Review
BibTex RIS Cite

SYNTHESIS OF INDOLES DERIVATIVES USING METAL FREE CATALYST IN ORGANIC REACTIONS

Year 2021, , 615 - 630, 27.09.2021
https://doi.org/10.33483/jfpau.873623

Abstract

Objective: Indole derivatives are one of the most flexible and common nitrogen-based skeletons and often used in the synthesis of numerous heterocyclic compounds, having biological or medicinal importance. Many indole derivatives have been isolated naturally from plants, fungi, and marine organisms and are highly important due to their pharmaceutical activities. They also play a significant character in polymer and dye industries as well as in the agriculture sector. There exists an immense potential for designing and methodology development for the synthesis of indole based heterocyclic scaffold structure with desire chemical and biomedical relevance.
Result and Discussion: In this present review, we outlined the recent applications of indoles in the one-pot multi-component reaction using metal free catalysts for the preparation of various heterocyclic scaffolds and their corresponding biological activities are also discussed.

Supporting Institution

Dr. Harisingh Gour Central University Sagar MP 470003

Project Number

Nil

Thanks

Thankful CSIR, Delhi India for giving me a NET-JRF fellowship grant.

References

  • 1. Yellappa, S. An anti-Michael route for the synthesis of indole-spiro (indene-pyrrolidine) by 1,3-cycloaddition of azomethineylide with indole-derivatised olefins. J. Heterocycl. Chem. 57, 1083–1089 (2020).
  • 2. Tha, S., Shakya, S., Malla, R. & Aryal, P. Prospects of Indole derivatives as methyl transfer inhibitors: Antimicrobial resistance managers. BMC Pharmacol. Toxicol. 21, 1–11 (2020).
  • 3. Sayed, M. et al. Design and synthesis of novel indole derivatives with aggregation-induced emission and antimicrobial activity. J. Photochem. Photobiol. A Chem. 383, 111969 (2019).
  • 4. Parle, A. & Kumar, N. Synthesis , characterization and evaluation of 3- acetylindole derivatives as potential antifungal agents. 9, 468–474 (2020).
  • 5. Mo, Z. Y. et al. Electrochemically enabled functionalization of indoles or anilines for the synthesis of hexafluoroisopropoxy indole and aniline derivatives. Org. Biomol. Chem. 18, 3832–3837 (2020).
  • 6. Wei, C., Zhao, L., Sun, Z., Hu, D. & Song, B. Discovery of novel indole derivatives containing dithioacetal as potential antiviral agents for plants. Pestic. Biochem. Physiol. 166, 104568 (2020).
  • 7. Turner, D. N., Edwards, L., Kornienko, A., Frolova, L. V. & Rogelj, S. Synergistic action of substituted indole derivatives and clinically used antibiotics against drug-resistant bacteria. Future Microbiol. 15, 579–590 (2020).
  • 8. Syahri, J., Hidayah, N., Hilma, R. & Nurohmah, B. A. www.jmolekul.com. (2020).
  • 9. Zeng, L., Lin, Y. & Cui, S. Indole-N-Carboxylic Acids and Indole-N-Carboxamides in Organic Synthesis. Chem. - An Asian J. 15, 973–985 (2020).
  • 10. Ganguly, N. C., Roy, S., Mondal, P. & Saha, R. An efficient one-pot organocatalytic synthesis of 9-(1H-indol-3-yl)- xanthen-4-(9H)-ones under mild aqueous micellar conditions. Tetrahedron Lett. 53, 7067–7071 (2012).
  • 11. Bhattacharjee, S., Das, D. K. & Khan, A. T. Ammonium chloride-catalyzed three-component reaction for the synthesis of fused 4H-chromene derivatives in aqueous medium. Synth. 46, 73–80 (2014).
  • 12. Jiang, Y. H. & Yan, C. G. Three-Component Reaction for the Convenient Synthesis of Functionalized 3-{1-[2-(1 H -Indol-3-yl)ethyl]-4,5,6,7-tetrahydro-1 H -indol-3-yl}indolin-2-ones. Synth. 48, 3057–3064 (2016).
  • 13. Klenc, J. et al. Synthesis of 4-Substituted 2- ( 4-Methylpiperazino ) pyrimidines and Quinazoline Analogs as Serotonin 5-HT 2A Receptor Ligands. J. Heterocycl. Chem. 46, 1259–1265 (2009).
  • 14. Fatma, S. et al. An eco-compatible multicomponent strategy for the synthesis of new 2-amino-6-(1H-indol-3-yl)-4-arylpyridine-3,5-dicarbonitriles in aqueous micellar medium promoted by thiamine-hydrochloride. Tetrahedron Lett. 55, 2201–2207 (2014).
  • 15. El-Sayed, N. S. et al. Synthesis of 4-aryl-6-indolylpyridine-3-carbonitriles and evaluation of their antiproliferative activity. Tetrahedron Lett. 55, 1154–1158 (2014).
  • 16. Naureen, S. et al. Synthesis of tetrasubstitutd imidazoles containing indole and their antiurease and antioxidant activities. J. Chil. Chem. Soc. 62, 3583–3587 (2017).
  • 17. Chen, T., Xu, X. P. & Ji, S. J. Novel, one-pot, three-component route to indol-3-yl substituted spirooxindole derivatives. J. Comb. Chem. 12, 659–663 (2010).
  • 18. Chen, X. B., Xiong, S. L., Xie, Z. X., Wang, Y. C. & Liu, W. Three-Component One-Pot Synthesis of Highly Functionalized Bis-Indole Derivatives. ACS Omega 4, 11832–11837 (2019).
  • 19. Borpatra, P. J., Deka, B., Rajbongshi, B. K., Deb, M. L. & Baruah, P. K. One-pot sequential multi-component reaction: Synthesis of 3-substituted indoles. Synth. Commun. 48, 2074–2082 (2018).
  • 20. Waill A, E., Ghoson M, D., Paul W, T. & Ting-Chi, W. Influence of two extraction methods on essential oils of some Apiaceae family plants. Egypt Pharm. J 18, 160–164 (2019).
  • 21. Wang, L. et al. Synthesis of Diastereoenriched Oxazolo[5,4-b]indoles via Catalyst-Free Multicomponent Bicyclizations. J. Org. Chem. 82, 3605–3611 (2017).
  • 22. Lin, W., Zheng, Y. X., Xun, Z., Huang, Z. Bin & Shi, D. Q. Microwave-Assisted Regioselective Synthesis of 3-Functionalized Indole Derivatives via Three-Component Domino Reaction. ACS Comb. Sci. 19, 708–713 (2017).
  • 23. Zeng, L., Sajiki, H. & Cui, S. Multicomponent Ugi Reaction of Indole- N-carboxylic Acids: Expeditious Access to Indole Carboxamide Amino Amides. Org. Lett. 21, 5269–5272 (2019).
  • 24. Singh, V. K., Dubey, R., Upadhyay, A., Sharma, L. K. & Singh, R. K. P. Electrochemical approach for synthesis of 3-substituted indole derivatives. Tetrahedron Lett. 58, 4227–4231 (2017).
  • 25. Krishnammagari, S. K., Balwe, S. G., Kim, J. S., Lim, K. T. & Jeong, Y. T. A one-pot four-component domino protocol for the synthesis of indole and coumarin containing pyridine-3-carbonitrile derivatives. Monatshefte fur Chemie 150, 691–702 (2019).
  • 26. Mazzotta, S. et al. 3-Amino-alkylated indoles: Unexplored green products acting as anti-inflammatory agents. Future Med. Chem. 12, 5–17 (2019).
  • 27. Rathod, A. S., Reddy, P. V. & Biradar, J. S. Microwave-Assisted Synthesis of Some Indole and Isoniazid Derivatives as Antitubercular Agents and Molecular Docking Study. Russ. J. Org. Chem. 56, 662–670 (2020).
  • 28. Janosik, S. M. One-Pot Multicomponent Synthesis and Cytotoxic Evaluation of Novel 7-Substituted-5-(1H-Indol-3yl)Tetrazolo[1,5-a] Pyrimidine-6-Carbonitrile. NASPA J. 42, 1 (2005).
  • 29. Dhuguru, J. & Skouta, R. Role of indole scaffolds as pharmacophores in the development of anti-lung cancer agents. Molecules 25, (2020).
  • 30. Mousavizadeh, F., Talebizadeh, M. & Anary-Abbasinejad, M. Synthesis of new indolylpyrrole derivatives via a four-component domino reaction between arylglyoxals, acetylacetone, indole and aliphatic amines in aqueous media. Tetrahedron Lett. 59, 2970–2974 (2018).
  • 31. Kumari, P. et al. Publisher Correction: Design and efficient synthesis of pyrazoline and isoxazole bridged indole C-glycoside hybrids as potential anticancer agents (Scientific Reports, (2020), 10, 1, (6660), 10.1038/s41598-020-63377-x). Sci. Rep. 10, 1–17 (2020).
  • 32. Yang, A. & Li, Z. Transition-Metal-Free Aerobic Oxidative Cross-Coupling of Indoles with Arylidenemalononitriles. Synlett 31, 194–198 (2020).

ORGANİK REAKSİYONLARDA METAL İÇERMEYEN KATALİZÖR KULLANILARAK İNDOL TÜREVLERİNİN SENTEZİ

Year 2021, , 615 - 630, 27.09.2021
https://doi.org/10.33483/jfpau.873623

Abstract

Amaç: İndol türevleri azot bazlı iskeletlerden biridir ve biyolojik veya tıbbi önemi olan birçok heterosiklik bileşiğin sentezinde sıklıkla kullanılır. Birçok indol türevi bitkilerden, mantarlardan ve deniz organizmalarından doğal olarak izole edilmiştir ve farmasötik aktiviteleri nedeniyle oldukça önemlidirler. Ayrıca polimer ve boya endüstrilerinde ve tarım sektöründe de önemli rol oynarlar. İstenen kimyasal ve biyomedikal özelliklere sahip indol bazlı heterosiklik iskelet yapısının sentezi için tasarım ve metodoloji geliştirmeye ihtiyaç vardır.
Sonuç ve Tartışma: Bu derlemede, çeşitli heterosiklik yapı iskeletlerinin hazırlanması için metal içermeyen katalizörlerin kullanıldığı, tek kap çok bileşenli reaksiyonlarla indollerin son uygulamaları özetlenmiştir ve bunlara karşılık gelen biyolojik aktiviteler tartışılmıştır.

Project Number

Nil

References

  • 1. Yellappa, S. An anti-Michael route for the synthesis of indole-spiro (indene-pyrrolidine) by 1,3-cycloaddition of azomethineylide with indole-derivatised olefins. J. Heterocycl. Chem. 57, 1083–1089 (2020).
  • 2. Tha, S., Shakya, S., Malla, R. & Aryal, P. Prospects of Indole derivatives as methyl transfer inhibitors: Antimicrobial resistance managers. BMC Pharmacol. Toxicol. 21, 1–11 (2020).
  • 3. Sayed, M. et al. Design and synthesis of novel indole derivatives with aggregation-induced emission and antimicrobial activity. J. Photochem. Photobiol. A Chem. 383, 111969 (2019).
  • 4. Parle, A. & Kumar, N. Synthesis , characterization and evaluation of 3- acetylindole derivatives as potential antifungal agents. 9, 468–474 (2020).
  • 5. Mo, Z. Y. et al. Electrochemically enabled functionalization of indoles or anilines for the synthesis of hexafluoroisopropoxy indole and aniline derivatives. Org. Biomol. Chem. 18, 3832–3837 (2020).
  • 6. Wei, C., Zhao, L., Sun, Z., Hu, D. & Song, B. Discovery of novel indole derivatives containing dithioacetal as potential antiviral agents for plants. Pestic. Biochem. Physiol. 166, 104568 (2020).
  • 7. Turner, D. N., Edwards, L., Kornienko, A., Frolova, L. V. & Rogelj, S. Synergistic action of substituted indole derivatives and clinically used antibiotics against drug-resistant bacteria. Future Microbiol. 15, 579–590 (2020).
  • 8. Syahri, J., Hidayah, N., Hilma, R. & Nurohmah, B. A. www.jmolekul.com. (2020).
  • 9. Zeng, L., Lin, Y. & Cui, S. Indole-N-Carboxylic Acids and Indole-N-Carboxamides in Organic Synthesis. Chem. - An Asian J. 15, 973–985 (2020).
  • 10. Ganguly, N. C., Roy, S., Mondal, P. & Saha, R. An efficient one-pot organocatalytic synthesis of 9-(1H-indol-3-yl)- xanthen-4-(9H)-ones under mild aqueous micellar conditions. Tetrahedron Lett. 53, 7067–7071 (2012).
  • 11. Bhattacharjee, S., Das, D. K. & Khan, A. T. Ammonium chloride-catalyzed three-component reaction for the synthesis of fused 4H-chromene derivatives in aqueous medium. Synth. 46, 73–80 (2014).
  • 12. Jiang, Y. H. & Yan, C. G. Three-Component Reaction for the Convenient Synthesis of Functionalized 3-{1-[2-(1 H -Indol-3-yl)ethyl]-4,5,6,7-tetrahydro-1 H -indol-3-yl}indolin-2-ones. Synth. 48, 3057–3064 (2016).
  • 13. Klenc, J. et al. Synthesis of 4-Substituted 2- ( 4-Methylpiperazino ) pyrimidines and Quinazoline Analogs as Serotonin 5-HT 2A Receptor Ligands. J. Heterocycl. Chem. 46, 1259–1265 (2009).
  • 14. Fatma, S. et al. An eco-compatible multicomponent strategy for the synthesis of new 2-amino-6-(1H-indol-3-yl)-4-arylpyridine-3,5-dicarbonitriles in aqueous micellar medium promoted by thiamine-hydrochloride. Tetrahedron Lett. 55, 2201–2207 (2014).
  • 15. El-Sayed, N. S. et al. Synthesis of 4-aryl-6-indolylpyridine-3-carbonitriles and evaluation of their antiproliferative activity. Tetrahedron Lett. 55, 1154–1158 (2014).
  • 16. Naureen, S. et al. Synthesis of tetrasubstitutd imidazoles containing indole and their antiurease and antioxidant activities. J. Chil. Chem. Soc. 62, 3583–3587 (2017).
  • 17. Chen, T., Xu, X. P. & Ji, S. J. Novel, one-pot, three-component route to indol-3-yl substituted spirooxindole derivatives. J. Comb. Chem. 12, 659–663 (2010).
  • 18. Chen, X. B., Xiong, S. L., Xie, Z. X., Wang, Y. C. & Liu, W. Three-Component One-Pot Synthesis of Highly Functionalized Bis-Indole Derivatives. ACS Omega 4, 11832–11837 (2019).
  • 19. Borpatra, P. J., Deka, B., Rajbongshi, B. K., Deb, M. L. & Baruah, P. K. One-pot sequential multi-component reaction: Synthesis of 3-substituted indoles. Synth. Commun. 48, 2074–2082 (2018).
  • 20. Waill A, E., Ghoson M, D., Paul W, T. & Ting-Chi, W. Influence of two extraction methods on essential oils of some Apiaceae family plants. Egypt Pharm. J 18, 160–164 (2019).
  • 21. Wang, L. et al. Synthesis of Diastereoenriched Oxazolo[5,4-b]indoles via Catalyst-Free Multicomponent Bicyclizations. J. Org. Chem. 82, 3605–3611 (2017).
  • 22. Lin, W., Zheng, Y. X., Xun, Z., Huang, Z. Bin & Shi, D. Q. Microwave-Assisted Regioselective Synthesis of 3-Functionalized Indole Derivatives via Three-Component Domino Reaction. ACS Comb. Sci. 19, 708–713 (2017).
  • 23. Zeng, L., Sajiki, H. & Cui, S. Multicomponent Ugi Reaction of Indole- N-carboxylic Acids: Expeditious Access to Indole Carboxamide Amino Amides. Org. Lett. 21, 5269–5272 (2019).
  • 24. Singh, V. K., Dubey, R., Upadhyay, A., Sharma, L. K. & Singh, R. K. P. Electrochemical approach for synthesis of 3-substituted indole derivatives. Tetrahedron Lett. 58, 4227–4231 (2017).
  • 25. Krishnammagari, S. K., Balwe, S. G., Kim, J. S., Lim, K. T. & Jeong, Y. T. A one-pot four-component domino protocol for the synthesis of indole and coumarin containing pyridine-3-carbonitrile derivatives. Monatshefte fur Chemie 150, 691–702 (2019).
  • 26. Mazzotta, S. et al. 3-Amino-alkylated indoles: Unexplored green products acting as anti-inflammatory agents. Future Med. Chem. 12, 5–17 (2019).
  • 27. Rathod, A. S., Reddy, P. V. & Biradar, J. S. Microwave-Assisted Synthesis of Some Indole and Isoniazid Derivatives as Antitubercular Agents and Molecular Docking Study. Russ. J. Org. Chem. 56, 662–670 (2020).
  • 28. Janosik, S. M. One-Pot Multicomponent Synthesis and Cytotoxic Evaluation of Novel 7-Substituted-5-(1H-Indol-3yl)Tetrazolo[1,5-a] Pyrimidine-6-Carbonitrile. NASPA J. 42, 1 (2005).
  • 29. Dhuguru, J. & Skouta, R. Role of indole scaffolds as pharmacophores in the development of anti-lung cancer agents. Molecules 25, (2020).
  • 30. Mousavizadeh, F., Talebizadeh, M. & Anary-Abbasinejad, M. Synthesis of new indolylpyrrole derivatives via a four-component domino reaction between arylglyoxals, acetylacetone, indole and aliphatic amines in aqueous media. Tetrahedron Lett. 59, 2970–2974 (2018).
  • 31. Kumari, P. et al. Publisher Correction: Design and efficient synthesis of pyrazoline and isoxazole bridged indole C-glycoside hybrids as potential anticancer agents (Scientific Reports, (2020), 10, 1, (6660), 10.1038/s41598-020-63377-x). Sci. Rep. 10, 1–17 (2020).
  • 32. Yang, A. & Li, Z. Transition-Metal-Free Aerobic Oxidative Cross-Coupling of Indoles with Arylidenemalononitriles. Synlett 31, 194–198 (2020).
There are 32 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Collection
Authors

Ratnesh Das 0000-0002-5575-8359

Hemlata Dangi This is me 0000-0001-7234-6156

Sushil Kashaw This is me 0000-0003-3969-3388

Project Number Nil
Publication Date September 27, 2021
Submission Date February 3, 2021
Acceptance Date May 20, 2021
Published in Issue Year 2021

Cite

APA Das, R., Dangi, H., & Kashaw, S. (2021). SYNTHESIS OF INDOLES DERIVATIVES USING METAL FREE CATALYST IN ORGANIC REACTIONS. Journal of Faculty of Pharmacy of Ankara University, 45(3), 615-630. https://doi.org/10.33483/jfpau.873623
AMA Das R, Dangi H, Kashaw S. SYNTHESIS OF INDOLES DERIVATIVES USING METAL FREE CATALYST IN ORGANIC REACTIONS. Ankara Ecz. Fak. Derg. September 2021;45(3):615-630. doi:10.33483/jfpau.873623
Chicago Das, Ratnesh, Hemlata Dangi, and Sushil Kashaw. “SYNTHESIS OF INDOLES DERIVATIVES USING METAL FREE CATALYST IN ORGANIC REACTIONS”. Journal of Faculty of Pharmacy of Ankara University 45, no. 3 (September 2021): 615-30. https://doi.org/10.33483/jfpau.873623.
EndNote Das R, Dangi H, Kashaw S (September 1, 2021) SYNTHESIS OF INDOLES DERIVATIVES USING METAL FREE CATALYST IN ORGANIC REACTIONS. Journal of Faculty of Pharmacy of Ankara University 45 3 615–630.
IEEE R. Das, H. Dangi, and S. Kashaw, “SYNTHESIS OF INDOLES DERIVATIVES USING METAL FREE CATALYST IN ORGANIC REACTIONS”, Ankara Ecz. Fak. Derg., vol. 45, no. 3, pp. 615–630, 2021, doi: 10.33483/jfpau.873623.
ISNAD Das, Ratnesh et al. “SYNTHESIS OF INDOLES DERIVATIVES USING METAL FREE CATALYST IN ORGANIC REACTIONS”. Journal of Faculty of Pharmacy of Ankara University 45/3 (September 2021), 615-630. https://doi.org/10.33483/jfpau.873623.
JAMA Das R, Dangi H, Kashaw S. SYNTHESIS OF INDOLES DERIVATIVES USING METAL FREE CATALYST IN ORGANIC REACTIONS. Ankara Ecz. Fak. Derg. 2021;45:615–630.
MLA Das, Ratnesh et al. “SYNTHESIS OF INDOLES DERIVATIVES USING METAL FREE CATALYST IN ORGANIC REACTIONS”. Journal of Faculty of Pharmacy of Ankara University, vol. 45, no. 3, 2021, pp. 615-30, doi:10.33483/jfpau.873623.
Vancouver Das R, Dangi H, Kashaw S. SYNTHESIS OF INDOLES DERIVATIVES USING METAL FREE CATALYST IN ORGANIC REACTIONS. Ankara Ecz. Fak. Derg. 2021;45(3):615-30.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.