CYCLIN DEPENDENT KINASE 4/6 AND INHIBITORS
Year 2022,
Volume: 46 Issue: 1, 193 - 208, 29.01.2022
Gülnur Arslan
,
Tijen Önkol
,
Azime Berna Özçelik
Abstract
Objective: The cancer is one of the serious health problems with high lethality in our country and also in the world. Breast cancer, the second most common type of cancer, is the most common of death in woman. Many innovative approaches have been discovered in drug treatments by elucidating the mechanisms of cancer cell formation. One of the innovative approaches is inhibition of cyclin-dependent kinase 4/6. In this review, general information about cyclin-dependent kinase 4/6 is given and the advantages and disadvantages of its inhibitors are emphasized.
Result and Discussion: The development of resistance to endocrine therapies is a factor limiting the treatment process in estrogen receptor positive and human epidermal growth factor receptor 2 negative breast cancers. Cyclin-dependent kinase 4/6 inhibition pathway was discovered in retinoblastoma protein-positive breast cancers by targeting to overcome the endocrine resistance and arrest the cancerous cell at the mitosis checkpoint. Promising results in cancer therapy have been obtained with the combination of cyclin-dependent kinase 4/6 inhibitors with endocrine therapy.
References
- Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., Jackson, R. B. (2014). Campbell biology, Boston: Pearson, p.1309.
- Hochegger, H., Takeda, S., Hunt, T. (2008). Cyclin-dependent kinases and cell-cycle transitions: does one fit all?. Nature reviews Molecular cell biology, 9(11), 910-916. [CrossRef]
- Shapiro, G. I. (2006). Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol, 24(11), 1770-1783. [CrossRef]
- DiPippo, A. J., Patel, N. K., Barnett, C. M. (2016). Cyclin‐dependent kinase inhibitors for the treatment of breast cancer: past, present, and future. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 36(6), 652-667. [CrossRef]
- Pardee, A. B. (1974). A restriction point for control of normal animal cell proliferation. Proceedings of the National Academy of Sciences, 71(4), 1286-1290 [CrossRef]
- Malumbres, M., Barbacid, M. (2005). Mammalian cyclin-dependent kinases. Trends in biochemical sciences, 30(11), 630-641. [CrossRef]
- Sherr, C. J. (1996). Cancer cell cycles. Science, 274(5293), 1672-1677. [CrossRef]
- Sherr, C. J., Roberts, J. M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & development, 13(12), 1501-1512.
- Baldin, V., Lukas, J., Marcote, M. J., Pagano, M., Draetta, G. (1993). Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes & development, 7(5), 812-821. [CrossRef]
- Kasten, M. M., Giordano, A. (1998). pRb and the cdks in apoptosis and the cell cycle. Cell Death & Differentiation, 5(2), 132-140. [CrossRef]
- Mittnacht, S. (1998). Control of pRB phosphorylation. Current opinion in genetics & development, 8(1), 21-27. [CrossRef]
- Sherr, C. J. (1994). G1 phase progression: cycling on cue. Cell, 79(4), 551-555. [CrossRef]
- Harbour, J. W., Dean, D. C. (2000). Chromatin remodeling and Rb activity. Current opinion in cell biology, 12(6), 685-689. [CrossRef]
- Bartek, J., Lukas, J. (2001). Pathways governing G1/S transition and their response to DNA damage. FEBS letters, 490(3), 117-122. [CrossRef]
- Roskoski Jr, R. (2016). Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharmacological research, 107, 249-275. [CrossRef]
- Ruas, M. (1998). The p16/CDKN2A tumor suppressor and its relatives. Biochimica et Boophysica Acta, 1378, 115-177. [CrossRef]
- Chim, C. S., Liang, R., Fung, T. K., Kwong, Y. L. (2005). Infrequent epigenetic dysregulation of CIP/KIP family of cyclin-dependent kinase inhibitors in multiple myeloma. Leukemia, 19(12), 2352-2355. [CrossRef]
- Ortega, S., Malumbres, M., Barbacid, M. (2002). Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1602(1), 73-87. [CrossRef]
- An, H. X., Beckmann, M. W., Reifenberger, G., Bender, H. G., Niederacher, D. (1999). Gene amplification and overexpression of CDK4 in sporadic breast carcinomas is associated with high tumor cell proliferation. The American journal of pathology, 154(1), 113-118. [CrossRef]
- He, J., Allen, J. R., Collins, V. P., Allalunis-Turner, M. J., Godbout, R., Day, R. S., James, C. D. (1994). CDK4 amplification is an alternative mechanism to p16 gene homozygous deletion in glioma cell lines. Cancer research, 54(22), 5804-5807.
- Wei, G., Lonardo, F., Ueda, T., Kim, T., Huvos, A. G., Healey, J. H., Ladanyi, M. (1999). CDK4 gene amplification in osteosarcoma: reciprocal relationship with INK4A gene alterations and mapping of 12q13 amplicons. International journal of cancer, 80(2), 199-204. [CrossRef]
- Cheung, T. H., Yu, M. M. Y., Lo, K. W. K., Yim, S. F., Chung, T. K. H., Wong, Y. F. (2001). Alteration of cyclin D1 and CDK4 gene in carcinoma of uterine cervix. Cancer letters, 166(2), 199-206. [CrossRef]
- Costello, J. F., Plass, C., Arap, W., Chapman, V. M., Held, W. A., Berger, M. S., Huang H-J. S., Cavenee, W. K. (1997). Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. Cancer research, 57(7), 1250-1254.
- Chilosi, M., Doglioni, C., Yan, Z., Lestani, M., Menestrina, F., Sorio, C., Benedetti A., Vinante F., Pizzolo G., Inghirami, G. (1998). Differential expression of cyclin-dependent kinase 6 in cortical thymocytes and T-cell lymphoblastic lymphoma/leukemia. The American journal of pathology, 152(1), 209.
- Asghar, U., Witkiewicz, A. K., Turner, N. C., Knudsen, E. S. (2015). The history and future of targeting cyclin-dependent kinases in cancer therapy. Nature reviews Drug discovery, 14(2), 130-146. [CrossRef]
- Cicenas, J., Kalyan, K., Sorokinas, A., Jatulyte, A., Valiunas, D., Kaupinis, A., Valius, M. (2014). Highlights of the latest advances in research on CDK inhibitors. Cancers, 6(4), 2224-2242. [CrossRef]
- Rizzolio, F., Tuccinardi, T., Caligiuri, I., Lucchetti, C., Giordano, A. (2010). CDK inhibitors: from the bench to clinical trials. Current drug targets, 11(3), 279-290. [CrossRef]
- Knockaert, M., Greengard, P., Meijer, L. (2002). Pharmacological inhibitors of cyclin-dependent kinases. Trends in pharmacological sciences, 23(9), 417-425. [CrossRef]
- Hamilton, E., Infante, J. R. (2016). Targeting CDK4/6 in patients with cancer. Cancer treatment reviews, 45, 129-138. [CrossRef]
- Roberts, P. J., Bisi, J. E., Strum, J. C., Combest, A. J., Darr, D. B., Usary, J. E., Zamboni, W. C., Wong, K. K., Perou, C. M., Sharpless, N. E. (2012). Multiple roles of cyclin-dependent kinase 4/6 inhibitors in cancer therapy. Journal of the National Cancer Institute, 104(6), 476-487. [CrossRef]
- Choi, Y. J., Anders, L. (2014). Signaling through cyclin D-dependent kinases. Oncogene, 33(15), 1890. [CrossRef]
- Tripathy, D., Bardia, A., Sellers, W. R. (2017). Ribociclib (LEE011): mechanism of action and clinical impact of this selective cyclin-dependent kinase 4/6 inhibitor in various solid tumors. Clinical Cancer Research, 23(13), 3251-3262. [CrossRef]
- Kim, E. S. (2017). Abemaciclib: first global approval. Drugs, 77(18), 2063-2070. [CrossRef]
- Patnaik, A., Rosen, L. S., Tolaney, S. M., Tolcher, A. W., Goldman, J. W., Gandhi, L., ... & Shapiro, G. I. (2016). Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non–small cell lung cancer, and other solid tumors. Cancer discovery, 6(7), 740-753. [CrossRef]
- Lima, C. M. S. R., Roberts, P. J., Priego, V. M., Divers, S. G., Thomas, M. B., Boccia, R. V., Stabler, K., Andrews, E., Malik, R. K., Aljumaily, R., Hamm, J. T., Chiu, V. K., Richards, D.A., Nikolinakos, P., Hussein, M. A., Schuster, S. R., Hoyer, R. J., Shapiro, G., Dragnev, K. H., Owonikoko, T. K. (2017). Trilaciclib (G1T28): a cyclin dependent kinase 4/6 inhibitor, in combination with etoposide and carboplatin (EP) for extensive stage small cell lung cancer (ES-SCLC)—phase 1b results. J Clin Oncol, 35(suppl), 8568. [CrossRef]
- Tan, A. R., Wright, G. S., Thummala, A. R., Danso, M. A., Popovic, L., Pluard, T. J., Han, H. S., Vojnović, Ž., Vasev, N., Ma, L., Richards, D. A., Wilks, S. T., Milenković, D., Yang, Z., Antal, J. M., Morris, S. R., O'Shaughnessy, J. (2019). Trilaciclib plus chemotherapy versus chemotherapy alone in patients with metastatic triple-negative breast cancer: a multicentre, randomised, open-label, phase 2 trial. The Lancet Oncology, 20(11), 1587-1601. [CrossRef]
- Drugs.com Web site (2000). Retrieved March 4, 2021, from https://www.drugs.com/history/cosela.html Erişim Tarihi: 24.04.2021
- O'leary, B., Finn, R. S., Turner, N. C. (2016). Treating cancer with selective CDK4/6 inhibitors. Nature reviews Clinical oncology, 13(7), 417-430. [CrossRef]
- Knudsen, E. S., Witkiewicz, A. K. (2017). The strange case of CDK4/6 inhibitors: mechanisms, resistance, and combination strategies. Trends in cancer, 3(1), 39-55. [CrossRef]
SİKLİN BAĞIMLI KİNAZ 4/6 VE İNHİBİTÖRLERİ
Year 2022,
Volume: 46 Issue: 1, 193 - 208, 29.01.2022
Gülnur Arslan
,
Tijen Önkol
,
Azime Berna Özçelik
Abstract
Amaç: Kanser; ülkemizde ve dünyada öldürücülüğü yüksek olarak karşımıza çıkan ciddi sağlık sorunlarından biridir. İkinci sıklıkta görülen kanser türü olan meme kanseri kadınlarda en fazla ölüm nedenidir. Kanser hücresinin oluşum mekanizmalarının aydınlatılmasıyla, ilaç tedavilerinde bir çok yenilikçi yaklaşım keşfedilmiştir. Yenilikçi yaklaşımlardan biri de siklin bağımlı kinaz 4/6 inhibisyonudur. Bu derlemede siklin bağımlı kinaz 4/6 hakkında genel bilgiler verilerek, inhibitörlerinin avantaj ve dezantajları üzerinde durulmuştur.
Sonuç ve Tartışma: Östrojen reseptörü pozitif ve insan epidermal büyüme faktör reseptörü 2 negatif meme kanserlerinde, endokrin tedavilere direncin gelişmesi tedavi sürecini kısıtlayan bir unsurdur. Retinoblastoma proteini pozitif meme kanserlerinde endokrin direncin üstesinden gelmek ve kanserli hücrenin mitoz kontrol noktasında durdurulması hedeflenerek siklin bağımlı kinaz 4/6 inhibisyon yolağı keşfedilmiştir. Siklin bağımlı kinaz 4 / 6 inhibitörlerinin endokrin tedaviyle kombinasyonuyla kanser terapisinde ümit verici sonuçlar elde edilmiştir.
References
- Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., Jackson, R. B. (2014). Campbell biology, Boston: Pearson, p.1309.
- Hochegger, H., Takeda, S., Hunt, T. (2008). Cyclin-dependent kinases and cell-cycle transitions: does one fit all?. Nature reviews Molecular cell biology, 9(11), 910-916. [CrossRef]
- Shapiro, G. I. (2006). Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol, 24(11), 1770-1783. [CrossRef]
- DiPippo, A. J., Patel, N. K., Barnett, C. M. (2016). Cyclin‐dependent kinase inhibitors for the treatment of breast cancer: past, present, and future. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 36(6), 652-667. [CrossRef]
- Pardee, A. B. (1974). A restriction point for control of normal animal cell proliferation. Proceedings of the National Academy of Sciences, 71(4), 1286-1290 [CrossRef]
- Malumbres, M., Barbacid, M. (2005). Mammalian cyclin-dependent kinases. Trends in biochemical sciences, 30(11), 630-641. [CrossRef]
- Sherr, C. J. (1996). Cancer cell cycles. Science, 274(5293), 1672-1677. [CrossRef]
- Sherr, C. J., Roberts, J. M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & development, 13(12), 1501-1512.
- Baldin, V., Lukas, J., Marcote, M. J., Pagano, M., Draetta, G. (1993). Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes & development, 7(5), 812-821. [CrossRef]
- Kasten, M. M., Giordano, A. (1998). pRb and the cdks in apoptosis and the cell cycle. Cell Death & Differentiation, 5(2), 132-140. [CrossRef]
- Mittnacht, S. (1998). Control of pRB phosphorylation. Current opinion in genetics & development, 8(1), 21-27. [CrossRef]
- Sherr, C. J. (1994). G1 phase progression: cycling on cue. Cell, 79(4), 551-555. [CrossRef]
- Harbour, J. W., Dean, D. C. (2000). Chromatin remodeling and Rb activity. Current opinion in cell biology, 12(6), 685-689. [CrossRef]
- Bartek, J., Lukas, J. (2001). Pathways governing G1/S transition and their response to DNA damage. FEBS letters, 490(3), 117-122. [CrossRef]
- Roskoski Jr, R. (2016). Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharmacological research, 107, 249-275. [CrossRef]
- Ruas, M. (1998). The p16/CDKN2A tumor suppressor and its relatives. Biochimica et Boophysica Acta, 1378, 115-177. [CrossRef]
- Chim, C. S., Liang, R., Fung, T. K., Kwong, Y. L. (2005). Infrequent epigenetic dysregulation of CIP/KIP family of cyclin-dependent kinase inhibitors in multiple myeloma. Leukemia, 19(12), 2352-2355. [CrossRef]
- Ortega, S., Malumbres, M., Barbacid, M. (2002). Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1602(1), 73-87. [CrossRef]
- An, H. X., Beckmann, M. W., Reifenberger, G., Bender, H. G., Niederacher, D. (1999). Gene amplification and overexpression of CDK4 in sporadic breast carcinomas is associated with high tumor cell proliferation. The American journal of pathology, 154(1), 113-118. [CrossRef]
- He, J., Allen, J. R., Collins, V. P., Allalunis-Turner, M. J., Godbout, R., Day, R. S., James, C. D. (1994). CDK4 amplification is an alternative mechanism to p16 gene homozygous deletion in glioma cell lines. Cancer research, 54(22), 5804-5807.
- Wei, G., Lonardo, F., Ueda, T., Kim, T., Huvos, A. G., Healey, J. H., Ladanyi, M. (1999). CDK4 gene amplification in osteosarcoma: reciprocal relationship with INK4A gene alterations and mapping of 12q13 amplicons. International journal of cancer, 80(2), 199-204. [CrossRef]
- Cheung, T. H., Yu, M. M. Y., Lo, K. W. K., Yim, S. F., Chung, T. K. H., Wong, Y. F. (2001). Alteration of cyclin D1 and CDK4 gene in carcinoma of uterine cervix. Cancer letters, 166(2), 199-206. [CrossRef]
- Costello, J. F., Plass, C., Arap, W., Chapman, V. M., Held, W. A., Berger, M. S., Huang H-J. S., Cavenee, W. K. (1997). Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. Cancer research, 57(7), 1250-1254.
- Chilosi, M., Doglioni, C., Yan, Z., Lestani, M., Menestrina, F., Sorio, C., Benedetti A., Vinante F., Pizzolo G., Inghirami, G. (1998). Differential expression of cyclin-dependent kinase 6 in cortical thymocytes and T-cell lymphoblastic lymphoma/leukemia. The American journal of pathology, 152(1), 209.
- Asghar, U., Witkiewicz, A. K., Turner, N. C., Knudsen, E. S. (2015). The history and future of targeting cyclin-dependent kinases in cancer therapy. Nature reviews Drug discovery, 14(2), 130-146. [CrossRef]
- Cicenas, J., Kalyan, K., Sorokinas, A., Jatulyte, A., Valiunas, D., Kaupinis, A., Valius, M. (2014). Highlights of the latest advances in research on CDK inhibitors. Cancers, 6(4), 2224-2242. [CrossRef]
- Rizzolio, F., Tuccinardi, T., Caligiuri, I., Lucchetti, C., Giordano, A. (2010). CDK inhibitors: from the bench to clinical trials. Current drug targets, 11(3), 279-290. [CrossRef]
- Knockaert, M., Greengard, P., Meijer, L. (2002). Pharmacological inhibitors of cyclin-dependent kinases. Trends in pharmacological sciences, 23(9), 417-425. [CrossRef]
- Hamilton, E., Infante, J. R. (2016). Targeting CDK4/6 in patients with cancer. Cancer treatment reviews, 45, 129-138. [CrossRef]
- Roberts, P. J., Bisi, J. E., Strum, J. C., Combest, A. J., Darr, D. B., Usary, J. E., Zamboni, W. C., Wong, K. K., Perou, C. M., Sharpless, N. E. (2012). Multiple roles of cyclin-dependent kinase 4/6 inhibitors in cancer therapy. Journal of the National Cancer Institute, 104(6), 476-487. [CrossRef]
- Choi, Y. J., Anders, L. (2014). Signaling through cyclin D-dependent kinases. Oncogene, 33(15), 1890. [CrossRef]
- Tripathy, D., Bardia, A., Sellers, W. R. (2017). Ribociclib (LEE011): mechanism of action and clinical impact of this selective cyclin-dependent kinase 4/6 inhibitor in various solid tumors. Clinical Cancer Research, 23(13), 3251-3262. [CrossRef]
- Kim, E. S. (2017). Abemaciclib: first global approval. Drugs, 77(18), 2063-2070. [CrossRef]
- Patnaik, A., Rosen, L. S., Tolaney, S. M., Tolcher, A. W., Goldman, J. W., Gandhi, L., ... & Shapiro, G. I. (2016). Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non–small cell lung cancer, and other solid tumors. Cancer discovery, 6(7), 740-753. [CrossRef]
- Lima, C. M. S. R., Roberts, P. J., Priego, V. M., Divers, S. G., Thomas, M. B., Boccia, R. V., Stabler, K., Andrews, E., Malik, R. K., Aljumaily, R., Hamm, J. T., Chiu, V. K., Richards, D.A., Nikolinakos, P., Hussein, M. A., Schuster, S. R., Hoyer, R. J., Shapiro, G., Dragnev, K. H., Owonikoko, T. K. (2017). Trilaciclib (G1T28): a cyclin dependent kinase 4/6 inhibitor, in combination with etoposide and carboplatin (EP) for extensive stage small cell lung cancer (ES-SCLC)—phase 1b results. J Clin Oncol, 35(suppl), 8568. [CrossRef]
- Tan, A. R., Wright, G. S., Thummala, A. R., Danso, M. A., Popovic, L., Pluard, T. J., Han, H. S., Vojnović, Ž., Vasev, N., Ma, L., Richards, D. A., Wilks, S. T., Milenković, D., Yang, Z., Antal, J. M., Morris, S. R., O'Shaughnessy, J. (2019). Trilaciclib plus chemotherapy versus chemotherapy alone in patients with metastatic triple-negative breast cancer: a multicentre, randomised, open-label, phase 2 trial. The Lancet Oncology, 20(11), 1587-1601. [CrossRef]
- Drugs.com Web site (2000). Retrieved March 4, 2021, from https://www.drugs.com/history/cosela.html Erişim Tarihi: 24.04.2021
- O'leary, B., Finn, R. S., Turner, N. C. (2016). Treating cancer with selective CDK4/6 inhibitors. Nature reviews Clinical oncology, 13(7), 417-430. [CrossRef]
- Knudsen, E. S., Witkiewicz, A. K. (2017). The strange case of CDK4/6 inhibitors: mechanisms, resistance, and combination strategies. Trends in cancer, 3(1), 39-55. [CrossRef]