STRUCTURAL AND PHARMACEUTICAL EVALUATION OF 4-HYDROXY-BENZAMIDE DERIVATIVE: ANTI-BACTERIAL AND ANTI-VIRAL POTENT
Year 2021,
, 467 - 479, 27.09.2021
Aarthi Kundam Vasudevan
,
Hemamalini Rajagopal
,
S. Muthu
,
Fazılath Basha Asif
,
Badiadka Narayana
Abstract
Objective: In medicinal chemistry, biochemical research and the drug distribution mechanism are crucial. Many common illnesses are caused by bacteria and viruses.The findings of this analysis may be very beneficial to the pharmacy and drug development processes.
Material and Method: Experimental UV-Vis spectroscopy was recorded and compared with the computed results. Reactive sites are analyzed using molecular electrostatic potential and dual descriptor’s analysis. Toxicity and druglikeness parameters are explored. Docking study was performed using Autodock tool software.
Result and Discussion: Calculated C11-O19 bond length value is found as 1.226. Calculated band gap energy from molecular orbitals is 4.39 eV. Experimentally recorded and computationally predicted UV-VIS spectrum values are comparable with the biomaterial. Binding energy is computed as -6.18 and -5.36 from PL interaction studies. Hydrogen bonds are found between the title ligand and bacterial, viral protein receptors.
References
- Reference1
Asif, F. B., Khan, F. L. A., Muthu, S., Raja, M. (2021). Computational evaluation on molecular structure ( Monomer , Dimer ), RDG , ELF , electronic ( HOMO-LUMO , MEP) properties , and spectroscopic profiling of 8-Quinolinesulfonamide with molecular docking studies. Computational and Theoretical Chemistry, 1198(December 2020), 113169. https://doi.org/10.1016/j.comptc.2021.113169.
- Reference2
Nisa, S., Yusuf, M. (2020). Synthesis and antimicrobial evaluation of varied ring new heterocycles. Indian Journal of Chemistry -Section B (IJC-B), 59(03), 420–430.
- Reference3
Rahuman, M. H., Muthu, S., Raajaraman, B. R., Raja, M. (2020). Quantum computational, spectroscopic and molecular docking investigations on 4-Acetylamino-benzoic acid methyl ester: A prospective anticancer drug. Chemical Data Collections, 26. https://doi.org/10.1016/j.cdc.2020.100352.
- Reference4
Manikandan, V., Vanangamudi, G., Arulkumaran, R., Christuraj, P., Thirunarayanan, G. (2020). Antimicrobial potent (E)-2-(1-phenylethylidene)-1-tosylhydrazines. Indian Journal of Chemistry -Section B (IJC-B), 59(03), 399–405.
- Reference5
Joshi, R., Sharma, J., Pardasani, R. T. (2017). Synthesis, characterization and antimicrobial activity of some 2,4-dibromo-1,5-dimorpholino/dipiperidino-pentane-3-ones. Indian Journal of Chemistry -Section B (IJC-B), 56(02), 183–191.
- Reference6
Priya, B., Kumar, A., Sharma, N. (2020). Synthesis, characterization, and biological properties of oxidovanadium(IV) complexes of acetylsalicylhydroxamic acid (N-acetyloxy-2-hydroxybenzamide) as potential antimicrobials. Journal of Chemical Research, 44(7–8), 460–470. https://doi.org/10.1177/1747519820907563
- Reference7
Ienascu, I. M. C., Balaes, T., Petre, C. V., Pop, R. O., Cata, A., Stefanut, M. N., Albu, P., Poenaru, M. (2018). Novel n-(2-bromo-phenyl)-2-hydroxy-benzamide derivatives with antifugal activity. Revista de Chimie, 69(7), 1876–1880. https://doi.org/10.37358/rc.18.7.6435
- Reference8
Garg, B. S., Bhojak, N., Bist, J. S., Singh, B. K. (1999). Micellar spectrofluorimetric determination of zinc (II) with N-(2’- pyridyl)-2-hydroxybenzamide. Indian Journal of Chemistry - Section A Inorganic, Physical, Theoretical and Analytical Chemistry, 38(4), 392–394.
- Reference9
Furia, E. (2017). Study of complexation equilibria between the iron(III) ion and 2-hydroxybenzamide in aqueous solution. Journal of Solution Chemistry, 46(8), 1596–1604. https://doi.org/10.1007/s10953-017-0665-0
- Reference10
Thamarai, A., Vadamalar, R., Raja, M., Muthu, S., Narayana, B., Ramesh, P., Sevvanthi, S., Aayisha, S. (2020). Molecular structure conformational analyses, solvent-electronic studies through theoretical studies and biological profiling of (2E)-1-(3-bromo-2-thienyl)-3-(4-chlorophenyl)-prop-2-en-1-one. Journal of Molecular Structure, 1202, 127349. https://doi.org/10.1016/j.molstruc.2019.127349
- Reference11
M. J. Frisch, G. W. Trucks, H. B. S. (Revision A.02,). Gaussian 09, Gaussian, Inc., Wallingford CT, 2016.
- Reference12
The PyMOL Molecular Graphics System,Version 1.8. (2015). The PyMOL Molecular Graphics System, Version 1.8,Schrodinger LLC.
- Reference13
Hansen, L. K., Perlovich, G. L., amp; Bauer-Brandl, A. (2007). 4-Hydroxybenzamide. Acta CrystallographicaSection E: Structure Reports Online, 63(5). https://doi.org/10.1107/S160053680701793X
- Reference14
Santhy, K. R., Sweetlin, M. D., Muthu, S., Abraham, C. S., Raja, M. (2019). Molecular structure, spectroscopic (FT-IR, FT-Raman) studies, Homo–Lumo and Fukui function calculations of 2-Acetyl amino-5-bromo- 4 methyl pyridine by density functional theory. Chemical Data Collections, 24. https://doi.org/10.1016/j.cdc.2019.100291
- Reference15
Pandey, M., Muthu, S., Nanje Gowda, N. M. (2017). Quantum mechanical and spectroscopic (FT-IR, FT-Raman,1H,13C NMR, UV-Vis) studies, NBO, NLO, HOMO, LUMO and Fukui function analysis of 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione by DFT studies. Journal of Molecular Structure, 1130, 511–521. https://doi.org/https://doi.org/10.1016/j.molstruc.2016.10.064
- Reference16
Fathima Rizwana, B., Prasana, J. C., Muthu, S., Abraham, C. S. (2019). Spectroscopic (FT-IR, FT-Raman, NMR) investigation on 2-[(2-amino-6-oxo-6,9-dihydro-3H-purin-9-yl)methoxy]ethyl(2S)-2-amino-3-methylbutanoate by density functional theory. Materials Today: Proceedings, 18, 1770–1782. https://doi.org/10.1016/j.matpr.2019.05.276
- Reference17
Aayisha, S., Renuga Devi, T. S., Janani, S., Muthu, S., Raja, M., Hemamalini, R. (2019). Structural (PES), AIM, spectroscopic profiling (FT-IR, FT-Raman, NMR and UV), HOMO-LUMO and docking studies of 2,2-dimethyl-N-(2-pyridinyl)propanamide – a DFT approach. Chemical Data Collections, 24, 100287. https://doi.org/10.1016/j.cdc.2019.100287
- Reference18
Jardínez, C., Vela, A., Cruz-Borbolla, J., Alvarez-Mendez, R. J., Alvarado-Rodríguez, J. G. (2016). Reduced density gradient as a novel approach for estimating QSAR descriptors, and its application to 1, 4-dihydropyridine derivatives with potential antihypertensive effects. Journal of Molecular Modeling, 22(12). https://doi.org/10.1007/s00894-016-3159-x
- Reference19
Asif, F. B., Khan, F. L. A., Muthu, S., Raja, M. (2020). Elaborated molecular structure, molecular docking and vibrational spectroscopic investigation of N-((4-aminophenyl)sulfonyl)benzamide with Density functional theory. Chemical Data Collections, 31, 100609. https://doi.org/10.1016/j.cdc.2020.100609
- Reference20
Arulaabaranam, K., Mani, G., Muthu, S. (2020). Computational assessment on wave function (ELF, LOL) analysis, molecular confirmation and molecular docking explores on 2-(5-Amino-2- Methylanilino)-4-(3-pyridyl) pyrimidine. Chemical Data Collections, 29, 100525. https://doi.org/10.1016/j.cdc.2020.100525
- Reference21
Vijayakumar, V., Prabakaran, A., Radhakrishnan, N., Muthu, S., Rameshkumar, C., Isac Paulraj, E. (2019). Synthesis, characterization, spectroscopic studies, DFT and molecular docking analysis of N4, N4′-dibutyl-3, 3′-diaminobenzidine. Journal of Molecular Structure, 1179, 325–335. https://doi.org/10.1016/j.molstruc.2018.11.018
- Reference22
Psimadas, D., Georgoulias, P., Valotassiou, V., Loudos, G. (2012). Molecular Nanomedicine Towards Cancer: Journal of Pharmaceutical Sciences, 101(7), 2271–2280. https://doi.org/10.1002/jps
- Reference23
Manjusha, P., Prasana, J. C., Muthu, S., Rizwana, B. F. (2020). Spectroscopic elucidation (FT-IR, FT-Raman and UV-visible) with NBO, NLO, ELF, LOL, drug likeness and molecular docking analysis on 1-(2-ethylsulfonylethyl)-2-methyl-5-nitro-imidazole: An antiprotozoal agent. Computational Biology and Chemistry, 88(March), 107330. https://doi.org/10.1016/j.compbiolchem.2020.107330
- Reference24
Ben Geoffrey, A. S., Prasana, J. C., Muthu, S., Abraham, C. S.,David, H. A. (2019). Structure-Activity relationship studies of two dietary flavonoids and their Nitric Oxide Synthase inhibition activity by spectroscopic and quantum/classical computational techniques. Journal of Theoretical and Computational Chemistry, 18(6), 1–27. https://doi.org/10.1142/S0219633619500317
- Reference25
Thomas, R., Hossain, M., Mary, Y. S., Resmi, K. S., Armaković, S., Armaković, S. J., Nanda, A. K., Ranjan, V. K., Vijayakumar, G.,Van Alsenoy, C. (2018). Spectroscopic analysis and molecular docking of imidazole derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations. Journal of Molecular Structure, 1158, 156–175. https://doi.org/10.1016/j.molstruc.2018.01.021
- Reference26
Haruna, K., Kumar, V. S., Sheena Mary, Y., Popoola, S. A., Thomas, R., Roxy, M. S., Al-Saadi, A. A. (2019). Conformational profile, vibrational assignments, NLO properties and molecular docking of biologically active herbicide1,1-dimethyl-3-phenylurea. Heliyon, 5(6), e01987. https://doi.org/10.1016/j.heliyon.2019.e01987.
- Reference27
Al-Zaqri, N., Pooventhiran T., Alsalme A., Warad I., John A. M., Thomas R., (2020) Structural and physico-chemical evaluation of melatonin and its solution-state excited properties, with emphasis on its binding with novel coronavirus proteins, J. Mol. Liq. 318 114082. https://doi.org/10.1016/j.molliq.2020.114082.
- Reference28
Pooventhiran, T., Bhattacharyya, U., Rao, D.J., Chandramohan, V., Karunakar, P., Irfan, A., Mary, Y.S., Thomas, R., (2020) Detailed spectra, electronic properties, qualitative non-covalent interaction analysis, solvatochromism, docking and molecular dynamics simulations in different solvent atmosphere of cenobamate, Struct. Chem. 31, 2475–2485. https://doi.org/10.1007/s11224-020-01607-8.
4-HİDROKSİ-BENZAMİD TÜREVİNİN YAPISAL VE FARMASÖTİK DEĞERLENDİRMESİ: ANTİ-BAKTERİYAL VE ANTİ-VİRAL ETKİ
Year 2021,
, 467 - 479, 27.09.2021
Aarthi Kundam Vasudevan
,
Hemamalini Rajagopal
,
S. Muthu
,
Fazılath Basha Asif
,
Badiadka Narayana
Abstract
Amaç: Medisinal kimyada biyokimyasal araştırma ve ilaç dağılım mekanizması çok önemlidir. Bakteri ve virüsler pek çok hastalığa neden olmaktadır. Bu çalışmanın bulguları eczacılık ve ilaç geliştirme süreçleri için çok faydalı olabilir.
Gereç ve Yöntem: Kaydedilen deneysel UV-Vis spektrumu hesaplanan sonuçlarla karşılaştırıldı. Reaktif bölgeler, moleküler elektrostatik potansiyeli ve ikili tanımlayıcılar analizi kullanılarak analiz edildi. Toksisite ve ilaç benzerliği parametreleri araştırıldı. Docking çalışması, Autodock programı kullanılarak gerçekleştirildi.
Sonuç ve Tartışma: Hesaplanan C11-O19 bağ uzunluğu değeri 1.226 olarak bulundu. Moleküler orbitallerin hesaplanan bant aralığı enerjisi 4.39eV'dir. Deneysel olarak kaydedilen ve hesaplanan tahmini UV-VIS spektrum değerleri, biyomateryal ile karşılaştırılabilir düzeydedir. Bağlanma enerjileri, PL etkileşim çalışmaları ile -6.18 ve -5.36 olarak hesaplandı. Başlık ligandı ile bakteriyel ve viral protein reseptörleri arasında hidrojen bağları bulundu.
References
- Reference1
Asif, F. B., Khan, F. L. A., Muthu, S., Raja, M. (2021). Computational evaluation on molecular structure ( Monomer , Dimer ), RDG , ELF , electronic ( HOMO-LUMO , MEP) properties , and spectroscopic profiling of 8-Quinolinesulfonamide with molecular docking studies. Computational and Theoretical Chemistry, 1198(December 2020), 113169. https://doi.org/10.1016/j.comptc.2021.113169.
- Reference2
Nisa, S., Yusuf, M. (2020). Synthesis and antimicrobial evaluation of varied ring new heterocycles. Indian Journal of Chemistry -Section B (IJC-B), 59(03), 420–430.
- Reference3
Rahuman, M. H., Muthu, S., Raajaraman, B. R., Raja, M. (2020). Quantum computational, spectroscopic and molecular docking investigations on 4-Acetylamino-benzoic acid methyl ester: A prospective anticancer drug. Chemical Data Collections, 26. https://doi.org/10.1016/j.cdc.2020.100352.
- Reference4
Manikandan, V., Vanangamudi, G., Arulkumaran, R., Christuraj, P., Thirunarayanan, G. (2020). Antimicrobial potent (E)-2-(1-phenylethylidene)-1-tosylhydrazines. Indian Journal of Chemistry -Section B (IJC-B), 59(03), 399–405.
- Reference5
Joshi, R., Sharma, J., Pardasani, R. T. (2017). Synthesis, characterization and antimicrobial activity of some 2,4-dibromo-1,5-dimorpholino/dipiperidino-pentane-3-ones. Indian Journal of Chemistry -Section B (IJC-B), 56(02), 183–191.
- Reference6
Priya, B., Kumar, A., Sharma, N. (2020). Synthesis, characterization, and biological properties of oxidovanadium(IV) complexes of acetylsalicylhydroxamic acid (N-acetyloxy-2-hydroxybenzamide) as potential antimicrobials. Journal of Chemical Research, 44(7–8), 460–470. https://doi.org/10.1177/1747519820907563
- Reference7
Ienascu, I. M. C., Balaes, T., Petre, C. V., Pop, R. O., Cata, A., Stefanut, M. N., Albu, P., Poenaru, M. (2018). Novel n-(2-bromo-phenyl)-2-hydroxy-benzamide derivatives with antifugal activity. Revista de Chimie, 69(7), 1876–1880. https://doi.org/10.37358/rc.18.7.6435
- Reference8
Garg, B. S., Bhojak, N., Bist, J. S., Singh, B. K. (1999). Micellar spectrofluorimetric determination of zinc (II) with N-(2’- pyridyl)-2-hydroxybenzamide. Indian Journal of Chemistry - Section A Inorganic, Physical, Theoretical and Analytical Chemistry, 38(4), 392–394.
- Reference9
Furia, E. (2017). Study of complexation equilibria between the iron(III) ion and 2-hydroxybenzamide in aqueous solution. Journal of Solution Chemistry, 46(8), 1596–1604. https://doi.org/10.1007/s10953-017-0665-0
- Reference10
Thamarai, A., Vadamalar, R., Raja, M., Muthu, S., Narayana, B., Ramesh, P., Sevvanthi, S., Aayisha, S. (2020). Molecular structure conformational analyses, solvent-electronic studies through theoretical studies and biological profiling of (2E)-1-(3-bromo-2-thienyl)-3-(4-chlorophenyl)-prop-2-en-1-one. Journal of Molecular Structure, 1202, 127349. https://doi.org/10.1016/j.molstruc.2019.127349
- Reference11
M. J. Frisch, G. W. Trucks, H. B. S. (Revision A.02,). Gaussian 09, Gaussian, Inc., Wallingford CT, 2016.
- Reference12
The PyMOL Molecular Graphics System,Version 1.8. (2015). The PyMOL Molecular Graphics System, Version 1.8,Schrodinger LLC.
- Reference13
Hansen, L. K., Perlovich, G. L., amp; Bauer-Brandl, A. (2007). 4-Hydroxybenzamide. Acta CrystallographicaSection E: Structure Reports Online, 63(5). https://doi.org/10.1107/S160053680701793X
- Reference14
Santhy, K. R., Sweetlin, M. D., Muthu, S., Abraham, C. S., Raja, M. (2019). Molecular structure, spectroscopic (FT-IR, FT-Raman) studies, Homo–Lumo and Fukui function calculations of 2-Acetyl amino-5-bromo- 4 methyl pyridine by density functional theory. Chemical Data Collections, 24. https://doi.org/10.1016/j.cdc.2019.100291
- Reference15
Pandey, M., Muthu, S., Nanje Gowda, N. M. (2017). Quantum mechanical and spectroscopic (FT-IR, FT-Raman,1H,13C NMR, UV-Vis) studies, NBO, NLO, HOMO, LUMO and Fukui function analysis of 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione by DFT studies. Journal of Molecular Structure, 1130, 511–521. https://doi.org/https://doi.org/10.1016/j.molstruc.2016.10.064
- Reference16
Fathima Rizwana, B., Prasana, J. C., Muthu, S., Abraham, C. S. (2019). Spectroscopic (FT-IR, FT-Raman, NMR) investigation on 2-[(2-amino-6-oxo-6,9-dihydro-3H-purin-9-yl)methoxy]ethyl(2S)-2-amino-3-methylbutanoate by density functional theory. Materials Today: Proceedings, 18, 1770–1782. https://doi.org/10.1016/j.matpr.2019.05.276
- Reference17
Aayisha, S., Renuga Devi, T. S., Janani, S., Muthu, S., Raja, M., Hemamalini, R. (2019). Structural (PES), AIM, spectroscopic profiling (FT-IR, FT-Raman, NMR and UV), HOMO-LUMO and docking studies of 2,2-dimethyl-N-(2-pyridinyl)propanamide – a DFT approach. Chemical Data Collections, 24, 100287. https://doi.org/10.1016/j.cdc.2019.100287
- Reference18
Jardínez, C., Vela, A., Cruz-Borbolla, J., Alvarez-Mendez, R. J., Alvarado-Rodríguez, J. G. (2016). Reduced density gradient as a novel approach for estimating QSAR descriptors, and its application to 1, 4-dihydropyridine derivatives with potential antihypertensive effects. Journal of Molecular Modeling, 22(12). https://doi.org/10.1007/s00894-016-3159-x
- Reference19
Asif, F. B., Khan, F. L. A., Muthu, S., Raja, M. (2020). Elaborated molecular structure, molecular docking and vibrational spectroscopic investigation of N-((4-aminophenyl)sulfonyl)benzamide with Density functional theory. Chemical Data Collections, 31, 100609. https://doi.org/10.1016/j.cdc.2020.100609
- Reference20
Arulaabaranam, K., Mani, G., Muthu, S. (2020). Computational assessment on wave function (ELF, LOL) analysis, molecular confirmation and molecular docking explores on 2-(5-Amino-2- Methylanilino)-4-(3-pyridyl) pyrimidine. Chemical Data Collections, 29, 100525. https://doi.org/10.1016/j.cdc.2020.100525
- Reference21
Vijayakumar, V., Prabakaran, A., Radhakrishnan, N., Muthu, S., Rameshkumar, C., Isac Paulraj, E. (2019). Synthesis, characterization, spectroscopic studies, DFT and molecular docking analysis of N4, N4′-dibutyl-3, 3′-diaminobenzidine. Journal of Molecular Structure, 1179, 325–335. https://doi.org/10.1016/j.molstruc.2018.11.018
- Reference22
Psimadas, D., Georgoulias, P., Valotassiou, V., Loudos, G. (2012). Molecular Nanomedicine Towards Cancer: Journal of Pharmaceutical Sciences, 101(7), 2271–2280. https://doi.org/10.1002/jps
- Reference23
Manjusha, P., Prasana, J. C., Muthu, S., Rizwana, B. F. (2020). Spectroscopic elucidation (FT-IR, FT-Raman and UV-visible) with NBO, NLO, ELF, LOL, drug likeness and molecular docking analysis on 1-(2-ethylsulfonylethyl)-2-methyl-5-nitro-imidazole: An antiprotozoal agent. Computational Biology and Chemistry, 88(March), 107330. https://doi.org/10.1016/j.compbiolchem.2020.107330
- Reference24
Ben Geoffrey, A. S., Prasana, J. C., Muthu, S., Abraham, C. S.,David, H. A. (2019). Structure-Activity relationship studies of two dietary flavonoids and their Nitric Oxide Synthase inhibition activity by spectroscopic and quantum/classical computational techniques. Journal of Theoretical and Computational Chemistry, 18(6), 1–27. https://doi.org/10.1142/S0219633619500317
- Reference25
Thomas, R., Hossain, M., Mary, Y. S., Resmi, K. S., Armaković, S., Armaković, S. J., Nanda, A. K., Ranjan, V. K., Vijayakumar, G.,Van Alsenoy, C. (2018). Spectroscopic analysis and molecular docking of imidazole derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations. Journal of Molecular Structure, 1158, 156–175. https://doi.org/10.1016/j.molstruc.2018.01.021
- Reference26
Haruna, K., Kumar, V. S., Sheena Mary, Y., Popoola, S. A., Thomas, R., Roxy, M. S., Al-Saadi, A. A. (2019). Conformational profile, vibrational assignments, NLO properties and molecular docking of biologically active herbicide1,1-dimethyl-3-phenylurea. Heliyon, 5(6), e01987. https://doi.org/10.1016/j.heliyon.2019.e01987.
- Reference27
Al-Zaqri, N., Pooventhiran T., Alsalme A., Warad I., John A. M., Thomas R., (2020) Structural and physico-chemical evaluation of melatonin and its solution-state excited properties, with emphasis on its binding with novel coronavirus proteins, J. Mol. Liq. 318 114082. https://doi.org/10.1016/j.molliq.2020.114082.
- Reference28
Pooventhiran, T., Bhattacharyya, U., Rao, D.J., Chandramohan, V., Karunakar, P., Irfan, A., Mary, Y.S., Thomas, R., (2020) Detailed spectra, electronic properties, qualitative non-covalent interaction analysis, solvatochromism, docking and molecular dynamics simulations in different solvent atmosphere of cenobamate, Struct. Chem. 31, 2475–2485. https://doi.org/10.1007/s11224-020-01607-8.