Review
BibTex RIS Cite

ALTIN NANOPARTİKÜLLER VE KANSERDE KULLANIMLARI

Year 2021, , 70 - 95, 18.01.2021
https://doi.org/10.33483/jfpau.773430

Abstract

Amaç: Nanoteknolojnin hastalıkların teşhis ve tedavisinde kullanımı giderek artan bir şekilde ilgi görmektedir. Altın nanopartiküller (AuNP) sahip oldukları üstün özellikler sayesinde çeşitli kanser türlerinin teşhis ve tedavisinde kullanılmaktadırlar. Bu derleme kapsamında AuNP’ler hakkında genel bilgiler, kanserde kullanımlarına ilişkin olan bilimsel çalışmalar ve kaydedilen son gelişmeler akademik veri tabanları taranarak sunulmuştur.
Sonuç ve Tartışma: AuNP’lerin benzersiz optik, elektriksel ve fizikokimyasal özellikleri sayesinde bu sistemler kanser teşhis ve tedavisinde ilaç taşıyıcı sistem, görüntüleme ajanı, fototermal tedavi, fotodinamik tedavi ve biyosensör olarak kullanılmaktadır. AuNP sentezinin kolay olması ve pek çok ligand için yüzey modifikasyonuna elverişli olması bu kullanım alanları için büyük fayda sağlamaktadır. Bu özellikleri sayesinde AuNP’ler kanser tedavisinde umut verici sistemler olarak ön plana çıkmaktadır.

References

  • World Health Organization (WHO) Web site. Retrieved June 15, 2020, from https://www.who.int/health-topics/cancer#tab=tab_1
  • Kim, B. Y., Rutka, J. T., & Chan, W. C. (2010). Nanomedicine. New England Journal of Medicine, 363(25), 2434-2443.
  • Hong, Y., & Rao, Y. (2019). Current status of nanoscale drug delivery systems for colorectal cancer liver metastasis. Biomedicine & Pharmacotherapy, 114, 108764.
  • Dykman, L. A., & Khlebtsov, N. G. (2016). Multifunctional gold-based nanocomposites for theranostics. Biomaterials, 108, 13-34.
  • Singh, P., Pandit, S., Mokkapati, V. R. S. S., Garg, A., Ravikumar, V., & Mijakovic, I. (2018). Gold nanoparticles in diagnostics and therapeutics for human cancer. International journal of molecular sciences, 19(7), 1979.
  • Parveen, K., Banse, V., & Ledwani, L. (2016, April). Green synthesis of nanoparticles: Their advantages and disadvantages. In AIP Conference Proceedings (Vol. 1724, No. 1, p. 020048). AIP Publishing.
  • Boisselier, E., & Astruc, D. (2009). Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chemical society reviews, 38(6), 1759-1782.
  • Ghosh, P., Han, G., De, M., Kim, C. K., & Rotello, V. M. (2008). Gold nanoparticles in delivery applications. Advanced drug delivery reviews, 60(11), 1307-1315.
  • Sztandera, K., Gorzkiewicz, M., & Klajnert-Maculewicz, B. (2018). Gold nanoparticles in cancer treatment. Molecular pharmaceutics, 16(1), 1-23.
  • Kong, F. Y., Zhang, J. W., Li, R. F., Wang, Z. X., Wang, W. J., & Wang, W. (2017a). Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules, 22(9), 1445.
  • Sudhakar, S., & Santhosh, P. B. (2017). Gold Nanomaterials: Recent Advances in Cancer Theranostics. In Advances in Biomembranes and Lipid Self-Assembly (Vol. 25, pp. 161-180). Academic Press.
  • Bolaños, K., Kogan, M. J., & Araya, E. (2019). Capping gold nanoparticles with albumin to improve their biomedical properties. International journal of nanomedicine, 14, 6387.
  • Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55-75.
  • Cai, W., Gao, T., Hong, H., & Sun, J. (2008). Applications of gold nanoparticles in cancer nanotechnology. Nanotechnology, science and applications, 1, 17.
  • Guo, J., Rahme, K., He, Y., Li, L. L., Holmes, J. D., & O’Driscoll, C. M. (2017). Gold nanoparticles enlighten the future of cancer theranostics. International journal of nanomedicine, 12, 6131.
  • Brioude, A., Jiang, X. C., & Pileni, M. P. (2005). Optical properties of gold nanorods: DDA simulations supported by experiments. The Journal of Physical Chemistry B, 109(27), 13138-13142.
  • Freitas de Freitas, L., Varca, G., dos Santos Batista, J., & Benévolo Lugão, A. (2018). An Overview of the Synthesis of Gold Nanoparticles Using Radiation Technologies. Nanomaterials, 8(11), 939.
  • Martin, C. R. (1994). Nanomaterials: a membrane-based synthetic approach. Science, 266 (5193), 1961-1966.
  • Van der Zande, B. M., Böhmer, M. R., Fokkink, L. G., & Schönenberger, C. (2000). Colloidal dispersions of gold rods: synthesis and optical properties. Langmuir, 16(2), 451-458.
  • Jana, N. R., Gearheart, L., & Murphy, C. J. (2001). Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. The Journal of Physical Chemistry B, 105(19), 4065-4067.
  • Busbee, B. D., Obare, S. O., & Murphy, C. J. (2003). An improved synthesis of high‐aspect‐ratio gold nanorods. Advanced Materials, 15(5), 414-416.
  • Skrabalak, S. E., Chen, J., Sun, Y., Lu, X., Au, L., Cobley, C. M., & Xia, Y. (2008). Gold nanocages: synthesis, properties, and applications. Accounts of chemical research, 41(12), 1587-1595.
  • Sha, M. Y., Xu, H., Penn, S. G., & Cromer, R. (2007). SERS nanoparticles: a new optical detection modality for cancer diagnosis.Shaat, H., Mostafa, A., Moustafa, M., Gamal-Eldeen, A., Emam, A., El-Hussieny, E., & Elhefnawi, M. (2016). Modified gold nanoparticles for intracellular delivery of anti-liver cancer siRNA. International journal of pharmaceutics, 504(1-2), 125-133.
  • Keren, S., Zavaleta, C., Cheng, Z. D., de La Zerda, A., Gheysens, O., & Gambhir, S. S. (2008). Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proceedings of the National Academy of Sciences, 105(15), 5844-5849.
  • Faraday M. (1857) Experimental relations of gold (and other metals)to gold. Phil Trans R Soc London 147:145–181
  • Giljohann, D. A., Seferos, D. S., Daniel, W. L., Massich, M. D., Patel, P. C., & Mirkin, C. A. (2010). Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition, 49(19), 3280-3294.
  • Ovais, M., Raza, A., Naz, S., Islam, N. U., Khalil, A. T., Ali, S., Khan, M.A. & Shinwari, Z. K. (2017). Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Applied microbiology and biotechnology, 101(9), 3551-3565.
  • Elahi, N., Kamali, M., & Baghersad, M. H. (2018). Recent biomedical applications of gold nanoparticles: A review. Talanta, 184, 537-556.
  • Noruzi, M. (2015). Biosynthesis of gold nanoparticles using plant extracts. Bioprocess and biosystems engineering, 38(1), 1-14.
  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. (1994). Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. J Chem Soc Chem Comm. 7:801–802.
  • Shah, M., Badwaik, V., Kherde, Y., Waghwani, H. K., Modi, T., Aguilar, Z. P., Rodgers, H., Hamilton, W., Marutharaj, T., Webb, C., Lawrenz, M.B., Dakshinamurthy, R. (2014). Gold nanoparticles: various methods of synthesis and antibacterial applications. Front Biosci, 19(8), 1320-1344.
  • Patra, S., Mukherjee, S., Barui, A. K., Ganguly, A., Sreedhar, B., & Patra, C. R. (2015). Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Materials Science and Engineering: C, 53, 298-309.
  • Soni, N., & Prakash, S. (2014). Green nanoparticles for mosquito control. The Scientific World Journal, 2014.
  • Lakshmanan, A., Umamaheswari, C., & Nagarajan, N. S. (2016). A facile phyto-mediated synthesis of gold nanoparticles using aqueous extract of Momordica cochinchinensis rhizome and their biological activities. Journal of Nanoscience and Technology, 76-80.
  • Patil, M. P., & Kim, G. D. (2017). Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Applied microbiology and biotechnology, 101(1), 79-92.
  • Patil, M. P., Ngabire, D., Thi, H. H. P., Kim, M. D., & Kim, G. D. (2017). Eco-friendly synthesis of gold nanoparticles and evaluation of their cytotoxic activity on cancer cells. Journal of Cluster Science, 28(1), 119-132.
  • Wang, L., Xu, J., Yan, Y., Liu, H., Karunakaran, T., & Li, F. (2019a). Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell 2.(PANC‐1). Artificial cells, nanomedicine, and biotechnology, 47(1), 1617-1627.
  • Ke, Y., Al Aboody, M. S., Alturaiki, W., Alsagaby, S. A., Alfaiz, F. A., Veeraraghavan, V. P., & Mickymaray, S. (2019). Photosynthesized gold nanoparticles from Catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artificial cells, nanomedicine, and biotechnology, 47(1), 1938-1946.
  • Qian, L., Su, W., Wang, Y., Dang, M., Zhang, W., & Wang, C. (2019). Synthesis and characterization of gold nanoparticles from aqueous leaf extract of Alternanthera sessilis and its anticancer activity on cervical cancer cells (HeLa). Artificial cells, nanomedicine, and biotechnology, 47(1), 1173-1180.
  • Wang, L., Xu, J., Yan, Y., Liu, H., & Li, F. (2019b). Synthesis of gold nanoparticles from leaf Panax notoginseng and its anticancer activity in pancreatic cancer PANC-1 cell lines. Artificial cells, nanomedicine, and biotechnology, 47(1), 1216-1223.
  • Kumar, C. G., Poornachandra, Y., & Mamidyala, S. K. (2014). Green synthesis of bacterial gold nanoparticles conjugated to resveratrol as delivery vehicles. Colloids and Surfaces B: Biointerfaces, 123, 311-317.
  • Ashokkumar, T., Arockiaraj, J., & Vijayaraghavan, K. (2016). Biosynthesis of gold nanoparticles using green roof species Portulaca grandiflora and their cytotoxic effects against C6 glioma human cancer cells. Environmental Progress & Sustainable Energy, 35(6), 1732-1740.
  • Rajeshkumar, S. (2016). Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. Journal of Genetic Engineering and Biotechnology, 14(1), 195-202.
  • Gholami-Shabani, M., Shams-Ghahfarokhi, M., Gholami-Shabani, Z., Akbarzadeh, A., Riazi, G., Ajdari, S., ... & Razzaghi-Abyaneh, M. (2015). Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach. Process Biochemistry, 50(7), 1076-1085.
  • González-Ballesteros, N., Prado-López, S., Rodríguez-González, J. B., Lastra, M., & Rodríguez-Argüelles, M. C. (2017). Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells. Colloids and Surfaces B: Biointerfaces, 153, 190-198.
  • Raghavan, B. S., Kondath, S., Anantanarayanan, R., & Rajaram, R. (2015). Kaempferol mediated synthesis of gold nanoparticles and their cytotoxic effects on MCF-7 cancer cell line. Process Biochemistry, 50(11), 1966-1976.
  • Dykman, L., & Khlebtsov, N. (2017). Gold nanoparticles in biomedical applications. CRC Press.
  • Dykman, L., & Khlebtsov, N. (2012). Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews, 41(6), 2256-2282.
  • Aggarwal, P.; Hall, J.B.; McLeland, C.B.; Dobrovolskaia, M.A.; McNeil, S.E. (2009). Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61, 428–437.
  • Chen, D., Ganesh, S., Wang, W., & Amiji, M. (2017). Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicine, 12(17), 2113-2135.
  • Takeuchi, I., Onaka, H., & Makino, K. (2018). Biodistribution of colloidal gold nanoparticles after intravenous injection: Effects of PEGylation at the same particle size. Bio-medical materials and engineering, 29(2), 205-215.
  • Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2(5), 681-693.
  • Aminabad, N. S., Farshbaf, M., & Akbarzadeh, A. (2019). Recent advances of gold nanoparticles in biomedical applications: State of the art. Cell biochemistry and biophysics, 77(2), 123-137.
  • Ma, X., Qu, Q., Zhao, Y., Luo, Z., Zhao, Y., Ng, K. W., & Zhao, Y. (2013). Graphene oxide wrapped gold nanoparticles for intracellular Raman imaging and drug delivery. Journal of Materials Chemistry B, 1(47), 6495-6500.
  • Akbari jonous, Z., Shayeh, J. S., Yazdian, F., Yadegari, A., Hashemi, M., & Omidi, M. (2019). An electrochemical biosensor for prostate cancer biomarker detection using graphene oxide–gold nanostructures. Engineering in Life Sciences, 19(3), 206-216.
  • Kodiha, M., Hutter, E., Boridy, S., Juhas, M., Maysinger, D., & Stochaj, U. (2014). Gold nanoparticles induce nuclear damage in breast cancer cells, which is further amplified by hyperthermia. Cellular and molecular life sciences, 71(21), 4259-4273.
  • Abadeer, N. S., & Murphy, C. J. (2016). Recent progress in cancer thermal therapy using gold nanoparticles. The Journal of Physical Chemistry C, 120(9), 4691-4716.
  • Zou, L., Wang, H., He, B., Zeng, L., Tan, T., Cao, H., He, X.,Zhang, Z., Guo, S., Li, Y. (2016). Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics, 6(6), 762-777.
  • Riley, R. S., & Day, E. S. (2017). Gold nanoparticle‐mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(4), e1449.
  • Lucky, S. S., Soo, K. C., & Zhang, Y. (2015). Nanoparticles in photodynamic therapy. Chemical reviews, 115(4), 1990-2042.
  • Kim, H. S., & Lee, D. Y. (2018). Near-infrared-responsive cancer photothermal and photodynamic therapy using gold nanoparticles. Polymers, 10(9), 961.
  • Westcott, S. L., Oldenburg, S. J., Lee, T. R., & Halas, N. J. (1998). Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir, 14(19), 5396-5401.
  • Nouri, S., Mohammadi, E., Mehravi, B., Majidi, F., Ashtari, K., Neshasteh-Riz, A., & Einali, S. (2019). NIR triggered glycosylated gold nanoshell as a photothermal agent on melanoma cancer cells. Artificial cells, nanomedicine, and biotechnology, 47(1), 2316-2324.
  • Majidi, F. S., Mohammadi, E., Mehravi, B., Nouri, S., Ashtari, K., & Neshasteh-riz, A. (2019). Investigating the effect of near infrared photo thermal therapy folic acid conjugated gold nano shell on melanoma cancer cell line A375. Artificial cells, nanomedicine, and biotechnology, 47(1), 2161-2170.
  • Zeng, J., Yang, W., Shi, D., Li, X., Zhang, H., & Chen, M. (2018). Porphyrin derivative conjugated with gold nanoparticles for dual-modality photodynamic and photothermal therapies in vitro. ACS Biomaterials Science & Engineering, 4(3), 963-972.
  • Calavia, P. G., Chambrier, I., Cook, M. J., Haines, A. H., Field, R. A., & Russell, D. A. (2018). Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. Journal of colloid and interface science, 512, 249-259.
  • Amini, S. M., Kharrazi, S., Hadizadeh, M., Fateh, M., & Saber, R. (2013). Effect of gold nanoparticles on photodynamic efficiency of 5-aminolevolenic acid photosensitiser in epidermal carcinoma cell line: an in vitro study. IET nanobiotechnology, 7(4), 151-156.
  • Prasanna, S. W., Poorani, G., Kumar, M. S., Aruna, P., & Ganesan, S. (2014). Photodynamic efficacy of Rosebengal-gold nanoparticle complex on Vero and HeLa cell lines. Materials Express, 4(5), 359-366.
  • Bahrami, B., Hojjat-Farsangi, M., Mohammadi, H., Anvari, E., Ghalamfarsa, G., Yousefi, M., & Jadidi-Niaragh, F. (2017). Nanoparticles and targeted drug delivery in cancer therapy. Immunology Letters, 190, 64-83.
  • Alexander, C. M., Hamner, K. L., Maye, M. M., & Dabrowiak, J. C. (2014). Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery. Bioconjugate chemistry, 25(7), 1261-1271.
  • Khutale, G. V., & Casey, A. (2017). Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release. European Journal of Pharmaceutics and Biopharmaceutics, 119, 372-380.
  • Shaat, H., Mostafa, A., Moustafa, M., Gamal-Eldeen, A., Emam, A., El-Hussieny, E., & Elhefnawi, M. (2016). Modified gold nanoparticles for intracellular delivery of anti-liver cancer siRNA. International journal of pharmaceutics, 504(1-2), 125-133.
  • Kim, C. K., Ghosh, P., & Rotello, V. M. (2009). Multimodal drug delivery using gold nanoparticles. Nanoscale, 1(1), 61-67.
  • Bao, Q. Y., Geng, D. D., Xue, J. W., Zhou, G., Gu, S. Y., Ding, Y., & Zhang, C. (2013). Glutathione-mediated drug release from Tiopronin-conjugated gold nanoparticles for acute liver injury therapy. International journal of pharmaceutics, 446(1-2), 112-118.
  • Yoon, J. H., Ganbold, E. O., & Joo, S. W. (2016). PEGylation density-modulated anticancer drug release on gold nanoparticles in live cells. Journal of Industrial and Engineering Chemistry, 33, 345-354.
  • Sreejivungsa, K., Suchaichit, N., Moosophon, P., & Chompoosor, A. (2016). Light-regulated release of entrapped drugs from photoresponsive gold nanoparticles. Journal of Nanomaterials, 2016.
  • Chen, X., Han, W., Zhao, X., Tang, W., & Wang, F. (2019). Epirubicin-loaded marine carrageenan oligosaccharide capped gold nanoparticle system for pH-triggered anticancer drug release. Scientific reports, 9(1), 1-10.
  • Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J., & Corrie, S. R. (2016). Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharmaceutical research, 33(10), 2373-2387.
  • Cytimmune Web Site. Retrieved April 10, 2020, from http://cytimmune.com/#pipeline
  • Libutti, S. K., Paciotti, G. F., Byrnes, A. A., Alexander, H. R., Gannon, W. E., Walker, M., Seidel, G.D., Yuldasheva, N., Tamarkin, L. (2010). Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clinical cancer research, 16(24), 6139-6149.
  • United States National Nanotechnology Initiative Web Site. Retrieved April 23, 2020, from https://www.nano.gov/sites/default/files/nanomedicine_-_tamarkin.pdf
  • Paithankar, D., Hwang, B. H., Munavalli, G., Kauvar, A., Lloyd, J., Blomgren, R., Faupel, L., Meyer, T., Mitragotri, S. (2015). Ultrasonic delivery of silica–gold nanoshells for photothermolysis of sebaceous glands in humans: Nanotechnology from the bench to clinic. Journal of Controlled Release, 206, 30-36.
  • Farooq, M. U., Novosad, V., Rozhkova, E. A., Wali, H., Ali, A., Fateh, A. A.,Neogi, P.M., Neogi, A., Wang, Z. (2018). Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to HeLa cells. Scientific reports, 8(1), 2907.
  • Zhao, Y., Zhao, W., Lim, Y. C., & Liu, T. (2019). Salinomycin-Loaded Gold Nanoparticles for Treating Cancer Stem Cells by Ferroptosis-Induced Cell Death. Molecular pharmaceutics.
  • Guan, Y. H., Tian, M., Liu, X. Y., & Wang, Y. N. (2019). Preparation of novel cisplatin‐conjugated hollow gold nanospheres for targeting cervical cancer. Journal of cellular physiology, 234(9), 16475-16484.
  • Manivasagan, P., Bharathiraja, S., Bui, N. Q., Lim, I. G., & Oh, J. (2016). Paclitaxel-loaded chitosan oligosaccharide-stabilized gold nanoparticles as novel agents for drug delivery and photoacoustic imaging of cancer cells. International journal of pharmaceutics, 511(1), 367-379.
  • Dhamecha, D., Jalalpure, S., Jadhav, K., Jagwani, S., & Chavan, R. (2016). Doxorubicin loaded gold nanoparticles: Implication of passive targeting on anticancer efficacy. Pharmacological research, 113, 547-556
  • Safwat, M. A., Soliman, G. M., Sayed, D., & Attia, M. A. (2016). Gold nanoparticles enhance 5-fluorouracil anticancer efficacy against colorectal cancer cells. International journal of pharmaceutics, 513(1-2), 648-658.
  • Kong, L., Qiu, J., Sun, W., Yang, J., Shen, M., Wang, L., & Shi, X. (2017b). Multifunctional PEI-entrapped gold nanoparticles enable efficient delivery of therapeutic siRNA into glioblastoma cells. Biomaterials science, 5(2), 258-266.
  • Davidi, E. S., Dreifuss, T., Motiei, M., Shai, E., Bragilovski, D., Lubimov, L., Jose, M., Kindler, J., Popovtzer, A., Dom, J., Popovtzer, R. (2018). Cisplatin‐conjugated gold nanoparticles as a theranostic agent for head and neck cancer. Head & neck, 40(1), 70-78.
  • Khademi, K., Sarkar, S., Shakeri-Zadeh, A., Attaran, N., Kharrazi, S., Ay, M., Azimian, H., & Ghadiri, H. (2019). Targeted gold nanoparticles enable molecular CT imaging of head and neck cancer: An in vivo study. International journal of nanomedicine, 6, 2859.
  • Cheng, Y., Dai, Q., Morshed, R. A., Fan, X., Wegscheid, M. L., Wainwright, D. A.,Han,Y., Zhang, L., Auffinger, B., Tobias, L. A., Rincón, E., Thaci, B., Ahmed, A.U., Warnke, P.C., He, C., Lesniak, M.S. (2014). Blood‐brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small, 10(24), 5137-5150.
  • Anselmo, A. C., & Mitragotri, S. (2016). Nanoparticles in the clinic. Bioeng Transl Med 1: 10–29.
  • Nanospectra Web Site. Retrieved May 10, 2020, from https://nanospectra.com/
  • Jensen, S. A., Day, E. S., Ko, C. H., Hurley, L. A., Luciano, J. P., Kouri, F. M.,Merkel, T.J., Luthi, A.J., Patel, P.C., Cutler, J.I., Daniel, W.L., Scott, A.W., Rotz, M.W., Meade, T. J., Giljohann, D.A., Mirkin, C.A., Stegh, A.H. (2013). Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Science translational medicine, 5(209), 209ra152-209ra152.
  • nephroHUB Web Site. Retrieved May 13, 2020, from http://www.nephrohub.org/our-cores/core-b-kidney-therapeutic-design development/index.html
  • Amal, H., Leja, M., Funka, K., Skapars, R., Sivins, A., Ancans, G., Liepniece-Karele, I.,Kikuste, I., Lasina, L., Haick, H. (2016). Detection of precancerous gastric lesions and gastric cancer through exhaled breath. Gut, 65(3), 400-407.
  • Luminex Web Site, Retrieved May 29, 2020, from https://www.luminexcorp.com/verigene-nanogrid-technology/
  • ClinicalTrials Web Site, Retrieved Jul 05, 2020, from https://clinicaltrials.gov/
  • Conde, J., Doria, G., & Baptista, P. (2012). Noble metal nanoparticles applications in cancer. Journal of drug delivery, 2012.

GOLD NANOPARTICULES AND USES IN CANCER

Year 2021, , 70 - 95, 18.01.2021
https://doi.org/10.33483/jfpau.773430

Abstract

Objective: Nanotechnology has become more and more potentially used in diagnosis or treatment of diseases. Gold nanoparticles (AuNP) are used in the diagnosis and treatment of various cancer types thanks to their superior properties. Within the scope of this review, general information about AuNPs, scientific studies on their use in cancer and recent developments have been presented by scanning academic databases.
Result and Discussion: By means of the unique optical, electrical and physicochemical properties of AuNPs, it is used as a drug delivery system, imaging agent, photothermal therapy, photodynamic therapy and biosensor in cancer diagnosis and treatment. The fact that AuNP synthesis is easy and the nanoparticle surface is suitable for modification with many ligands provides great benefits for these applications. Thanks to these features, AuNPs come to the fore as promising systems in cancer treatment.

References

  • World Health Organization (WHO) Web site. Retrieved June 15, 2020, from https://www.who.int/health-topics/cancer#tab=tab_1
  • Kim, B. Y., Rutka, J. T., & Chan, W. C. (2010). Nanomedicine. New England Journal of Medicine, 363(25), 2434-2443.
  • Hong, Y., & Rao, Y. (2019). Current status of nanoscale drug delivery systems for colorectal cancer liver metastasis. Biomedicine & Pharmacotherapy, 114, 108764.
  • Dykman, L. A., & Khlebtsov, N. G. (2016). Multifunctional gold-based nanocomposites for theranostics. Biomaterials, 108, 13-34.
  • Singh, P., Pandit, S., Mokkapati, V. R. S. S., Garg, A., Ravikumar, V., & Mijakovic, I. (2018). Gold nanoparticles in diagnostics and therapeutics for human cancer. International journal of molecular sciences, 19(7), 1979.
  • Parveen, K., Banse, V., & Ledwani, L. (2016, April). Green synthesis of nanoparticles: Their advantages and disadvantages. In AIP Conference Proceedings (Vol. 1724, No. 1, p. 020048). AIP Publishing.
  • Boisselier, E., & Astruc, D. (2009). Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chemical society reviews, 38(6), 1759-1782.
  • Ghosh, P., Han, G., De, M., Kim, C. K., & Rotello, V. M. (2008). Gold nanoparticles in delivery applications. Advanced drug delivery reviews, 60(11), 1307-1315.
  • Sztandera, K., Gorzkiewicz, M., & Klajnert-Maculewicz, B. (2018). Gold nanoparticles in cancer treatment. Molecular pharmaceutics, 16(1), 1-23.
  • Kong, F. Y., Zhang, J. W., Li, R. F., Wang, Z. X., Wang, W. J., & Wang, W. (2017a). Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules, 22(9), 1445.
  • Sudhakar, S., & Santhosh, P. B. (2017). Gold Nanomaterials: Recent Advances in Cancer Theranostics. In Advances in Biomembranes and Lipid Self-Assembly (Vol. 25, pp. 161-180). Academic Press.
  • Bolaños, K., Kogan, M. J., & Araya, E. (2019). Capping gold nanoparticles with albumin to improve their biomedical properties. International journal of nanomedicine, 14, 6387.
  • Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55-75.
  • Cai, W., Gao, T., Hong, H., & Sun, J. (2008). Applications of gold nanoparticles in cancer nanotechnology. Nanotechnology, science and applications, 1, 17.
  • Guo, J., Rahme, K., He, Y., Li, L. L., Holmes, J. D., & O’Driscoll, C. M. (2017). Gold nanoparticles enlighten the future of cancer theranostics. International journal of nanomedicine, 12, 6131.
  • Brioude, A., Jiang, X. C., & Pileni, M. P. (2005). Optical properties of gold nanorods: DDA simulations supported by experiments. The Journal of Physical Chemistry B, 109(27), 13138-13142.
  • Freitas de Freitas, L., Varca, G., dos Santos Batista, J., & Benévolo Lugão, A. (2018). An Overview of the Synthesis of Gold Nanoparticles Using Radiation Technologies. Nanomaterials, 8(11), 939.
  • Martin, C. R. (1994). Nanomaterials: a membrane-based synthetic approach. Science, 266 (5193), 1961-1966.
  • Van der Zande, B. M., Böhmer, M. R., Fokkink, L. G., & Schönenberger, C. (2000). Colloidal dispersions of gold rods: synthesis and optical properties. Langmuir, 16(2), 451-458.
  • Jana, N. R., Gearheart, L., & Murphy, C. J. (2001). Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. The Journal of Physical Chemistry B, 105(19), 4065-4067.
  • Busbee, B. D., Obare, S. O., & Murphy, C. J. (2003). An improved synthesis of high‐aspect‐ratio gold nanorods. Advanced Materials, 15(5), 414-416.
  • Skrabalak, S. E., Chen, J., Sun, Y., Lu, X., Au, L., Cobley, C. M., & Xia, Y. (2008). Gold nanocages: synthesis, properties, and applications. Accounts of chemical research, 41(12), 1587-1595.
  • Sha, M. Y., Xu, H., Penn, S. G., & Cromer, R. (2007). SERS nanoparticles: a new optical detection modality for cancer diagnosis.Shaat, H., Mostafa, A., Moustafa, M., Gamal-Eldeen, A., Emam, A., El-Hussieny, E., & Elhefnawi, M. (2016). Modified gold nanoparticles for intracellular delivery of anti-liver cancer siRNA. International journal of pharmaceutics, 504(1-2), 125-133.
  • Keren, S., Zavaleta, C., Cheng, Z. D., de La Zerda, A., Gheysens, O., & Gambhir, S. S. (2008). Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proceedings of the National Academy of Sciences, 105(15), 5844-5849.
  • Faraday M. (1857) Experimental relations of gold (and other metals)to gold. Phil Trans R Soc London 147:145–181
  • Giljohann, D. A., Seferos, D. S., Daniel, W. L., Massich, M. D., Patel, P. C., & Mirkin, C. A. (2010). Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition, 49(19), 3280-3294.
  • Ovais, M., Raza, A., Naz, S., Islam, N. U., Khalil, A. T., Ali, S., Khan, M.A. & Shinwari, Z. K. (2017). Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Applied microbiology and biotechnology, 101(9), 3551-3565.
  • Elahi, N., Kamali, M., & Baghersad, M. H. (2018). Recent biomedical applications of gold nanoparticles: A review. Talanta, 184, 537-556.
  • Noruzi, M. (2015). Biosynthesis of gold nanoparticles using plant extracts. Bioprocess and biosystems engineering, 38(1), 1-14.
  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. (1994). Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. J Chem Soc Chem Comm. 7:801–802.
  • Shah, M., Badwaik, V., Kherde, Y., Waghwani, H. K., Modi, T., Aguilar, Z. P., Rodgers, H., Hamilton, W., Marutharaj, T., Webb, C., Lawrenz, M.B., Dakshinamurthy, R. (2014). Gold nanoparticles: various methods of synthesis and antibacterial applications. Front Biosci, 19(8), 1320-1344.
  • Patra, S., Mukherjee, S., Barui, A. K., Ganguly, A., Sreedhar, B., & Patra, C. R. (2015). Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Materials Science and Engineering: C, 53, 298-309.
  • Soni, N., & Prakash, S. (2014). Green nanoparticles for mosquito control. The Scientific World Journal, 2014.
  • Lakshmanan, A., Umamaheswari, C., & Nagarajan, N. S. (2016). A facile phyto-mediated synthesis of gold nanoparticles using aqueous extract of Momordica cochinchinensis rhizome and their biological activities. Journal of Nanoscience and Technology, 76-80.
  • Patil, M. P., & Kim, G. D. (2017). Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Applied microbiology and biotechnology, 101(1), 79-92.
  • Patil, M. P., Ngabire, D., Thi, H. H. P., Kim, M. D., & Kim, G. D. (2017). Eco-friendly synthesis of gold nanoparticles and evaluation of their cytotoxic activity on cancer cells. Journal of Cluster Science, 28(1), 119-132.
  • Wang, L., Xu, J., Yan, Y., Liu, H., Karunakaran, T., & Li, F. (2019a). Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell 2.(PANC‐1). Artificial cells, nanomedicine, and biotechnology, 47(1), 1617-1627.
  • Ke, Y., Al Aboody, M. S., Alturaiki, W., Alsagaby, S. A., Alfaiz, F. A., Veeraraghavan, V. P., & Mickymaray, S. (2019). Photosynthesized gold nanoparticles from Catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artificial cells, nanomedicine, and biotechnology, 47(1), 1938-1946.
  • Qian, L., Su, W., Wang, Y., Dang, M., Zhang, W., & Wang, C. (2019). Synthesis and characterization of gold nanoparticles from aqueous leaf extract of Alternanthera sessilis and its anticancer activity on cervical cancer cells (HeLa). Artificial cells, nanomedicine, and biotechnology, 47(1), 1173-1180.
  • Wang, L., Xu, J., Yan, Y., Liu, H., & Li, F. (2019b). Synthesis of gold nanoparticles from leaf Panax notoginseng and its anticancer activity in pancreatic cancer PANC-1 cell lines. Artificial cells, nanomedicine, and biotechnology, 47(1), 1216-1223.
  • Kumar, C. G., Poornachandra, Y., & Mamidyala, S. K. (2014). Green synthesis of bacterial gold nanoparticles conjugated to resveratrol as delivery vehicles. Colloids and Surfaces B: Biointerfaces, 123, 311-317.
  • Ashokkumar, T., Arockiaraj, J., & Vijayaraghavan, K. (2016). Biosynthesis of gold nanoparticles using green roof species Portulaca grandiflora and their cytotoxic effects against C6 glioma human cancer cells. Environmental Progress & Sustainable Energy, 35(6), 1732-1740.
  • Rajeshkumar, S. (2016). Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. Journal of Genetic Engineering and Biotechnology, 14(1), 195-202.
  • Gholami-Shabani, M., Shams-Ghahfarokhi, M., Gholami-Shabani, Z., Akbarzadeh, A., Riazi, G., Ajdari, S., ... & Razzaghi-Abyaneh, M. (2015). Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach. Process Biochemistry, 50(7), 1076-1085.
  • González-Ballesteros, N., Prado-López, S., Rodríguez-González, J. B., Lastra, M., & Rodríguez-Argüelles, M. C. (2017). Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells. Colloids and Surfaces B: Biointerfaces, 153, 190-198.
  • Raghavan, B. S., Kondath, S., Anantanarayanan, R., & Rajaram, R. (2015). Kaempferol mediated synthesis of gold nanoparticles and their cytotoxic effects on MCF-7 cancer cell line. Process Biochemistry, 50(11), 1966-1976.
  • Dykman, L., & Khlebtsov, N. (2017). Gold nanoparticles in biomedical applications. CRC Press.
  • Dykman, L., & Khlebtsov, N. (2012). Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews, 41(6), 2256-2282.
  • Aggarwal, P.; Hall, J.B.; McLeland, C.B.; Dobrovolskaia, M.A.; McNeil, S.E. (2009). Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61, 428–437.
  • Chen, D., Ganesh, S., Wang, W., & Amiji, M. (2017). Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicine, 12(17), 2113-2135.
  • Takeuchi, I., Onaka, H., & Makino, K. (2018). Biodistribution of colloidal gold nanoparticles after intravenous injection: Effects of PEGylation at the same particle size. Bio-medical materials and engineering, 29(2), 205-215.
  • Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2(5), 681-693.
  • Aminabad, N. S., Farshbaf, M., & Akbarzadeh, A. (2019). Recent advances of gold nanoparticles in biomedical applications: State of the art. Cell biochemistry and biophysics, 77(2), 123-137.
  • Ma, X., Qu, Q., Zhao, Y., Luo, Z., Zhao, Y., Ng, K. W., & Zhao, Y. (2013). Graphene oxide wrapped gold nanoparticles for intracellular Raman imaging and drug delivery. Journal of Materials Chemistry B, 1(47), 6495-6500.
  • Akbari jonous, Z., Shayeh, J. S., Yazdian, F., Yadegari, A., Hashemi, M., & Omidi, M. (2019). An electrochemical biosensor for prostate cancer biomarker detection using graphene oxide–gold nanostructures. Engineering in Life Sciences, 19(3), 206-216.
  • Kodiha, M., Hutter, E., Boridy, S., Juhas, M., Maysinger, D., & Stochaj, U. (2014). Gold nanoparticles induce nuclear damage in breast cancer cells, which is further amplified by hyperthermia. Cellular and molecular life sciences, 71(21), 4259-4273.
  • Abadeer, N. S., & Murphy, C. J. (2016). Recent progress in cancer thermal therapy using gold nanoparticles. The Journal of Physical Chemistry C, 120(9), 4691-4716.
  • Zou, L., Wang, H., He, B., Zeng, L., Tan, T., Cao, H., He, X.,Zhang, Z., Guo, S., Li, Y. (2016). Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics, 6(6), 762-777.
  • Riley, R. S., & Day, E. S. (2017). Gold nanoparticle‐mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(4), e1449.
  • Lucky, S. S., Soo, K. C., & Zhang, Y. (2015). Nanoparticles in photodynamic therapy. Chemical reviews, 115(4), 1990-2042.
  • Kim, H. S., & Lee, D. Y. (2018). Near-infrared-responsive cancer photothermal and photodynamic therapy using gold nanoparticles. Polymers, 10(9), 961.
  • Westcott, S. L., Oldenburg, S. J., Lee, T. R., & Halas, N. J. (1998). Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir, 14(19), 5396-5401.
  • Nouri, S., Mohammadi, E., Mehravi, B., Majidi, F., Ashtari, K., Neshasteh-Riz, A., & Einali, S. (2019). NIR triggered glycosylated gold nanoshell as a photothermal agent on melanoma cancer cells. Artificial cells, nanomedicine, and biotechnology, 47(1), 2316-2324.
  • Majidi, F. S., Mohammadi, E., Mehravi, B., Nouri, S., Ashtari, K., & Neshasteh-riz, A. (2019). Investigating the effect of near infrared photo thermal therapy folic acid conjugated gold nano shell on melanoma cancer cell line A375. Artificial cells, nanomedicine, and biotechnology, 47(1), 2161-2170.
  • Zeng, J., Yang, W., Shi, D., Li, X., Zhang, H., & Chen, M. (2018). Porphyrin derivative conjugated with gold nanoparticles for dual-modality photodynamic and photothermal therapies in vitro. ACS Biomaterials Science & Engineering, 4(3), 963-972.
  • Calavia, P. G., Chambrier, I., Cook, M. J., Haines, A. H., Field, R. A., & Russell, D. A. (2018). Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. Journal of colloid and interface science, 512, 249-259.
  • Amini, S. M., Kharrazi, S., Hadizadeh, M., Fateh, M., & Saber, R. (2013). Effect of gold nanoparticles on photodynamic efficiency of 5-aminolevolenic acid photosensitiser in epidermal carcinoma cell line: an in vitro study. IET nanobiotechnology, 7(4), 151-156.
  • Prasanna, S. W., Poorani, G., Kumar, M. S., Aruna, P., & Ganesan, S. (2014). Photodynamic efficacy of Rosebengal-gold nanoparticle complex on Vero and HeLa cell lines. Materials Express, 4(5), 359-366.
  • Bahrami, B., Hojjat-Farsangi, M., Mohammadi, H., Anvari, E., Ghalamfarsa, G., Yousefi, M., & Jadidi-Niaragh, F. (2017). Nanoparticles and targeted drug delivery in cancer therapy. Immunology Letters, 190, 64-83.
  • Alexander, C. M., Hamner, K. L., Maye, M. M., & Dabrowiak, J. C. (2014). Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery. Bioconjugate chemistry, 25(7), 1261-1271.
  • Khutale, G. V., & Casey, A. (2017). Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release. European Journal of Pharmaceutics and Biopharmaceutics, 119, 372-380.
  • Shaat, H., Mostafa, A., Moustafa, M., Gamal-Eldeen, A., Emam, A., El-Hussieny, E., & Elhefnawi, M. (2016). Modified gold nanoparticles for intracellular delivery of anti-liver cancer siRNA. International journal of pharmaceutics, 504(1-2), 125-133.
  • Kim, C. K., Ghosh, P., & Rotello, V. M. (2009). Multimodal drug delivery using gold nanoparticles. Nanoscale, 1(1), 61-67.
  • Bao, Q. Y., Geng, D. D., Xue, J. W., Zhou, G., Gu, S. Y., Ding, Y., & Zhang, C. (2013). Glutathione-mediated drug release from Tiopronin-conjugated gold nanoparticles for acute liver injury therapy. International journal of pharmaceutics, 446(1-2), 112-118.
  • Yoon, J. H., Ganbold, E. O., & Joo, S. W. (2016). PEGylation density-modulated anticancer drug release on gold nanoparticles in live cells. Journal of Industrial and Engineering Chemistry, 33, 345-354.
  • Sreejivungsa, K., Suchaichit, N., Moosophon, P., & Chompoosor, A. (2016). Light-regulated release of entrapped drugs from photoresponsive gold nanoparticles. Journal of Nanomaterials, 2016.
  • Chen, X., Han, W., Zhao, X., Tang, W., & Wang, F. (2019). Epirubicin-loaded marine carrageenan oligosaccharide capped gold nanoparticle system for pH-triggered anticancer drug release. Scientific reports, 9(1), 1-10.
  • Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J., & Corrie, S. R. (2016). Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharmaceutical research, 33(10), 2373-2387.
  • Cytimmune Web Site. Retrieved April 10, 2020, from http://cytimmune.com/#pipeline
  • Libutti, S. K., Paciotti, G. F., Byrnes, A. A., Alexander, H. R., Gannon, W. E., Walker, M., Seidel, G.D., Yuldasheva, N., Tamarkin, L. (2010). Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clinical cancer research, 16(24), 6139-6149.
  • United States National Nanotechnology Initiative Web Site. Retrieved April 23, 2020, from https://www.nano.gov/sites/default/files/nanomedicine_-_tamarkin.pdf
  • Paithankar, D., Hwang, B. H., Munavalli, G., Kauvar, A., Lloyd, J., Blomgren, R., Faupel, L., Meyer, T., Mitragotri, S. (2015). Ultrasonic delivery of silica–gold nanoshells for photothermolysis of sebaceous glands in humans: Nanotechnology from the bench to clinic. Journal of Controlled Release, 206, 30-36.
  • Farooq, M. U., Novosad, V., Rozhkova, E. A., Wali, H., Ali, A., Fateh, A. A.,Neogi, P.M., Neogi, A., Wang, Z. (2018). Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to HeLa cells. Scientific reports, 8(1), 2907.
  • Zhao, Y., Zhao, W., Lim, Y. C., & Liu, T. (2019). Salinomycin-Loaded Gold Nanoparticles for Treating Cancer Stem Cells by Ferroptosis-Induced Cell Death. Molecular pharmaceutics.
  • Guan, Y. H., Tian, M., Liu, X. Y., & Wang, Y. N. (2019). Preparation of novel cisplatin‐conjugated hollow gold nanospheres for targeting cervical cancer. Journal of cellular physiology, 234(9), 16475-16484.
  • Manivasagan, P., Bharathiraja, S., Bui, N. Q., Lim, I. G., & Oh, J. (2016). Paclitaxel-loaded chitosan oligosaccharide-stabilized gold nanoparticles as novel agents for drug delivery and photoacoustic imaging of cancer cells. International journal of pharmaceutics, 511(1), 367-379.
  • Dhamecha, D., Jalalpure, S., Jadhav, K., Jagwani, S., & Chavan, R. (2016). Doxorubicin loaded gold nanoparticles: Implication of passive targeting on anticancer efficacy. Pharmacological research, 113, 547-556
  • Safwat, M. A., Soliman, G. M., Sayed, D., & Attia, M. A. (2016). Gold nanoparticles enhance 5-fluorouracil anticancer efficacy against colorectal cancer cells. International journal of pharmaceutics, 513(1-2), 648-658.
  • Kong, L., Qiu, J., Sun, W., Yang, J., Shen, M., Wang, L., & Shi, X. (2017b). Multifunctional PEI-entrapped gold nanoparticles enable efficient delivery of therapeutic siRNA into glioblastoma cells. Biomaterials science, 5(2), 258-266.
  • Davidi, E. S., Dreifuss, T., Motiei, M., Shai, E., Bragilovski, D., Lubimov, L., Jose, M., Kindler, J., Popovtzer, A., Dom, J., Popovtzer, R. (2018). Cisplatin‐conjugated gold nanoparticles as a theranostic agent for head and neck cancer. Head & neck, 40(1), 70-78.
  • Khademi, K., Sarkar, S., Shakeri-Zadeh, A., Attaran, N., Kharrazi, S., Ay, M., Azimian, H., & Ghadiri, H. (2019). Targeted gold nanoparticles enable molecular CT imaging of head and neck cancer: An in vivo study. International journal of nanomedicine, 6, 2859.
  • Cheng, Y., Dai, Q., Morshed, R. A., Fan, X., Wegscheid, M. L., Wainwright, D. A.,Han,Y., Zhang, L., Auffinger, B., Tobias, L. A., Rincón, E., Thaci, B., Ahmed, A.U., Warnke, P.C., He, C., Lesniak, M.S. (2014). Blood‐brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small, 10(24), 5137-5150.
  • Anselmo, A. C., & Mitragotri, S. (2016). Nanoparticles in the clinic. Bioeng Transl Med 1: 10–29.
  • Nanospectra Web Site. Retrieved May 10, 2020, from https://nanospectra.com/
  • Jensen, S. A., Day, E. S., Ko, C. H., Hurley, L. A., Luciano, J. P., Kouri, F. M.,Merkel, T.J., Luthi, A.J., Patel, P.C., Cutler, J.I., Daniel, W.L., Scott, A.W., Rotz, M.W., Meade, T. J., Giljohann, D.A., Mirkin, C.A., Stegh, A.H. (2013). Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Science translational medicine, 5(209), 209ra152-209ra152.
  • nephroHUB Web Site. Retrieved May 13, 2020, from http://www.nephrohub.org/our-cores/core-b-kidney-therapeutic-design development/index.html
  • Amal, H., Leja, M., Funka, K., Skapars, R., Sivins, A., Ancans, G., Liepniece-Karele, I.,Kikuste, I., Lasina, L., Haick, H. (2016). Detection of precancerous gastric lesions and gastric cancer through exhaled breath. Gut, 65(3), 400-407.
  • Luminex Web Site, Retrieved May 29, 2020, from https://www.luminexcorp.com/verigene-nanogrid-technology/
  • ClinicalTrials Web Site, Retrieved Jul 05, 2020, from https://clinicaltrials.gov/
  • Conde, J., Doria, G., & Baptista, P. (2012). Noble metal nanoparticles applications in cancer. Journal of drug delivery, 2012.
There are 100 citations in total.

Details

Primary Language Turkish
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Collection
Authors

Hatice Demirtaş This is me 0000-0001-6626-2538

Ceyda Şengel Türk 0000-0003-4123-7226

Publication Date January 18, 2021
Submission Date July 24, 2020
Acceptance Date October 23, 2020
Published in Issue Year 2021

Cite

APA Demirtaş, H., & Şengel Türk, C. (2021). ALTIN NANOPARTİKÜLLER VE KANSERDE KULLANIMLARI. Journal of Faculty of Pharmacy of Ankara University, 45(1), 70-95. https://doi.org/10.33483/jfpau.773430
AMA Demirtaş H, Şengel Türk C. ALTIN NANOPARTİKÜLLER VE KANSERDE KULLANIMLARI. Ankara Ecz. Fak. Derg. January 2021;45(1):70-95. doi:10.33483/jfpau.773430
Chicago Demirtaş, Hatice, and Ceyda Şengel Türk. “ALTIN NANOPARTİKÜLLER VE KANSERDE KULLANIMLARI”. Journal of Faculty of Pharmacy of Ankara University 45, no. 1 (January 2021): 70-95. https://doi.org/10.33483/jfpau.773430.
EndNote Demirtaş H, Şengel Türk C (January 1, 2021) ALTIN NANOPARTİKÜLLER VE KANSERDE KULLANIMLARI. Journal of Faculty of Pharmacy of Ankara University 45 1 70–95.
IEEE H. Demirtaş and C. Şengel Türk, “ALTIN NANOPARTİKÜLLER VE KANSERDE KULLANIMLARI”, Ankara Ecz. Fak. Derg., vol. 45, no. 1, pp. 70–95, 2021, doi: 10.33483/jfpau.773430.
ISNAD Demirtaş, Hatice - Şengel Türk, Ceyda. “ALTIN NANOPARTİKÜLLER VE KANSERDE KULLANIMLARI”. Journal of Faculty of Pharmacy of Ankara University 45/1 (January 2021), 70-95. https://doi.org/10.33483/jfpau.773430.
JAMA Demirtaş H, Şengel Türk C. ALTIN NANOPARTİKÜLLER VE KANSERDE KULLANIMLARI. Ankara Ecz. Fak. Derg. 2021;45:70–95.
MLA Demirtaş, Hatice and Ceyda Şengel Türk. “ALTIN NANOPARTİKÜLLER VE KANSERDE KULLANIMLARI”. Journal of Faculty of Pharmacy of Ankara University, vol. 45, no. 1, 2021, pp. 70-95, doi:10.33483/jfpau.773430.
Vancouver Demirtaş H, Şengel Türk C. ALTIN NANOPARTİKÜLLER VE KANSERDE KULLANIMLARI. Ankara Ecz. Fak. Derg. 2021;45(1):70-95.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.