M., Zwolińska, K., Leszek, J. (2017). The infectious etiology of Alzheimer's disease. Current Neuropharmacol, 15(7), 996-1009. [CrossRef]
  • 65. Adalı, A., Yirün, A., Koçer-Gümüşel, B., Erkekoğlu, P. (2020).Alzheimer hastalığının gelişiminde biyolojik ajanların olası etkileri. Journal of Faculty of Pharmacy of Ankara University, 44(1), 167-187. [CrossRef]
  • 66. Breijyeh, Z., Karaman, R. (2020). Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 25(24), 5789. [CrossRef]
  • 67. Forny-Germano, L., De Felice, F.G., Vieira, M.N.d.N. (2019). The role of leptin and adiponectin in obesity-associated cognitive decline and Alzheimer’s disease. Frontiers in Neuroscience, 12, 1027. [CrossRef]
  • 68. Yam, K.-Y., Naninck, E.F., Abbink, M., la Fleur, S.E., Schipper, L., van den Beukel, J., Grefhorst, A., Oosting, A., Van Der Beek, E., Lucassen, P. (2017). Exposure to chronic early-life stress lastingly alters the adipose tissue, the leptin system and changes the vulnerability to western-style diet later in life in mice. Psychoneuroendocrinology, 77, 186-195. [CrossRef]
  • 69. Kiliaan, A.J., Arnoldussen, I.A., Gustafson, D.R. (2014). Adipokines: A link between obesity and dementia? The Lancet Neurology, 13(9), 913-923. [CrossRef]
  • 70. Flores-Cordero, J.A., Pérez-Pérez, A., Jiménez-Cortegana, C., Alba, G., Flores-Barragán, A., Sánchez-Margalet, V. (2022). Obesity as a risk factor for dementia and Alzheimer's disease: The role of leptin. International Journal of Molecular Sciences, 23(9), 5202. [CrossRef]
  • 71. Messier, C. (2003). Diabetes, Alzheimer's disease and apolipoprotein genotype. Experimental Gerontology, 38(9), 941-946. [CrossRef]
  • 72. Fiore, V., De Rosa, A., Falasca, P., Marci, M., Guastamacchia, E., Licchelli, B., Giagulli, V.A., De Pergola, G., Poggi, A., Triggiani, V. (2019). Focus on the correlations between Alzheimer’s disease and type 2 diabetes. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders), 19(5), 571-579. [CrossRef]
  • 73. Biessels, G.J.,Despa, F. (2018). Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nature Reviews Endocrinology, 14(10), 591-604. [CrossRef]
  • 74. Hayden, M.R. (2019). Type 2 diabetes mellitus increases the risk of late-onset Alzheimer’s disease: Ultrastructural remodeling of the neurovascular unit and diabetic gliopathy. Brain Sciences, 9(10), 262. [CrossRef]
  • 75. Salas, I.H.,De Strooper, B. (2019) .Diabetes and Alzheimer’s disease: A link not as simple as it seems. Neurochemical Research, 44(6), 1271-1278. [CrossRef]
  • 76. Lei, P., Ayton, S., Bush, A.I. (2021). The essential elements of Alzheimer’s disease. Journal of Biological Chemistry, 296. [CrossRef]
  • 77. Huat, T.J., Camats-Perna, J., Newcombe, E.A., Valmas, N., Kitazawa, M., Medeiros, R. (2019). Metal toxicity links to Alzheimer's disease and neuroinflammation. Journal of Molecular Biology, 431(9), 1843-1868. [CrossRef]
  • 78. Jack Jr, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B., Holtzman, D.M., Jagust, W., Jessen, F., Karlawish, J. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia, 14(4), 535-562. [CrossRef]
  • 79. Fleisher, A.S., Chen, K., Quiroz, Y.T., Jakimovich, L.J., Gomez, M.G., Langois, C.M., Langbaum, J.B., Roontiva, A., Thiyyagura, P., Lee, W. (2015). Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer disease kindred: A cross-sectional study. JAMA Neurology, 72(3), 316-324. [CrossRef]
  • 80. Villemagne, V.L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K.A., Salvado, O., Szoeke, C., Macaulay, S.L., Martins, R., Maruff, P. (2013). Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: A prospective cohort study. The Lancet Neurology, 12(4), 357-367. [CrossRef]
  • 81. Dubois, B., Hampel, H., Feldman, H.H., Scheltens, P., Aisen, P., Andrieu, S., Bakardjian, H., Benali, H., Bertram, L., Blennow, K. (2016). Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria. Alzheimer's & Dementia, 12(3), 292-323. [CrossRef]
  • 82. Jack Jr, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Feldman, H.H., Frisoni, G.B., Hampel, H., Jagust, W.J., Johnson, K.A., Knopman, D.S. (2016). A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology, 87(5), 539-547. [CrossRef]
  • 83. Kovacs, G.G., Milenkovic, I., Wöhrer, A., Höftberger, R., Gelpi, E., Haberler, C., Hönigschnabl, S., Reiner-Concin, A., Heinzl, H., Jungwirth, S. (2013). Non-Alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: A community-based autopsy series. Acta Neuropathologica, 126, 365-384. [CrossRef]
  • 84. Serrano-Pozo, A., Frosch, M.P., Masliah, E., Hyman, B.T. (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 1(1), a006189. [CrossRef]
  • 85. Schneider, J.A., Arvanitakis, Z., Leurgans, S.E., Bennett, D.A. (2009). The neuropathology of probable Alzheimer disease and mild cognitive impairment. Annals of Neurology. 66(2), 200-208. [CrossRef]
  • 86. Khan, S., Barve, K.H., Kumar, M.S. (2020). Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Current Neuropharmacology, 18(11), 1106-1125. [CrossRef]
  • 87. Briggs, R., Kennelly, S.P., O'Neill, D. (2016).Drug treatments in Alzheimer’s disease. Clinical Medicine, 16(3), 247. [CrossRef]
  • 88. Lipton, S.A. (2005). The molecular basis of memantine action in Alzheimer's disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Current Alzheimer Research, 2(2), 155-165. [CrossRef]
  • 89. Penke, B., Bogár, F., Fülöp, L. (2017). β-Amyloid and the pathomechanisms of Alzheimer’s disease: A comprehensive view. Molecules, 22(10), 1692. [CrossRef]
  • 90. Jeong, H., Shin, H., Hong, S., Kim, Y. (2022). Physiological Roles of Monomeric Amyloid-β and Implications for Alzheimer’s Disease Therapeutics. Experimental Neurobiology, 31(2), 65. [CrossRef]
  • 91. Nichols, R.A., Gulisano, W., Puzzo, D. (2022). Beta Amyloid: From Physiology to Pathogenesis. Frontiers in Molecular Neuroscience, 15, 876224. [CrossRef]
  • 92. Kent, S.A., Spires-Jones, T.L., Durrant, C.S. (2020). The physiological roles of tau and Aβ: Implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathologica, 140(4), 417-447. [CrossRef]
  • 93. Šerý, O., Povová, J., Míšek, I., Pešák, L., Janout, V. (2013). Molecular mechanisms of neuropathological changes in Alzheimer’s disease: A review. Folia Neuropathologica, 51(1), 1-9. [CrossRef]
  • 94. Isbert, S., Wagner, K., Eggert, S., Schweitzer, A., Multhaup, G., Weggen, S., Kins, S., Pietrzik, C.U. (2012). APP dimer formation is initiated in the endoplasmic reticulum and differs between APP isoforms. Cellular and Molecular Life Sciences, 69, 1353-1375. [CrossRef]
  • 95. Murphy, M.P.,LeVine III, H. (2010). Alzheimer's disease and the amyloid-β peptide. Journal of Alzheimer's Diseas,. 19(1), 311-323. [CrossRef]
  • 96. Godyń, J., Jończyk, J., Panek, D., Malawska, B. (2016). Therapeutic strategies for Alzheimer's disease in clinical trials. Pharmacological Reports, 68(1), 127-138. [CrossRef]
  • 97. Kumar, A.,Singh, A. (2015). A review on Alzheimer's disease pathophysiology and its management: An update. Pharmacological Reports, 67(2), 195-203. [CrossRef]
  • 98. Fernandez, M.A. (2015). Sequential proteolysis by γ-secretase and its implications for Alzheimer's disease. Harvard University.
  • 99. Lewczuk, P., Kamrowski-Kruck, H., Peters, O., Heuser, I., Jessen, F., Popp, J., Bürger, K., Hampel, H., Frölich, L., Wolf, S. (2010). Soluble amyloid precursor proteins in the cerebrospinal fluid as novel potential biomarkers of Alzheimer's disease: A multicenter study. Molecular Psychiatry, 15(2), 138-145. [CrossRef]
  • 100. Winkler, E., Kamp, F., Scheuring, J., Ebke, A., Fukumori, A., Steiner, H. (2012). Generation of Alzheimer disease-associated amyloid β42/43 peptide by γ-secretase can be inhibited directly by modulation of membrane thickness. Journal of Biological Chemistry, 287(25), 21326-21334. [CrossRef]
  • 101. Wang, D.-S., Dickson, D.W., Malter, J.S. (2006). β-Amyloid degradation and Alzheimer's disease. BioMed Research International. 2006, 058406. [CrossRef]
  • 102. Barret, K.E. (2010). Ganong; s Review of Medical Physiology. USA.
  • 103. Mattson, M.P. (2004). Pathways towards and away from Alzheimer's disease. Nature, 430(7000), 631-639. [CrossRef]
  • 104. Kumar, V., Sami, N., Kashav, T., Islam, A., Ahmad, F., Hassan, M.I. (2016). Protein aggregation and neurodegenerative diseases: From theory to therapy. European Journal of Medicinal Chemistry, 124, 1105-1120. [CrossRef]
  • 105. Abeysinghe, A., Deshapriya, R., Udawatte, C. (2020). Alzheimer's disease; a review of the pathophysiological basis and therapeutic interventions. Life Sciences, 256, 117996. [CrossRef]
  • 106. Pereira, C., Agostinho, P., Moreira, P., Cardoso, S., Oliveira, C. (2005). Alzheimer's disease-associated neurotoxic mechanisms and neuroprotective strategies. Current Drug Targets-CNS & Neurological Disorders, 4(4), 383-403. [CrossRef]
  • 107. Chen, G.F., Xu, T.H., Yan, Y., Zhou, Y.R., Jiang, Y., Melcher, K., Xu, H.E. (2017). Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 38(9), 1205-1235. [CrossRef]
  • 108. Guerreiro, R.J., Gustafson, D.R., Hardy, J. (2012). The genetic architecture of Alzheimer's disease: Beyond APP, PSENs and APOE. Neurobiology of Aging, 33(3), 437-456. [CrossRef]
  • 109. Lee, M.K., Borchelt, D.R., Kim, G., Thinakaran, G., Slunt, H.H., Ratovitski, T., Martin, L.J., Kittur, A., Gandy, S., Levey, A.I. (1997). Hyperaccumulation of FAD-linked presenilin 1 variants in vivo. Nature Medicine, 3(7), 756-760. [CrossRef]
  • 110. Nelson, O., Supnet, C., Liu, H., Bezprozvanny, I. (2010). Familial Alzheimer's disease mutations in presenilins: Effects on endoplasmic reticulum calcium homeostasis and correlation with clinical phenotypes. Journal of Alzheimer's Disease, 21(3), 781-793. [CrossRef]
  • 111. Rabbito, A., Dulewicz, M., Kulczyńska-Przybik, A., Mroczko, B. (2020). Biochemical markers in Alzheimer’s disease. International Journal of Molecular Sciences, 21(6), 1989. [CrossRef]
  • 112. DeFina, P.A., Moser, R.S., Glenn, M., Lichtenstein, J.D., Fellus, J. (2013). Alzheimer's disease clinical and research update for health care practitioners. Journal of Aging Research, 2013, 207178. [CrossRef]
  • 113. Wang, J.Z., Xia, Y.Y., Grundke-Iqbal, I., Iqbal, K. (2013). Abnormal hyperphosphorylation of tau: Sites, regulation, and molecular mechanism of neurofibrillary degeneration. Journal of Alzheimer's Disease, 33(s1), S123-S139. [CrossRef]
  • 114. Lashley, T., Schott, J.M., Weston, P., Murray, C.E., Wellington, H., Keshavan, A., Foti, S.C., Foiani, M., Toombs, J., Rohrer, J.D. (2018). Molecular biomarkers of Alzheimer's disease: Progress and prospects. Disease Models & Mechanisms, 11(5), dmm031781. [CrossRef]
  • 115. Varghese, M., Santa-Maria, I., Ho, L., Ward, L., Yemul, S., Dubner, L., Księżak-Reding, H., Pasinetti, G.M. (2016). Extracellular tau paired helical filaments differentially affect tau pathogenic mechanisms in mitotic and post-mitotic cells: Implications for mechanisms of tau propagation in the brain. Journal of Alzheimer's Disease, 54(2), 477-496. [CrossRef]
  • 116. Buée, L., Bussière, T., Buée-Scherrer, V., Delacourte, A., Hof, P.R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Research Reviews, 33(1), 95-130. [CrossRef]
  • 117. Mandelkow, E.-M.,Mandelkow, E. (1998). Tau in Alzheimer's disease. Trends in Cell Biology, 8(11), 425-427. [CrossRef]
  • 118. Bloom, G.S. (2014). Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurology, 71(4), 505-508. [CrossRef]
  • 119. Ballatore, C., Lee, V.M.Y., Trojanowski, J.Q. (2007). Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature Reviews Neuroscience, 8(9), 663-672. [CrossRef]
  • 120. Molinuevo, J.L., Ayton, S., Batrla, R., Bednar, M.M., Bittner, T., Cummings, J., Fagan, A.M., Hampel, H., Mielke, M.M., Mikulskis, A. (2018). Current state of Alzheimer’s fluid biomarkers. Acta Neuropathologica, 136, 821-853. [CrossRef]
  • 121. Lewczuk, P., Lelental, N., Lachmann, I., Holzer, M., Flach, K., Brandner, S., Engelborghs, S., Teunissen, C.E., Zetterberg, H., Molinuevo, J.L. (2017). Non-phosphorylated tau as a potential biomarker of Alzheimer’s disease: Analytical and diagnostic characterization. Journal of Alzheimer's Disease, 55(1), 159-170. [CrossRef]
  • 122. Hugon, J., Mouton-Liger, F., Cognat, E., Dumurgier, J., Paquet, C. (2018). Blood-based kinase assessments in Alzheimer’s disease. Frontiers in Aging Neuroscience, 10, 338. [CrossRef]
  • 123. Castro-Alvarez, J.F., Uribe-Arias, S.A., Kosik, K.S., Cardona-Gómez, G.P. (2014). Long-and short-term CDK5 knockdown prevents spatial memory dysfunction and tau pathology of triple transgenic Alzheimer’s mice. Frontiers in Aging Neuroscience, 6, 243. [CrossRef]
  • 124. Kimura, T., Tsutsumi, K., Taoka, M., Saito, T., Masuda-Suzukake, M., Ishiguro, K., Plattner, F., Uchida, T., Isobe, T., Hasegawa, M. (2013). Isomerase Pin1 stimulates dephosphorylation of tau protein at cyclin-dependent kinase (Cdk5)-dependent Alzheimer phosphorylation sites. Journal of Biological Chemistry, 288(11), 7968-7977. [CrossRef]
  • 125. Lee, S., Hall, G.F., Shea, T.B. (2011). Potentiation of tau aggregation by cdk5 and GSK3β. Journal of Alzheimer's Disease, 26(2), 355-364. [CrossRef]
  • 126. Huang, H.-C.,Jiang, Z.-F. (2009). Accumulated amyloid-β peptide and hyperphosphorylated tau protein: Relationship and links in Alzheimer's disease. Journal of Alzheimer's Disease, 16(1), 15-27. [CrossRef]
  • 127. Sinsky, J., Pichlerova, K., Hanes, J. (2021). Tau protein interaction partners and their roles in Alzheimer’s disease and other tauopathies. International Journal of Molecular Sciences, 22(17), 9207. [CrossRef]
  • 128. Congdon, E.E.,Sigurdsson, E.M. (2018). Tau-targeting therapies for Alzheimer disease. Nature Reviews Neurology, 14(7), 399-415. [CrossRef]
  • 129. Kim, J.H., Lee, J., Choi, W.H., Park, S., Park, S.H., Lee, J.H., Lim, S.M., Mun, J.Y., Cho, H.S., Han, D. (2021). CHIP-mediated hyperubiquitylation of tau promotes its self-assembly into the insoluble tau filaments. Chemical Science, 12(15), 5599-5610. [CrossRef]
  • 130. Zheng, W.-H., Bastianetto, S., Mennicken, F., Ma, W., Kar, S. (2002). Amyloid β peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience, 115(1), 201-211. [CrossRef]
  • 131. Iqbal, K., Liu, F., Gong, C.-X. (2016). Tau and neurodegenerative disease: The story so far. Nature Reviews Neurology, 12(1), 15-27. [CrossRef]
  • 132. Hernandez, P., Lee, G., Sjoberg, M., Maccioni, R.B. (2009). Tau phosphorylation by cdk5 and Fyn in response to amyloid peptide Aβ 25-35: Involvement of lipid rafts. Journal of Alzheimer's Disease, 16(1), 149-156. [CrossRef]
  • 133. Terwel, D., Muyllaert, D., Dewachter, I., Borghgraef, P., Croes, S., Devijver, H., Van Leuven, F. (2008). Amyloid activates GSK-3β to aggravate neuronal tauopathy in bigenic mice. The American Journal of Pathology, 172(3), 786-798. [CrossRef]
  • 134. Hawkins, B.E., Krishnamurthy, S., Castillo-Carranza, D.L., Sengupta, U., Prough, D.S., Jackson, G.R., DeWitt, D.S., Kayed, R. (2013). Rapid accumulation of endogenous tau oligomers in a rat model of traumatic brain injury: Possible link between traumatic brain injury and sporadic tauopathies. Journal of Biological Chemistry, 288(23), 17042-17050. [CrossRef]
  • 135. Sengupta, U., Guerrero-Muñoz, M.J., Castillo-Carranza, D.L., Lasagna-Reeves, C.A., Gerson, J.E., Paulucci-Holthauzen, A.A., Krishnamurthy, S., Farhed, M., Jackson, G.R., Kayed, R. (2015). Pathological interface between oligomeric alpha-synuclein and tau in synucleinopathies. Biological Psychiatry, 78(10), 672-683. [CrossRef]
  • 136. Zhang, H., Wei, W., Zhao, M., Ma, L., Jiang, X., Pei, H., Cao, Y., Li, H. (2021). Interaction between Aβ and tau in the pathogenesis of Alzheimer's disease. International Journal of Biological Sciences, 17(9), 2181. [CrossRef]
  • 137. Campion, D., Pottier, C., Nicolas, G., Le Guennec, K., Rovelet-Lecrux, A. (2016). Alzheimer disease: modeling an Aβ-centered biological network. Molecular Psychiatry, 21(7), 861-871. [CrossRef]
  • 138. Roberson, E.D., Halabisky, B., Yoo, J.W., Yao, J., Chin, J., Yan, F., Wu, T., Hamto, P., Devidze, N., Yu, G.-Q. (2011). Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. Journal of Neuroscience, 31(2), 700-711. [CrossRef]
  • 139. Silva, D.F., Esteves, A.R., Oliveira, C.R., Cardoso, S.M. (2011). Mitochondria: the common upstream driver of amyloid-β and tau pathology in Alzheimer's disease. Current Alzheimer Research, 8(5), 563-72. [CrossRef]
  • 140. Prinz, M., Jung, S., Priller, J. (2019). Microglia biology: One century of evolving concepts. Cell, 179(2), 292-311. [CrossRef]
  • 141. Carrano, A., Hoozemans, J.J., Van Der Vies, S.M., Van Horssen, J., De Vries, H.E., Rozemuller, A.J. (2012). Neuroinflammation and blood-brain barrier changes in capillary amyloid angiopathy. Neurodegenerative Diseases, 10(1-4), 329-331. [CrossRef]
  • 142. Heneka, M.T., Carson, M.J., El Khoury, J., Landreth, G.E., Brosseron, F., Feinstein, D.L., Jacobs, A.H., Wyss-Coray, T., Vitorica, J., Ransohoff, R.M. (2015). Neuroinflammation in Alzheimer's disease. The Lancet Neurology, 14(4), 388-405. [CrossRef]
  • 143. Nichols, E., Szoeke, C.E., Vollset, S.E., Abbasi, N., Abd-Allah, F., Abdela, J., Aichour, M.T.E., Akinyemi, R.O., Alahdab, F., Asgedom, S.W. (2019). Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 88-106. [CrossRef]
  • 144. Weller, J.,Budson, A. (2018). Current understanding of Alzheimer's disease diagnosis and treatment. F1000Res. 7. [CrossRef]
  • 145. Grossberg, G.T., Manes, F., Allegri, R.F., Gutiérrez-Robledo, L.M., Gloger, S., Xie, L., Jia, X.D., Pejović, V., Miller, M.L., Perhach, J.L. (2013). The safety, tolerability, and efficacy of once-daily memantine (28 mg): A multinational, randomized, double-blind, placebo-controlled trial in patients with moderate-to-severe Alzheimer’s disease taking cholinesterase inhibitors. CNS Drugs, 27, 469-478. [CrossRef]
  • 146. Whitehouse, P.J. (1998). The cholinergic deficit in Alzheimer's disease. Journal of Clinical Psychiatry, 59, 19-22.
  • 147. Birks, J.S., Dementia, C., Group, C.I. (1996). Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database of Systematic Reviews, 2016(3 ). [CrossRef]
  • 148. Kevadiya, B.D., Ottemann, B.M., Thomas, M.B., Mukadam, I., Nigam, S., McMillan, J., Gorantla, S., Bronich, T.K., Edagwa, B., Gendelman, H.E. (2019). Neurotheranostics as personalized medicines. Advanced Drug Delivery Reviews, 148, 252-289. [CrossRef]
  • 149. Sharma, K. (2019). Cholinesterase inhibitors as Alzheimer's therapeutics. Molecular Medicine Reports, 20(2), 1479-1487. [CrossRef]
  • 150. Dooley, M.,Lamb, H.M. (2000). Donepezil: A review of its use in Alzheimer’s disease. Drugs & Aging, 16, 199-226. [CrossRef]
  • 151. Scott, L.J.,Goa, K.L. (2000). Galantamine: A review of its use in Alzheimer’s disease. Drugs, 60, 1095-1122. [CrossRef]
  • 152. Kim, J.K.,Park, S.U. (2017). Pharmacological aspects of galantamine for the treatment of Alzheimer's disease. EXCLI Journal, 16, 35-39. [CrossRef]
  • 153. Birks, J.S. (2006). Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database of Systematic Reviews, (1), 1. [CrossRef]
  • 154. Chu, L., Yik, P., Mok, W., Chung, C. (2007). A 2‐year open‐label study of galantamine therapy in Chinese Alzheimer's disease patients in Hong Kong. International journal of clinical practice, 61(3), 403-410. [CrossRef]
  • 155. Blanco-Silvente, L., Castells, X., Saez, M., Barceló, M.A., Garre-Olmo, J., Vilalta-Franch, J., Capellà, D. (2017). Discontinuation, efficacy, and safety of cholinesterase inhibitors for Alzheimer’s disease: A meta-analysis and meta-regression of 43 randomized clinical trials enrolling 16 106 patients. International Journal of Neuropsychopharmacology, 20(7), 519-528. [CrossRef]
  • 156. Health, N.I.f.,Excellence, C. (2011). Donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer's disease. National Institute for Health and Clinical Excellence. https://www.nice.org.uk/guidance/ta217 Erişim tarihi: 21.02.2024.
  • 157. Winblad, B., Jones, R.W., Wirth, Y., Stöffler, A., Möbius, H.J. (2007). Memantine in moderate to severe Alzheimer’s disease: A meta-analysis of randomised clinical trials. S. Karger AG Basel, Switzerland. p. 20-27. [CrossRef]
  • 158. Thomas, S.J.,Grossberg, G.T. (2009). Memantine: a review of studies into its safety and efficacy in treating Alzheimer’s disease and other dementias. Clinical Interventions in Aging, 367-377. [CrossRef]
  • 159. Liu, J., Chang, L., Song, Y., Li, H., Wu, Y. (2019). The role of NMDA receptors in Alzheimer’s disease. Frontiers in Neuroscience, 13, 43. [CrossRef]
  • 160. Kuns, B., Rosani, A., Varghese, D. (2024). Memantine, in StatPearls. StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC.: Treasure Island (FL).
  • 161. Santos, M.A., Chand, K., Chaves, S. (2016). Recent progress in multifunctional metal chelators as potential drugs for Alzheimer's disease. Coordination Chemistry Reviews, 327, 287-303. [CrossRef]
  • 162. McShane, R., Westby, M.J., Roberts, E., Minakaran, N., Schneider, L., Farrimond, L.E., Maayan, N., Ware, J., Debarros, J. (2019). Memantine for dementia. Cochrane Database of Systematic Reviews, 3(3), Cd003154. [CrossRef]
  • 163. Blanco-Silvente, L., Capellà, D., Garre-Olmo, J., Vilalta-Franch, J., Castells, X. (2018). Predictors of discontinuation, efficacy, and safety of memantine treatment for Alzheimer’s disease: Meta-analysis and meta-regression of 18 randomized clinical trials involving 5004 patients. BMC Geriatrics, 18(1), 1-16. [CrossRef]
  • 164. Cummings, J.L., Tong, G., Ballard, C. (2019). Treatment combinations for Alzheimer’s disease: Current and future pharmacotherapy options. Journal of Alzheimer's Disease, 67(3), 779-794. [CrossRef]
  • 165. Riordan, K.C., Snyder, C.R.H., Wellik, K.E., Caselli, R.J., Wingerchuk, D.M., Demaerschalk, B.M. (2011). Effectiveness of adding memantine to an Alzheimer dementia treatment regimen which already includes stable donepezil therapy: A critically appraised topic. The Neurologist, 17(2), 121-123. [CrossRef]
  • 166. Morató, X., Pytel, V., Jofresa, S., Ruiz, A., Boada, M. (2022). Symptomatic and disease-modifying therapy pipeline for Alzheimer’s disease: Towards a personalized polypharmacology patient-centered approach. International Journal of Molecular Sciences, 23(16), 9305. [CrossRef]
  • 167. FDA. NAMZARİC. Erişim adresi: www.accessdata.fda.gov/drugsatfda_docs/label/2014/206439lbl.pdf Erişim tarihi: 21.02.2024.
  • 168. Passeri, E., Elkhoury, K., Morsink, M., Broersen, K., Linder, M., Tamayol, A., Malaplate, C., Yen, F.T., Arab-Tehrany, E. (2022). Alzheimer’s disease: Treatment strategies and their limitations. International Journal of Molecular Sciences, 23(22), 13954. [CrossRef]
  • 169. Zenaro, E., Piacentino, G., Constantin, G. (2017). The blood-brain barrier in Alzheimer's disease. Neurobiology of Disease, 107, 41-56. [CrossRef]
  • 170. Chakraborty, A., De Wit, N., Van Der Flier, W., De Vries, H. (2017). The blood brain barrier in Alzheimer’s disease. Vascular Pharmacology, 89, 12-18. [CrossRef]
  • 171. Abbott, N.J., Patabendige, A.A., Dolman, D.E., Yusof, S.R., Begley, D.J. (2010). Structure and function of the blood–brain barrier. Neurobiology of Disease, 37(1), 13-25. [CrossRef]
  • 172. Banks, W.A. (2012). Drug delivery to the brain in Alzheimer's disease: Consideration of the blood–brain barrier. Advanced Drug Delivery Reviews, 64(7), 629-639. [CrossRef]
  • 173. Colin, J., Thomas, M.H., Gregory-Pauron, L., Pinçon, A., Lanhers, M.-C., Corbier, C., Claudepierre, T., Yen, F.T., Oster, T., Malaplate-Armand, C. (2017). Maintenance of membrane organization in the aging mouse brain as the determining factor for preventing receptor dysfunction and for improving response to anti-Alzheimer treatments. Neurobiology of Aging, 54, 84-93. [CrossRef]
  • 174. Poon, C.H., Wang, Y., Fung, M.-L., Zhang, C., Lim, L.W. (2020). Rodent models of amyloid-beta feature of Alzheimer’s disease: Development and potential treatment implications. Aging and Disease, 11(5), 1235. [CrossRef]
  • 175. Cummings, J., Ritter, A., Zhong, K. (2018). Clinical trials for disease-modifying therapies in Alzheimer’s disease: A primer, lessons learned, and a blueprint for the future. Journal of Alzheimer's Disease, 64(s1), S3-S22. [CrossRef]
  • 176. Yu, T.-W., Lane, H.-Y., Lin, C.-H. (2021). Novel therapeutic approaches for Alzheimer’s disease: An updated review. International Journal of Molecular Sciences, 22(15), 8208. [CrossRef]
  • 177. Athar, T., Al Balushi, K., Khan, S.A. (2021). Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Molecular Biology Reports, 48(7), 5629-5645. [CrossRef]
  • 178. Eruope, a. biogen announce. Erişim adresi: www.alzheimer-europe.org/news/biogen-announces-withdrawal-marketing-authorisation-application-aducanumab-treatment. Erişim tarihi: 21.02.2024.
  • 179. EMA. Aduhelm withdrawal. Erişim adresi:: www.ema.europa.eu/en/search?search_api_fulltext=aducanumab&f%5B0%5D=ema_med_status%3A100105&f%5B1%5D=ema_med_status%3A100108&f%5B2%5D=ema_medicine_bundle%3Aema_medicine&f%5B3%5D=ema_search_categories%3A83&landing_from=73303. Erişim tarihi: 21.02.2024.
  • 180. EMA. Aduhelm-Epar. Erişim adresi: https://www.ema.europa.eu/en/medicines/human/EPAR/aduhelm. Erişim tarihi: 21.02.2024.
  • 181. EMA. Aduhelm-Withdrawal letter. Erişim adresi: www.ema.europa.eu/en/documents/withdrawal-letter/withdrawal-letter-aduhelm_en.pdf. Erişim tarihi: 21.02.2024.
  • 182. FDA. Aduhelm. Erişim adresi: www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=761178. Erişim tarihi: 21.02.2024.
  • 183. FDA. Lecanemab. Erişim adresi: www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=761269. Erişim tarihi: 21.02.2024.
  • 184. Brenman, J.E. (2023). Lecanemab in early Alzheimer's disease. The New England Journal of Medicine. 388(17), 1631. [CrossRef]
  • 185. FDA. Lecanemab-Summary Review. Erişim adresi: https://www.accessdata.fda.gov/drugsatfda_docs/summary_review/2023/761269Orig1s000SumR.pdf. Erişim tarihi: 21.02.2024.
  • 186. FDA. Leqembi-Approval Letter. Erişim adresi: www.accessdata.fda.gov/drugsatfda_docs/nda/2023/761269Orig1s000Approv.pdf. Erişim tarihi: 21.02.2024.
  • 187. Cummings, J., Zhou, Y., Lee, G., Zhong, K., Fonseca, J., Cheng, F. (2023). Alzheimer's disease drug development pipeline: 2023. Alzheimer's & Dementia: Translational Research & Clinical Interventions. 9(2), e12385. [CrossRef]

ALZHEIMER HASTALIĞI, RİSK FAKTÖRLERİ VE TEDAVİ

Year 2024, , 766 - 790, 20.05.2024
https://doi.org/10.33483/jfpau.1441827

Abstract

Amaç: Alzheimer Hastalığı hem ülkemizde hem de dünya genelinde, yaş ortalamasının da artması ile birlikte görülme sıklığı her geçen gün artan ilerleyici ve zorlu bir hastalıktır. Hastalığa yakalanma nedenleri ve hastalığın patolojisi hala tam olarak aydınlatılamamış, hastalığa yakalanmayı önleyen bir yol bulunamamış ve hasta olduktan sonra da kullanıldığı takdirde hastayı tamamen iyileştirdiği kanıtlanmış bir molekül keşfedilememiştir. Konvansiyonel ilaçlar ile tedavi halen daha klinikte en çok başvurulan ve sadece semptomatik yarar sağlayan tedavi yöntemidir. Günümüzde innovatif ilaç çalışmaları Alzheimer Hastalığına ışık olabilmek için devam etmektedir.
Sonuç ve Tartışma: Hastalığın patofizyolojisi tam olarak anlaşılamadan tedavi edilmesi mümkün olmamakla birlikte gelişen ilaç teknolojisi ile umut vaat eden yeni moleküller klinikte kullanıma sunulmuştur. Etkili ve güvenli bulunmalarının devamı halinde ilaç pazarında yerini sağlamlaştırarak hastalara umut olacaklardır.

References

  • 1. Uddin, M.S., Kabir, M.T., Tewari, D., Mamun, A.A., Mathew, B., Aleya, L., Barreto, G.E., Bin-Jumah, M.N., Abdel-Daim, M.M., Ashraf, G.M. (2020). Revisiting the role of brain and peripheral Aβ in the pathogenesis of Alzheimer's disease. Journal of the Neurological Sciences, 416, 116974. [CrossRef]
  • 2. Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., Jones, E. (2011). Alzheimer's disease. Lancet. 377(9770), 1019-31. [CrossRef]
  • 3. Povova, J., Ambroz, P., Bar, M., Pavukova, V., Sery, O., Tomaskova, H., Janout, V. (2012).Epidemiological of and risk factors for Alzheimer's disease: A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 156(2), 108-114. [CrossRef]
  • 4. Oboudiyat, C., Glazer, H., Seifan, A., Greer, C. (2013). Isaacson, R.S. Alzheimer's disease. Seminars in Neurology, 33(04), 313-324. [CrossRef]
  • 5. Robinson, M., Lee, B.Y., Hane, F.T. (2017). Recent progress in Alzheimer's disease research, Part 2: Genetics and Epidemiology. Journal of Alzheimer's Disease, 57(2), 317-330. [CrossRef]
  • 6. Langa, K.M., Larson, E.B., Crimmins, E.M., Faul, J.D., Levine, D.A., Kabeto, M.U., Weir, D.R. (2017). A comparison of the prevalence of dementia in the United States in 2000 and 2012. JAMA Internal Medicine, 177(1), 51-58. [CrossRef]
  • 7. Qiu, C., Kivipelto, M., von Strauss, E. (2009). Epidemiology of Alzheimer's disease: Occurrence, determinants, and strategies toward intervention. Dialogues in Clinical Neuroscience, 11(2), 111-128. [CrossRef]
  • 8. Kalaria, R.N., Maestre, G.E., Arizaga, R., Friedland, R.P., Galasko, D., Hall, K., Luchsinger, J.A., Ogunniyi, A., Perry, E.K., Potocnik, F. (2008). Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors. The Lancet Neurology, 7(9), 812-826. [CrossRef]
  • 9. Blaikie, L., Kay, G., Lin, P.K.T. (2019).Current and emerging therapeutic targets of alzheimer's disease for the design of multi-target directed ligands. MedChemComm, 10(12), 2052-2072. [CrossRef]
  • 10. Hebert, L.E., Scherr, P.A., McCann, J.J., Beckett, L.A., Evans, D.A. (2001). Is the risk of developing Alzheimer's disease greater for women than for men? American Journal of Epidemiology, 153(2), 132-136. [CrossRef]
  • 11. Plassman, B.L., Langa, K.M., Fisher, G.G., Heeringa, S.G., Weir, D.R., Ofstedal, M.B., Burke, J.R., Hurd, M.D., Potter, G.G., Rodgers, W.L. (2007). Prevalence of dementia in the United States: The aging, demographics, and memory study. Neuroepidemiology, 29(1-2), 125-132. [CrossRef]
  • 12. Zhao, L., Woody, S.K., Chhibber, A. (2015). Estrogen receptor β in Alzheimer’s disease: From mechanisms to therapeutics. Ageing Research Reviews, 24, 178-190. [CrossRef]
  • 13. Sundermann, E.E., Maki, P.M., Bishop, J.R. (2010).A review of estrogen receptor α gene (ESR1) polymorphisms, mood, and cognition. Menopause (New York, NY), 17(4), 874. [CrossRef]
  • 14. Mendez, M.F. (2017). Early-onset Alzheimer disease. Neurologic Clinics, 35(2), 263-281. [CrossRef]
  • 15. Bateman, R.J., Aisen, P.S., De Strooper, B., Fox, N.C., Lemere, C.A., Ringman, J.M., Salloway, S., Sperling, R.A., Windisch, M., Xiong, C. (2011). Autosomal-dominant Alzheimer's disease: A review and proposal for the prevention of Alzheimer's disease. Alzheimer's Research & Therapy, 3(1), 1-13. [CrossRef]
  • 16. Soria Lopez, J.A., González, H.M., Léger, G.C., Chapter 13 - Alzheimer's disease, in Handbook of Clinical Neurology, S.T. Dekosky and S. Asthana, Editors. 2019, Elsevier. p. 231-255.
  • 17. Campion, D., Dumanchin, C., Hannequin, D., Dubois, B., Belliard, S., Puel, M., Thomas-Anterion, C., Michon, A., Martin, C., Charbonnier, F. (1999). Early-onset autosomal dominant Alzheimer disease: Prevalence, genetic heterogeneity, and mutation spectrum. The American Journal of Human Genetics, 65(3), 664-670. [CrossRef]
  • 18. Bates, K., Verdile, G., Li, Q., Ames, D., Hudson, P., Masters, C., Martins, R. (2009). Clearance mechanisms of Alzheimer's amyloid-β peptide: Implications for therapeutic design and diagnostic tests. Molecular Psychiatry, 14(5), 469-486. [CrossRef]
  • 19. Marshall, G.A., Fairbanks, L.A., Tekin, S., Vinters, H.V., Cummings, J.L. (2007). Early-onset Alzheimer’s disease is associated with greater pathologic burden. Journal of Geriatric Psychiatry and Neurology, 20(1), 29-33. [CrossRef]
  • 20. Belloy, M.E., Napolioni, V., Greicius, M.D. (2019). A quarter century of APOE and Alzheimer’s disease: Progress to date and the path forward. Neuron, 101(5), 820-838. [CrossRef]
  • 21. Namba, Y., Tomonaga, M., Kawasaki, H., Otomo, E., Ikeda, K. (1991). Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Research, 541(1), 163-166. [CrossRef]
  • 22. Koffie, R.M., Hashimoto, T., Tai, H.-C., Kay, K.R., Serrano-Pozo, A., Joyner, D., Hou, S., Kopeikina, K.J., Frosch, M.P., Lee, V.M. (2012). Apolipoprotein E4 effects in Alzheimer’s disease are mediated by synaptotoxic oligomeric amyloid-β. Brain, 135(7), 2155-2168. [CrossRef]
  • 23. Morris, J.C., Roe, C.M., Xiong, C., Fagan, A.M., Goate, A.M., Holtzman, D.M., Mintun, M.A. (2010). APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Annals of Neurology, 67(1), 122-31. [CrossRef]
  • 24. Fleisher, A.S., Chen, K., Liu, X., Ayutyanont, N., Roontiva, A., Thiyyagura, P., Protas, H., Joshi, A.D., Sabbagh, M., Sadowsky, C.H., Sperling, R.A., Clark, C.M., Mintun, M.A., Pontecorvo, M.J., Coleman, R.E., Doraiswamy, P.M., Johnson, K.A., Carpenter, A.P., Skovronsky, D.M., Reiman, E.M. (2013). Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol Aging, 34(1), 1-12. [CrossRef]
  • 25. Roses, M., Allen D. (1996). Apolipoprotein E alleles as risk factors in Alzheimer's disease. Annual Review of Medicine, 47(1), 387-400. [CrossRef]
  • 26. Farrer, L.A., Cupples, L.A., Haines, J.L., Hyman, B., Kukull, W.A., Mayeux, R., Myers, R.H., Pericak-Vance, M.A., Risch, N., Van Duijn, C.M. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. Jama, 278(16), 1349-1356. [CrossRef]
  • 27. Ittner, L.M.,Götz, J. (2011). Amyloid-β and tau-a toxic pas de deux in Alzheimer's disease. Nature Reviews Neuroscience, 12(2), 67-72. [CrossRef]
  • 28. Drummond, E.,Wisniewski, T. (2017). Alzheimer’s disease: Experimental models and reality. Acta Neuropathologica, 133, 155-175. [CrossRef]
  • 29. Holtzman, D.M., Herz, J., Bu, G. (2012). Apolipoprotein E and apolipoprotein E receptors: Normal biology and roles in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(3), a006312. [CrossRef]
  • 30. M Di Battista, A., M Heinsinger, N., William Rebeck, G. (2016). Alzheimer’s disease genetic risk factor APOE-ε4 also affects normal brain function. Current Alzheimer Research, 13(11), 1200-1207. [CrossRef]
  • 31. Zigman, W.B., Devenny, D.A., Krinsky‐McHale, S.J., Jenkins, E.C., Urv, T.K., Wegiel, J., Schupf, N., Silverman, W. (2008). Alzheimer's disease in adults with Down syndrome. International Review of Research in Mental Retardation, 36, 103-145. [CrossRef]
  • 32. Wiseman, F.K., Pulford, L.J., Barkus, C., Liao, F., Portelius, E., Webb, R., Chávez-Gutiérrez, L., Cleverley, K., Noy, S., Sheppard, O., Collins, T., Powell, C., Sarell, C.J., Rickman, M., Choong, X., Tosh, J.L., Siganporia, C., Whittaker, H.T., Stewart, F., Szaruga, M., et al. (2018). Trisomy of human chromosome 21 enhances amyloid-β deposition independently of an extra copy of APP. Brain, 141(8), 2457-2474. [CrossRef]
  • 33. Ricciarelli, R.,Fedele, E. (2017). The amyloid cascade hypothesis in Alzheimer's disease: It's time to change our mind. Current Neuropharmacology, 15(6), 926-935. [CrossRef]
  • 34. Cortes-Canteli, M.,Iadecola, C. (2020). Alzheimer’s disease and vascular aging: JACC focus seminar. Journal of the American College of Cardiology, 75(8), 942-951. [CrossRef]
  • 35. Crous-Bou, M., Minguillón, C., Gramunt, N., Molinuevo, J.L. (2017). Alzheimer’s disease prevention: From risk factors to early intervention. Alzheimer's Research & Therapy, 9, 1-9. [CrossRef]
  • 36. Fratiglioni, L., Paillard-Borg, S., Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. The Lancet Neurology, 3(6), 343-353. [CrossRef]
  • 37. Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer's disease. The Lancet Neurology, 11(11), 1006-1012. [CrossRef]
  • 38. Fleminger, S., Oliver, D., Lovestone, S., Rabe-Hesketh, S., Giora, A. (2003). Head injury as a risk factor for Alzheimer's disease: The evidence 10 years on; a partial replication. Journal of Neurology, Neurosurgery, and Psychiatry, 74(7), 857. [CrossRef]
  • 39. de Bruijn, R.F.,Ikram, M.A. (2014). Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Medicine, 12, 1-9. [CrossRef]
  • 40. Elrod, K., Buccafusco, J.J., Jackson, W.J. (1988). Nicotine enhances delayed matching-to-sample performance by primates. Life Sciences, 43(3), 277-287. [CrossRef]
  • 41. Salomon, A.R., Marcinowski, K.J., Friedland, R.P., Zagorski, M.G. (1996). Nicotine inhibits amyloid formation by the β-peptide. Biochemistry, 35(42), 13568-13578. [CrossRef]
  • 42. Brayne, C. (2000). Smoking and the brain: no good evidence exists that smoking protects against dementia. British Medical Journal Publishing Group. p. 1087-1088. [CrossRef]
  • 43. Anstey, K.J., von Sanden, C., Salim, A., O'Kearney, R. (2007). Smoking as a risk factor for dementia and cognitive decline: A meta-analysis of prospective studies. American Journal of Epidemiology, 166(4), 367-378. [CrossRef]
  • 44. Tyas, S.L., White, L.R., Petrovitch, H., Ross, G.W., Foley, D.J., Heimovitz, H.K., Launer, L.J. (2003). Mid-life smoking and late-life dementia: The Honolulu-Asia aging study. Neurobiology of Aging, 24(4), 589-596. [CrossRef]
  • 45. Langballe, E.M., Ask, H., Holmen, J., Stordal, E., Saltvedt, I., Selbæk, G., Fikseaunet, A., Bergh, S., Nafstad, P., Tambs, K. (2015). Alcohol consumption and risk of dementia up to 27 years later in a large, population-based sample: The HUNT study, Norway. European Journal of Epidemiology, 30, 1049-1056. [CrossRef]
  • 46. Fukuda, T., Ohnuma, T., Obara, K., Kondo, S., Arai, H., Ano, Y. (2020). Supplementation with matured hop bitter acids improves cognitive performance and mood state in healthy older adults with subjective cognitive decline. Journal of Alzheimer's Disease, 76(1), 387-398. [CrossRef]
  • 47. Xu, W., Wang, H., Wan, Y., Tan, C., Li, J., Tan, L., Yu, J.-T. (2017). Alcohol consumption and dementia risk: a dose–response meta-analysis of prospective studies. European Journal of Epidemiology, 32, 31-42. [CrossRef]
  • 48. Handing, E.P., Andel, R., Kadlecova, P., Gatz, M., Pedersen, N.L. (2015). Midlife alcohol consumption and risk of dementia over 43 years of follow-up: a population-based study from the Swedish twin registry. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 70(10), 1248-1254. [CrossRef]
  • 49. Reale, M., Constantini, E., Jagarlapoodi, S., Khan, H., Belwal, T., Cichelli, A. (2020). Relationship of Wine Consumption with Alzheimer’s Disease. Nutrients, 12, 206. [CrossRef]
  • 50. Sharma, A., Brenner, M., Wang, P. (2020).Potential role of extracellular CIRP in alcohol-induced Alzheimer’s disease. Molecular Neurobiology, 57(12), 5000-5010. [CrossRef]
  • 51. Anttila, T., Helkala, E.-L., Viitanen, M., Kåreholt, I., Fratiglioni, L., Winblad, B., Soininen, H., Tuomilehto, J., Nissinen, A., Kivipelto, M. (2004). Alcohol drinking in middle age and subsequent risk of mild cognitive impairment and dementia in old age: a prospective population based study. BMJ, 329(7465), 539. [CrossRef]
  • 52. Andersen, K., Lolk, A., Kragh-Sørensen, P., Petersen, N.E., Green, A. (2005). Depression and the risk of Alzheimer disease. Epidemiology, 233-238. [CrossRef]
  • 53. Ferreira, S.T., Lourenco, M.V., Oliveira, M.M., De Felice, F.G. (2015). Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer’s disease. Frontiers in Cellular Neuroscience, 9, 191. [CrossRef]
  • 54. Ferreira, S.T.,Klein, W.L. (2011). The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiology of Learning and Memory, 96(4), 529-543. [CrossRef]
  • 55. Koffie, R.M., Hyman, B.T., Spires-Jones, T.L. (2011). Alzheimer's disease: Synapses gone cold. Molecular Neurodegeneration, 6(1), 1-9. [CrossRef]
  • 56. Forman, M.S., Trojanowski, J.Q., Lee, V.M. (2004). Neurodegenerative diseases: A decade of discoveries paves the way for therapeutic breakthroughs. Nature Medicine, 10(10), 1055-1063. [CrossRef]
  • 57. Serpente, M., Bonsi, R., Scarpini, E., Galimberti, D. (2014). Innate immune system and inflammation in Alzheimer's disease: From pathogenesis to treatment. Neuroimmunomodulation, 21(2-3), 79-87. [CrossRef]
  • 58. Robert, R.,Wark, K.L. (2012). Engineered antibody approaches for Alzheimer’s disease immunotherapy. Archives of Biochemistry and Biophysics, 526(2), 132-138. [CrossRef]
  • 59. Finch, C.E.,Morgan, T.E. (2007). Systemic inflammation, infection, ApoE alleles, and Alzheimer disease: A position paper. Current Alzheimer Research, 4(2), 185-189. [CrossRef]
  • 60. Tuppo, E.E.,Arias, H.R. (2005). The role of inflammation in Alzheimer's disease. The International Journal of Biochemistry & Cell Biology, 37(2), 289-305. [CrossRef]
  • 61. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M., Cooper, N.R., Eikelenboom, P., Emmerling, M., Fiebich, B.L. (2000). Inflammation and Alzheimer’s disease. Neurobiology of Aging, 21(3), 383-421. [CrossRef]
  • 62. Atwood, C.S., Obrenovich, M.E., Liu, T., Chan, H., Perry, G., Smith, M.A., Martins, R.N. (2003). Amyloid-β: A chameleon walking in two worlds: A review of the trophic and toxic properties of amyloid-β. Brain Research Reviews, 43(1), 1-16. [CrossRef]
  • 63. Lim, S.L., Rodriguez-Ortiz, C.J., Kitazawa, M. (2015). Infection, systemic inflammation, and Alzheimer's disease. Microbes and Infection, 17(8), 549-556. [CrossRef]
  • 64. Sochocka, M., Zwolińska, K., Leszek, J. (2017). The infectious etiology of Alzheimer's disease. Current Neuropharmacol, 15(7), 996-1009. [CrossRef]
  • 65. Adalı, A., Yirün, A., Koçer-Gümüşel, B., Erkekoğlu, P. (2020).Alzheimer hastalığının gelişiminde biyolojik ajanların olası etkileri. Journal of Faculty of Pharmacy of Ankara University, 44(1), 167-187. [CrossRef]
  • 66. Breijyeh, Z., Karaman, R. (2020). Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 25(24), 5789. [CrossRef]
  • 67. Forny-Germano, L., De Felice, F.G., Vieira, M.N.d.N. (2019). The role of leptin and adiponectin in obesity-associated cognitive decline and Alzheimer’s disease. Frontiers in Neuroscience, 12, 1027. [CrossRef]
  • 68. Yam, K.-Y., Naninck, E.F., Abbink, M., la Fleur, S.E., Schipper, L., van den Beukel, J., Grefhorst, A., Oosting, A., Van Der Beek, E., Lucassen, P. (2017). Exposure to chronic early-life stress lastingly alters the adipose tissue, the leptin system and changes the vulnerability to western-style diet later in life in mice. Psychoneuroendocrinology, 77, 186-195. [CrossRef]
  • 69. Kiliaan, A.J., Arnoldussen, I.A., Gustafson, D.R. (2014). Adipokines: A link between obesity and dementia? The Lancet Neurology, 13(9), 913-923. [CrossRef]
  • 70. Flores-Cordero, J.A., Pérez-Pérez, A., Jiménez-Cortegana, C., Alba, G., Flores-Barragán, A., Sánchez-Margalet, V. (2022). Obesity as a risk factor for dementia and Alzheimer's disease: The role of leptin. International Journal of Molecular Sciences, 23(9), 5202. [CrossRef]
  • 71. Messier, C. (2003). Diabetes, Alzheimer's disease and apolipoprotein genotype. Experimental Gerontology, 38(9), 941-946. [CrossRef]
  • 72. Fiore, V., De Rosa, A., Falasca, P., Marci, M., Guastamacchia, E., Licchelli, B., Giagulli, V.A., De Pergola, G., Poggi, A., Triggiani, V. (2019). Focus on the correlations between Alzheimer’s disease and type 2 diabetes. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders), 19(5), 571-579. [CrossRef]
  • 73. Biessels, G.J.,Despa, F. (2018). Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nature Reviews Endocrinology, 14(10), 591-604. [CrossRef]
  • 74. Hayden, M.R. (2019). Type 2 diabetes mellitus increases the risk of late-onset Alzheimer’s disease: Ultrastructural remodeling of the neurovascular unit and diabetic gliopathy. Brain Sciences, 9(10), 262. [CrossRef]
  • 75. Salas, I.H.,De Strooper, B. (2019) .Diabetes and Alzheimer’s disease: A link not as simple as it seems. Neurochemical Research, 44(6), 1271-1278. [CrossRef]
  • 76. Lei, P., Ayton, S., Bush, A.I. (2021). The essential elements of Alzheimer’s disease. Journal of Biological Chemistry, 296. [CrossRef]
  • 77. Huat, T.J., Camats-Perna, J., Newcombe, E.A., Valmas, N., Kitazawa, M., Medeiros, R. (2019). Metal toxicity links to Alzheimer's disease and neuroinflammation. Journal of Molecular Biology, 431(9), 1843-1868. [CrossRef]
  • 78. Jack Jr, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B., Holtzman, D.M., Jagust, W., Jessen, F., Karlawish, J. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia, 14(4), 535-562. [CrossRef]
  • 79. Fleisher, A.S., Chen, K., Quiroz, Y.T., Jakimovich, L.J., Gomez, M.G., Langois, C.M., Langbaum, J.B., Roontiva, A., Thiyyagura, P., Lee, W. (2015). Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer disease kindred: A cross-sectional study. JAMA Neurology, 72(3), 316-324. [CrossRef]
  • 80. Villemagne, V.L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K.A., Salvado, O., Szoeke, C., Macaulay, S.L., Martins, R., Maruff, P. (2013). Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: A prospective cohort study. The Lancet Neurology, 12(4), 357-367. [CrossRef]
  • 81. Dubois, B., Hampel, H., Feldman, H.H., Scheltens, P., Aisen, P., Andrieu, S., Bakardjian, H., Benali, H., Bertram, L., Blennow, K. (2016). Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria. Alzheimer's & Dementia, 12(3), 292-323. [CrossRef]
  • 82. Jack Jr, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Feldman, H.H., Frisoni, G.B., Hampel, H., Jagust, W.J., Johnson, K.A., Knopman, D.S. (2016). A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology, 87(5), 539-547. [CrossRef]
  • 83. Kovacs, G.G., Milenkovic, I., Wöhrer, A., Höftberger, R., Gelpi, E., Haberler, C., Hönigschnabl, S., Reiner-Concin, A., Heinzl, H., Jungwirth, S. (2013). Non-Alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: A community-based autopsy series. Acta Neuropathologica, 126, 365-384. [CrossRef]
  • 84. Serrano-Pozo, A., Frosch, M.P., Masliah, E., Hyman, B.T. (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 1(1), a006189. [CrossRef]
  • 85. Schneider, J.A., Arvanitakis, Z., Leurgans, S.E., Bennett, D.A. (2009). The neuropathology of probable Alzheimer disease and mild cognitive impairment. Annals of Neurology. 66(2), 200-208. [CrossRef]
  • 86. Khan, S., Barve, K.H., Kumar, M.S. (2020). Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Current Neuropharmacology, 18(11), 1106-1125. [CrossRef]
  • 87. Briggs, R., Kennelly, S.P., O'Neill, D. (2016).Drug treatments in Alzheimer’s disease. Clinical Medicine, 16(3), 247. [CrossRef]
  • 88. Lipton, S.A. (2005). The molecular basis of memantine action in Alzheimer's disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Current Alzheimer Research, 2(2), 155-165. [CrossRef]
  • 89. Penke, B., Bogár, F., Fülöp, L. (2017). β-Amyloid and the pathomechanisms of Alzheimer’s disease: A comprehensive view. Molecules, 22(10), 1692. [CrossRef]
  • 90. Jeong, H., Shin, H., Hong, S., Kim, Y. (2022). Physiological Roles of Monomeric Amyloid-β and Implications for Alzheimer’s Disease Therapeutics. Experimental Neurobiology, 31(2), 65. [CrossRef]
  • 91. Nichols, R.A., Gulisano, W., Puzzo, D. (2022). Beta Amyloid: From Physiology to Pathogenesis. Frontiers in Molecular Neuroscience, 15, 876224. [CrossRef]
  • 92. Kent, S.A., Spires-Jones, T.L., Durrant, C.S. (2020). The physiological roles of tau and Aβ: Implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathologica, 140(4), 417-447. [CrossRef]
  • 93. Šerý, O., Povová, J., Míšek, I., Pešák, L., Janout, V. (2013). Molecular mechanisms of neuropathological changes in Alzheimer’s disease: A review. Folia Neuropathologica, 51(1), 1-9. [CrossRef]
  • 94. Isbert, S., Wagner, K., Eggert, S., Schweitzer, A., Multhaup, G., Weggen, S., Kins, S., Pietrzik, C.U. (2012). APP dimer formation is initiated in the endoplasmic reticulum and differs between APP isoforms. Cellular and Molecular Life Sciences, 69, 1353-1375. [CrossRef]
  • 95. Murphy, M.P.,LeVine III, H. (2010). Alzheimer's disease and the amyloid-β peptide. Journal of Alzheimer's Diseas,. 19(1), 311-323. [CrossRef]
  • 96. Godyń, J., Jończyk, J., Panek, D., Malawska, B. (2016). Therapeutic strategies for Alzheimer's disease in clinical trials. Pharmacological Reports, 68(1), 127-138. [CrossRef]
  • 97. Kumar, A.,Singh, A. (2015). A review on Alzheimer's disease pathophysiology and its management: An update. Pharmacological Reports, 67(2), 195-203. [CrossRef]
  • 98. Fernandez, M.A. (2015). Sequential proteolysis by γ-secretase and its implications for Alzheimer's disease. Harvard University.
  • 99. Lewczuk, P., Kamrowski-Kruck, H., Peters, O., Heuser, I., Jessen, F., Popp, J., Bürger, K., Hampel, H., Frölich, L., Wolf, S. (2010). Soluble amyloid precursor proteins in the cerebrospinal fluid as novel potential biomarkers of Alzheimer's disease: A multicenter study. Molecular Psychiatry, 15(2), 138-145. [CrossRef]
  • 100. Winkler, E., Kamp, F., Scheuring, J., Ebke, A., Fukumori, A., Steiner, H. (2012). Generation of Alzheimer disease-associated amyloid β42/43 peptide by γ-secretase can be inhibited directly by modulation of membrane thickness. Journal of Biological Chemistry, 287(25), 21326-21334. [CrossRef]
  • 101. Wang, D.-S., Dickson, D.W., Malter, J.S. (2006). β-Amyloid degradation and Alzheimer's disease. BioMed Research International. 2006, 058406. [CrossRef]
  • 102. Barret, K.E. (2010). Ganong; s Review of Medical Physiology. USA.
  • 103. Mattson, M.P. (2004). Pathways towards and away from Alzheimer's disease. Nature, 430(7000), 631-639. [CrossRef]
  • 104. Kumar, V., Sami, N., Kashav, T., Islam, A., Ahmad, F., Hassan, M.I. (2016). Protein aggregation and neurodegenerative diseases: From theory to therapy. European Journal of Medicinal Chemistry, 124, 1105-1120. [CrossRef]
  • 105. Abeysinghe, A., Deshapriya, R., Udawatte, C. (2020). Alzheimer's disease; a review of the pathophysiological basis and therapeutic interventions. Life Sciences, 256, 117996. [CrossRef]
  • 106. Pereira, C., Agostinho, P., Moreira, P., Cardoso, S., Oliveira, C. (2005). Alzheimer's disease-associated neurotoxic mechanisms and neuroprotective strategies. Current Drug Targets-CNS & Neurological Disorders, 4(4), 383-403. [CrossRef]
  • 107. Chen, G.F., Xu, T.H., Yan, Y., Zhou, Y.R., Jiang, Y., Melcher, K., Xu, H.E. (2017). Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 38(9), 1205-1235. [CrossRef]
  • 108. Guerreiro, R.J., Gustafson, D.R., Hardy, J. (2012). The genetic architecture of Alzheimer's disease: Beyond APP, PSENs and APOE. Neurobiology of Aging, 33(3), 437-456. [CrossRef]
  • 109. Lee, M.K., Borchelt, D.R., Kim, G., Thinakaran, G., Slunt, H.H., Ratovitski, T., Martin, L.J., Kittur, A., Gandy, S., Levey, A.I. (1997). Hyperaccumulation of FAD-linked presenilin 1 variants in vivo. Nature Medicine, 3(7), 756-760. [CrossRef]
  • 110. Nelson, O., Supnet, C., Liu, H., Bezprozvanny, I. (2010). Familial Alzheimer's disease mutations in presenilins: Effects on endoplasmic reticulum calcium homeostasis and correlation with clinical phenotypes. Journal of Alzheimer's Disease, 21(3), 781-793. [CrossRef]
  • 111. Rabbito, A., Dulewicz, M., Kulczyńska-Przybik, A., Mroczko, B. (2020). Biochemical markers in Alzheimer’s disease. International Journal of Molecular Sciences, 21(6), 1989. [CrossRef]
  • 112. DeFina, P.A., Moser, R.S., Glenn, M., Lichtenstein, J.D., Fellus, J. (2013). Alzheimer's disease clinical and research update for health care practitioners. Journal of Aging Research, 2013, 207178. [CrossRef]
  • 113. Wang, J.Z., Xia, Y.Y., Grundke-Iqbal, I., Iqbal, K. (2013). Abnormal hyperphosphorylation of tau: Sites, regulation, and molecular mechanism of neurofibrillary degeneration. Journal of Alzheimer's Disease, 33(s1), S123-S139. [CrossRef]
  • 114. Lashley, T., Schott, J.M., Weston, P., Murray, C.E., Wellington, H., Keshavan, A., Foti, S.C., Foiani, M., Toombs, J., Rohrer, J.D. (2018). Molecular biomarkers of Alzheimer's disease: Progress and prospects. Disease Models & Mechanisms, 11(5), dmm031781. [CrossRef]
  • 115. Varghese, M., Santa-Maria, I., Ho, L., Ward, L., Yemul, S., Dubner, L., Księżak-Reding, H., Pasinetti, G.M. (2016). Extracellular tau paired helical filaments differentially affect tau pathogenic mechanisms in mitotic and post-mitotic cells: Implications for mechanisms of tau propagation in the brain. Journal of Alzheimer's Disease, 54(2), 477-496. [CrossRef]
  • 116. Buée, L., Bussière, T., Buée-Scherrer, V., Delacourte, A., Hof, P.R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Research Reviews, 33(1), 95-130. [CrossRef]
  • 117. Mandelkow, E.-M.,Mandelkow, E. (1998). Tau in Alzheimer's disease. Trends in Cell Biology, 8(11), 425-427. [CrossRef]
  • 118. Bloom, G.S. (2014). Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurology, 71(4), 505-508. [CrossRef]
  • 119. Ballatore, C., Lee, V.M.Y., Trojanowski, J.Q. (2007). Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature Reviews Neuroscience, 8(9), 663-672. [CrossRef]
  • 120. Molinuevo, J.L., Ayton, S., Batrla, R., Bednar, M.M., Bittner, T., Cummings, J., Fagan, A.M., Hampel, H., Mielke, M.M., Mikulskis, A. (2018). Current state of Alzheimer’s fluid biomarkers. Acta Neuropathologica, 136, 821-853. [CrossRef]
  • 121. Lewczuk, P., Lelental, N., Lachmann, I., Holzer, M., Flach, K., Brandner, S., Engelborghs, S., Teunissen, C.E., Zetterberg, H., Molinuevo, J.L. (2017). Non-phosphorylated tau as a potential biomarker of Alzheimer’s disease: Analytical and diagnostic characterization. Journal of Alzheimer's Disease, 55(1), 159-170. [CrossRef]
  • 122. Hugon, J., Mouton-Liger, F., Cognat, E., Dumurgier, J., Paquet, C. (2018). Blood-based kinase assessments in Alzheimer’s disease. Frontiers in Aging Neuroscience, 10, 338. [CrossRef]
  • 123. Castro-Alvarez, J.F., Uribe-Arias, S.A., Kosik, K.S., Cardona-Gómez, G.P. (2014). Long-and short-term CDK5 knockdown prevents spatial memory dysfunction and tau pathology of triple transgenic Alzheimer’s mice. Frontiers in Aging Neuroscience, 6, 243. [CrossRef]
  • 124. Kimura, T., Tsutsumi, K., Taoka, M., Saito, T., Masuda-Suzukake, M., Ishiguro, K., Plattner, F., Uchida, T., Isobe, T., Hasegawa, M. (2013). Isomerase Pin1 stimulates dephosphorylation of tau protein at cyclin-dependent kinase (Cdk5)-dependent Alzheimer phosphorylation sites. Journal of Biological Chemistry, 288(11), 7968-7977. [CrossRef]
  • 125. Lee, S., Hall, G.F., Shea, T.B. (2011). Potentiation of tau aggregation by cdk5 and GSK3β. Journal of Alzheimer's Disease, 26(2), 355-364. [CrossRef]
  • 126. Huang, H.-C.,Jiang, Z.-F. (2009). Accumulated amyloid-β peptide and hyperphosphorylated tau protein: Relationship and links in Alzheimer's disease. Journal of Alzheimer's Disease, 16(1), 15-27. [CrossRef]
  • 127. Sinsky, J., Pichlerova, K., Hanes, J. (2021). Tau protein interaction partners and their roles in Alzheimer’s disease and other tauopathies. International Journal of Molecular Sciences, 22(17), 9207. [CrossRef]
  • 128. Congdon, E.E.,Sigurdsson, E.M. (2018). Tau-targeting therapies for Alzheimer disease. Nature Reviews Neurology, 14(7), 399-415. [CrossRef]
  • 129. Kim, J.H., Lee, J., Choi, W.H., Park, S., Park, S.H., Lee, J.H., Lim, S.M., Mun, J.Y., Cho, H.S., Han, D. (2021). CHIP-mediated hyperubiquitylation of tau promotes its self-assembly into the insoluble tau filaments. Chemical Science, 12(15), 5599-5610. [CrossRef]
  • 130. Zheng, W.-H., Bastianetto, S., Mennicken, F., Ma, W., Kar, S. (2002). Amyloid β peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience, 115(1), 201-211. [CrossRef]
  • 131. Iqbal, K., Liu, F., Gong, C.-X. (2016). Tau and neurodegenerative disease: The story so far. Nature Reviews Neurology, 12(1), 15-27. [CrossRef]
  • 132. Hernandez, P., Lee, G., Sjoberg, M., Maccioni, R.B. (2009). Tau phosphorylation by cdk5 and Fyn in response to amyloid peptide Aβ 25-35: Involvement of lipid rafts. Journal of Alzheimer's Disease, 16(1), 149-156. [CrossRef]
  • 133. Terwel, D., Muyllaert, D., Dewachter, I., Borghgraef, P., Croes, S., Devijver, H., Van Leuven, F. (2008). Amyloid activates GSK-3β to aggravate neuronal tauopathy in bigenic mice. The American Journal of Pathology, 172(3), 786-798. [CrossRef]
  • 134. Hawkins, B.E., Krishnamurthy, S., Castillo-Carranza, D.L., Sengupta, U., Prough, D.S., Jackson, G.R., DeWitt, D.S., Kayed, R. (2013). Rapid accumulation of endogenous tau oligomers in a rat model of traumatic brain injury: Possible link between traumatic brain injury and sporadic tauopathies. Journal of Biological Chemistry, 288(23), 17042-17050. [CrossRef]
  • 135. Sengupta, U., Guerrero-Muñoz, M.J., Castillo-Carranza, D.L., Lasagna-Reeves, C.A., Gerson, J.E., Paulucci-Holthauzen, A.A., Krishnamurthy, S., Farhed, M., Jackson, G.R., Kayed, R. (2015). Pathological interface between oligomeric alpha-synuclein and tau in synucleinopathies. Biological Psychiatry, 78(10), 672-683. [CrossRef]
  • 136. Zhang, H., Wei, W., Zhao, M., Ma, L., Jiang, X., Pei, H., Cao, Y., Li, H. (2021). Interaction between Aβ and tau in the pathogenesis of Alzheimer's disease. International Journal of Biological Sciences, 17(9), 2181. [CrossRef]
  • 137. Campion, D., Pottier, C., Nicolas, G., Le Guennec, K., Rovelet-Lecrux, A. (2016). Alzheimer disease: modeling an Aβ-centered biological network. Molecular Psychiatry, 21(7), 861-871. [CrossRef]
  • 138. Roberson, E.D., Halabisky, B., Yoo, J.W., Yao, J., Chin, J., Yan, F., Wu, T., Hamto, P., Devidze, N., Yu, G.-Q. (2011). Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. Journal of Neuroscience, 31(2), 700-711. [CrossRef]
  • 139. Silva, D.F., Esteves, A.R., Oliveira, C.R., Cardoso, S.M. (2011). Mitochondria: the common upstream driver of amyloid-β and tau pathology in Alzheimer's disease. Current Alzheimer Research, 8(5), 563-72. [CrossRef]
  • 140. Prinz, M., Jung, S., Priller, J. (2019). Microglia biology: One century of evolving concepts. Cell, 179(2), 292-311. [CrossRef]
  • 141. Carrano, A., Hoozemans, J.J., Van Der Vies, S.M., Van Horssen, J., De Vries, H.E., Rozemuller, A.J. (2012). Neuroinflammation and blood-brain barrier changes in capillary amyloid angiopathy. Neurodegenerative Diseases, 10(1-4), 329-331. [CrossRef]
  • 142. Heneka, M.T., Carson, M.J., El Khoury, J., Landreth, G.E., Brosseron, F., Feinstein, D.L., Jacobs, A.H., Wyss-Coray, T., Vitorica, J., Ransohoff, R.M. (2015). Neuroinflammation in Alzheimer's disease. The Lancet Neurology, 14(4), 388-405. [CrossRef]
  • 143. Nichols, E., Szoeke, C.E., Vollset, S.E., Abbasi, N., Abd-Allah, F., Abdela, J., Aichour, M.T.E., Akinyemi, R.O., Alahdab, F., Asgedom, S.W. (2019). Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 88-106. [CrossRef]
  • 144. Weller, J.,Budson, A. (2018). Current understanding of Alzheimer's disease diagnosis and treatment. F1000Res. 7. [CrossRef]
  • 145. Grossberg, G.T., Manes, F., Allegri, R.F., Gutiérrez-Robledo, L.M., Gloger, S., Xie, L., Jia, X.D., Pejović, V., Miller, M.L., Perhach, J.L. (2013). The safety, tolerability, and efficacy of once-daily memantine (28 mg): A multinational, randomized, double-blind, placebo-controlled trial in patients with moderate-to-severe Alzheimer’s disease taking cholinesterase inhibitors. CNS Drugs, 27, 469-478. [CrossRef]
  • 146. Whitehouse, P.J. (1998). The cholinergic deficit in Alzheimer's disease. Journal of Clinical Psychiatry, 59, 19-22.
  • 147. Birks, J.S., Dementia, C., Group, C.I. (1996). Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database of Systematic Reviews, 2016(3 ). [CrossRef]
  • 148. Kevadiya, B.D., Ottemann, B.M., Thomas, M.B., Mukadam, I., Nigam, S., McMillan, J., Gorantla, S., Bronich, T.K., Edagwa, B., Gendelman, H.E. (2019). Neurotheranostics as personalized medicines. Advanced Drug Delivery Reviews, 148, 252-289. [CrossRef]
  • 149. Sharma, K. (2019). Cholinesterase inhibitors as Alzheimer's therapeutics. Molecular Medicine Reports, 20(2), 1479-1487. [CrossRef]
  • 150. Dooley, M.,Lamb, H.M. (2000). Donepezil: A review of its use in Alzheimer’s disease. Drugs & Aging, 16, 199-226. [CrossRef]
  • 151. Scott, L.J.,Goa, K.L. (2000). Galantamine: A review of its use in Alzheimer’s disease. Drugs, 60, 1095-1122. [CrossRef]
  • 152. Kim, J.K.,Park, S.U. (2017). Pharmacological aspects of galantamine for the treatment of Alzheimer's disease. EXCLI Journal, 16, 35-39. [CrossRef]
  • 153. Birks, J.S. (2006). Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database of Systematic Reviews, (1), 1. [CrossRef]
  • 154. Chu, L., Yik, P., Mok, W., Chung, C. (2007). A 2‐year open‐label study of galantamine therapy in Chinese Alzheimer's disease patients in Hong Kong. International journal of clinical practice, 61(3), 403-410. [CrossRef]
  • 155. Blanco-Silvente, L., Castells, X., Saez, M., Barceló, M.A., Garre-Olmo, J., Vilalta-Franch, J., Capellà, D. (2017). Discontinuation, efficacy, and safety of cholinesterase inhibitors for Alzheimer’s disease: A meta-analysis and meta-regression of 43 randomized clinical trials enrolling 16 106 patients. International Journal of Neuropsychopharmacology, 20(7), 519-528. [CrossRef]
  • 156. Health, N.I.f.,Excellence, C. (2011). Donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer's disease. National Institute for Health and Clinical Excellence. https://www.nice.org.uk/guidance/ta217 Erişim tarihi: 21.02.2024.
  • 157. Winblad, B., Jones, R.W., Wirth, Y., Stöffler, A., Möbius, H.J. (2007). Memantine in moderate to severe Alzheimer’s disease: A meta-analysis of randomised clinical trials. S. Karger AG Basel, Switzerland. p. 20-27. [CrossRef]
  • 158. Thomas, S.J.,Grossberg, G.T. (2009). Memantine: a review of studies into its safety and efficacy in treating Alzheimer’s disease and other dementias. Clinical Interventions in Aging, 367-377. [CrossRef]
  • 159. Liu, J., Chang, L., Song, Y., Li, H., Wu, Y. (2019). The role of NMDA receptors in Alzheimer’s disease. Frontiers in Neuroscience, 13, 43. [CrossRef]
  • 160. Kuns, B., Rosani, A., Varghese, D. (2024). Memantine, in StatPearls. StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC.: Treasure Island (FL).
  • 161. Santos, M.A., Chand, K., Chaves, S. (2016). Recent progress in multifunctional metal chelators as potential drugs for Alzheimer's disease. Coordination Chemistry Reviews, 327, 287-303. [CrossRef]
  • 162. McShane, R., Westby, M.J., Roberts, E., Minakaran, N., Schneider, L., Farrimond, L.E., Maayan, N., Ware, J., Debarros, J. (2019). Memantine for dementia. Cochrane Database of Systematic Reviews, 3(3), Cd003154. [CrossRef]
  • 163. Blanco-Silvente, L., Capellà, D., Garre-Olmo, J., Vilalta-Franch, J., Castells, X. (2018). Predictors of discontinuation, efficacy, and safety of memantine treatment for Alzheimer’s disease: Meta-analysis and meta-regression of 18 randomized clinical trials involving 5004 patients. BMC Geriatrics, 18(1), 1-16. [CrossRef]
  • 164. Cummings, J.L., Tong, G., Ballard, C. (2019). Treatment combinations for Alzheimer’s disease: Current and future pharmacotherapy options. Journal of Alzheimer's Disease, 67(3), 779-794. [CrossRef]
  • 165. Riordan, K.C., Snyder, C.R.H., Wellik, K.E., Caselli, R.J., Wingerchuk, D.M., Demaerschalk, B.M. (2011). Effectiveness of adding memantine to an Alzheimer dementia treatment regimen which already includes stable donepezil therapy: A critically appraised topic. The Neurologist, 17(2), 121-123. [CrossRef]
  • 166. Morató, X., Pytel, V., Jofresa, S., Ruiz, A., Boada, M. (2022). Symptomatic and disease-modifying therapy pipeline for Alzheimer’s disease: Towards a personalized polypharmacology patient-centered approach. International Journal of Molecular Sciences, 23(16), 9305. [CrossRef]
  • 167. FDA. NAMZARİC. Erişim adresi: www.accessdata.fda.gov/drugsatfda_docs/label/2014/206439lbl.pdf Erişim tarihi: 21.02.2024.
  • 168. Passeri, E., Elkhoury, K., Morsink, M., Broersen, K., Linder, M., Tamayol, A., Malaplate, C., Yen, F.T., Arab-Tehrany, E. (2022). Alzheimer’s disease: Treatment strategies and their limitations. International Journal of Molecular Sciences, 23(22), 13954. [CrossRef]
  • 169. Zenaro, E., Piacentino, G., Constantin, G. (2017). The blood-brain barrier in Alzheimer's disease. Neurobiology of Disease, 107, 41-56. [CrossRef]
  • 170. Chakraborty, A., De Wit, N., Van Der Flier, W., De Vries, H. (2017). The blood brain barrier in Alzheimer’s disease. Vascular Pharmacology, 89, 12-18. [CrossRef]
  • 171. Abbott, N.J., Patabendige, A.A., Dolman, D.E., Yusof, S.R., Begley, D.J. (2010). Structure and function of the blood–brain barrier. Neurobiology of Disease, 37(1), 13-25. [CrossRef]
  • 172. Banks, W.A. (2012). Drug delivery to the brain in Alzheimer's disease: Consideration of the blood–brain barrier. Advanced Drug Delivery Reviews, 64(7), 629-639. [CrossRef]
  • 173. Colin, J., Thomas, M.H., Gregory-Pauron, L., Pinçon, A., Lanhers, M.-C., Corbier, C., Claudepierre, T., Yen, F.T., Oster, T., Malaplate-Armand, C. (2017). Maintenance of membrane organization in the aging mouse brain as the determining factor for preventing receptor dysfunction and for improving response to anti-Alzheimer treatments. Neurobiology of Aging, 54, 84-93. [CrossRef]
  • 174. Poon, C.H., Wang, Y., Fung, M.-L., Zhang, C., Lim, L.W. (2020). Rodent models of amyloid-beta feature of Alzheimer’s disease: Development and potential treatment implications. Aging and Disease, 11(5), 1235. [CrossRef]
  • 175. Cummings, J., Ritter, A., Zhong, K. (2018). Clinical trials for disease-modifying therapies in Alzheimer’s disease: A primer, lessons learned, and a blueprint for the future. Journal of Alzheimer's Disease, 64(s1), S3-S22. [CrossRef]
  • 176. Yu, T.-W., Lane, H.-Y., Lin, C.-H. (2021). Novel therapeutic approaches for Alzheimer’s disease: An updated review. International Journal of Molecular Sciences, 22(15), 8208. [CrossRef]
  • 177. Athar, T., Al Balushi, K., Khan, S.A. (2021). Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Molecular Biology Reports, 48(7), 5629-5645. [CrossRef]
  • 178. Eruope, a. biogen announce. Erişim adresi: www.alzheimer-europe.org/news/biogen-announces-withdrawal-marketing-authorisation-application-aducanumab-treatment. Erişim tarihi: 21.02.2024.
  • 179. EMA. Aduhelm withdrawal. Erişim adresi:: www.ema.europa.eu/en/search?search_api_fulltext=aducanumab&f%5B0%5D=ema_med_status%3A100105&f%5B1%5D=ema_med_status%3A100108&f%5B2%5D=ema_medicine_bundle%3Aema_medicine&f%5B3%5D=ema_search_categories%3A83&landing_from=73303. Erişim tarihi: 21.02.2024.
  • 180. EMA. Aduhelm-Epar. Erişim adresi: https://www.ema.europa.eu/en/medicines/human/EPAR/aduhelm. Erişim tarihi: 21.02.2024.
  • 181. EMA. Aduhelm-Withdrawal letter. Erişim adresi: www.ema.europa.eu/en/documents/withdrawal-letter/withdrawal-letter-aduhelm_en.pdf. Erişim tarihi: 21.02.2024.
  • 182. FDA. Aduhelm. Erişim adresi: www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=761178. Erişim tarihi: 21.02.2024.
  • 183. FDA. Lecanemab. Erişim adresi: www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=761269. Erişim tarihi: 21.02.2024.
  • 184. Brenman, J.E. (2023). Lecanemab in early Alzheimer's disease. The New England Journal of Medicine. 388(17), 1631. [CrossRef]
  • 185. FDA. Lecanemab-Summary Review. Erişim adresi: https://www.accessdata.fda.gov/drugsatfda_docs/summary_review/2023/761269Orig1s000SumR.pdf. Erişim tarihi: 21.02.2024.
  • 186. FDA. Leqembi-Approval Letter. Erişim adresi: www.accessdata.fda.gov/drugsatfda_docs/nda/2023/761269Orig1s000Approv.pdf. Erişim tarihi: 21.02.2024.
  • 187. Cummings, J., Zhou, Y., Lee, G., Zhong, K., Fonseca, J., Cheng, F. (2023). Alzheimer's disease drug development pipeline: 2023. Alzheimer's & Dementia: Translational Research & Clinical Interventions. 9(2), e12385. [CrossRef]
There are 187 citations in total.

Details

Primary Language Turkish
Subjects Pharmaceutical Toxicology
Journal Section Collection
Authors

Nejla Yıldırım This is me 0009-0009-3173-9864

Binay Can Eke 0000-0001-9817-9034

Early Pub Date April 18, 2024
Publication Date May 20, 2024
Submission Date February 23, 2024
Acceptance Date March 27, 2024
Published in Issue Year 2024

Cite

APA Yıldırım, N., & Can Eke, B. (2024). ALZHEIMER HASTALIĞI, RİSK FAKTÖRLERİ VE TEDAVİ. Journal of Faculty of Pharmacy of Ankara University, 48(2), 766-790. https://doi.org/10.33483/jfpau.1441827
AMA Yıldırım N, Can Eke B. ALZHEIMER HASTALIĞI, RİSK FAKTÖRLERİ VE TEDAVİ. Ankara Ecz. Fak. Derg. May 2024;48(2):766-790. doi:10.33483/jfpau.1441827
Chicago Yıldırım, Nejla, and Binay Can Eke. “ALZHEIMER HASTALIĞI, RİSK FAKTÖRLERİ VE TEDAVİ”. Journal of Faculty of Pharmacy of Ankara University 48, no. 2 (May 2024): 766-90. https://doi.org/10.33483/jfpau.1441827.
EndNote Yıldırım N, Can Eke B (May 1, 2024) ALZHEIMER HASTALIĞI, RİSK FAKTÖRLERİ VE TEDAVİ. Journal of Faculty of Pharmacy of Ankara University 48 2 766–790.
IEEE N. Yıldırım and B. Can Eke, “ALZHEIMER HASTALIĞI, RİSK FAKTÖRLERİ VE TEDAVİ”, Ankara Ecz. Fak. Derg., vol. 48, no. 2, pp. 766–790, 2024, doi: 10.33483/jfpau.1441827.
ISNAD Yıldırım, Nejla - Can Eke, Binay. “ALZHEIMER HASTALIĞI, RİSK FAKTÖRLERİ VE TEDAVİ”. Journal of Faculty of Pharmacy of Ankara University 48/2 (May 2024), 766-790. https://doi.org/10.33483/jfpau.1441827.
JAMA Yıldırım N, Can Eke B. ALZHEIMER HASTALIĞI, RİSK FAKTÖRLERİ VE TEDAVİ. Ankara Ecz. Fak. Derg. 2024;48:766–790.
MLA Yıldırım, Nejla and Binay Can Eke. “ALZHEIMER HASTALIĞI, RİSK FAKTÖRLERİ VE TEDAVİ”. Journal of Faculty of Pharmacy of Ankara University, vol. 48, no. 2, 2024, pp. 766-90, doi:10.33483/jfpau.1441827.
Vancouver Yıldırım N, Can Eke B. ALZHEIMER HASTALIĞI, RİSK FAKTÖRLERİ VE TEDAVİ. Ankara Ecz. Fak. Derg. 2024;48(2):766-90.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.