ANTIFUNGAL ACTIVITY OF METHYL GALLATE AND SYRINGIC ACID ISOLATED FROM ASTERISCUS GRAVEOLENS AGAINST FUSARIUM OXYSPORUM F. SP. ALBEDINIS
Year 2024,
Volume: 48 Issue: 4-1st international Conference on Trends Methods in Analytical Chemistry (CTMAC 2023), 1303 - 1312, 25.11.2024
Zeyneb Belhi
,
Zahira Roucham
,
Noureddine Boulenouar
,
Abdelkrim Cheriti
Abstract
Objective: The objective of this study was to isolate and identify the compounds responsible for the antifungal activity against Fusarium oxysporum f. sp. albedinis (Foa) from Asteriscus graveolens aerial parts extract, and to evaluate the effects in vitro of selected compounds for control of Fusarium wilt.
Material and Method: We reveal the presence of the phenolic compounds in Asteriscus graveolens, from which the antifungal activities of aerial parts extracts were investigated for effects on the growth of mycelia against Fusarium oxysporum f. sp. albedinis (Foa) by direct bioautography. The antifungal compounds were isolated from A. graveolens extract using silica gel column chromatography and thin-layer chromatography. Structural identification of the antifungal compounds was conducted using NMR (1H and 13C) spectrophotometry and LC-MS.
Result and Discussion: The isolated compounds were identified as methyl gallate (MG) and syringic acid (SA) based on comparing their spectral and physical data with the literature.
Ethical Statement
The authors declare that this submission doesn’t need any ethical committee permission.
Supporting Institution
Ministry of Higher Education and Scientific Research, MESRS-Algeria
Thanks
The authors are highly thankful to all members of the laboratory of "Catalysis Research and Application Center" of the University of İnönü, Malatya. Turkey.
We acknowledge the support of MESRS-Algeria.
References
- 1. Belhi, Z., Boulenouar, N., Cheriti, A., Marouf, A. (2020). Antifungal and anti-cellulases activity of Limoniastrum feei extracts to promote Bayoud disease treatment using bioautography. Cogent Food and Agriculture, 6(1), 1726083. [CrossRef]
- 2. Hussain, A., Aslam, B., Gilani, M.M., Khan, J.A., Anwar, M.W. (2019). Biochemical and histopathological investigations of hepatoprotective potential of Phoenix dactylifera against isoniazid induced toxicity in animal model. Pakistan Journal of Agricultural Sciences, 56(2), 489-493. [CrossRef]
- 3. El Hadrami, I., El Bellaj, M., El Idrissi, A., J'Aiti, F., El Jaafari, S., Daayf, F. (1998). Biotechnologies végétales et amélioration du palmier dattier (Phoenix dactylifera L.), pivot de l'agriculture oasienne marocaine. Cahiers Agricultures, 7(6), 463-468.
- 4. Ait Kettout, T., Rahmania, F. (2010). Identification par CG-SM de l’acide phénylacétique produit par Fusarium oxysporum f. sp. albedinis, agent causal du bayoud. Comptes Rendus Biologies, 333(11), 808-813. [CrossRef]
- 5. Thrane, U. (2014). Fusarium. In C.A. Batt and M.L. Tortorello (Eds.), Encyclopedia of Food Microbiology (Second Edition). Oxford: Academic Press, pp. 76-81.
- 6. Fourie, G., Steenkamp, E.T., Ploetz, R.C., Gordon, T.R., Viljoen, A. (2011). Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infection, Genetics and Evolution, 11(3), 533-542. [CrossRef]
- 7. Muhammad, A., Hussain, I., Khanzada, K.A., Kumar, L., Ali, M., Yasmin, T., Hyder, M.Z. (2017). Molecular characterization of Fusarium oxysporum f. sp. cubense (Foc) tropical race 4 causing Panama disease in Cavendish banana in Pakistan. Pakistan Journal of Agricultural Sciences, 54(1), 1-8.
- 8. Belhi, Z., Boulenouar, N., and Cheriti, A. (2020). The use of natural products against Fusarium oxysporum: A review. The Natural Products Journal, 10, 1-12. [CrossRef]
- 9. Bashir, M.R., Atiq, M., Sajid, M., Hussain, A., Mehmood, A. (2018). Impact of organic matter and soil types on the development of Fusarium wilt of chilli. Pakistan Journal of Agricultural Sciences, 55(4), 749-753.
- 10. Fatima, S.A., Huang, Q., Sarfaraz, Z., Luo, P. (2019). Effects of the interaction of Fusarium head blight and stripe rust on wheat yield parameters. Pakistan Journal of Agricultural Sciences, 56(2), 351-358.
- 11. Munusamy, U., Mohd-Yusuf, Y., Baharum, N.A., Zaidi, K., and Othman, R.Y. (2019). RT-qPCR profiling of pathogenesis related genes in Musa acuminata cv.'Berangan'seedlings challenged with Fusarium oxysporum f. sp. cubense tropical race 4. Pakistan Journal of Agricultural Sciences, 56(1), 37-42.
- 12. Slinkard, K., Singleton, V.L. (1977). Total phenol analysis: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55.
- 13. Sengul, M., Yildiz, H., Gungor, N., Cetin, B., Eser, Z., Ercisli, S. (2009). Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pakistan Journal of Pharmaceutical Sciences, 22(1), 102-106.
- 14. Chandra, S., Khan, S., Avula, B., Lata, H., Yang, M.H., ElSohly, M.A., Khan, I.A. (2014). Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evidence-based Complementary and Alternative Medicine, 2014(1), 253875.
- 15. Boulenouar, N., Marouf, A., Cheriti, A. (2011). Antifungal activity and phytochemical screening of extracts from Phoenix dactylifera L. cultivars. Natural Product Research, 25(20), 1999-2002. [CrossRef]
- 16. Rana, B., Singh, U., Taneja, V. (1996). A rapid method for detecting fungi-toxic substances. World Journal of Microbiology and Biotechnology, 12(3), 301-302.
- 17. Mahlo, S.M., Chauke, H.R., McGaw, L., Eloff, J. (2016). Antioxidant and antifungal activity of selected medicinal plant extracts against phytopathogenic fungi. African Journal of Traditional, Complementary and Alternative Medicines, 13(4), 216-222.
- 18. Saxena, G., Farmer, S., Towers, G., Hancock, R. (1995). Use of specific dyes in the detection of antimicrobial compounds from crude plant extracts using a thin layer chromatography agar overlay technique. Phytochemical Analysis, 6(3), 125-129. [CrossRef]
- 19. Boulenouar, N., Marouf, A., Cheriti, A. (2009). Effect of some poisonous plants extracts on Fusarium oxysporum f. sp. albedinis. Journal of Biological Sciences, 9(6), 594-600. [CrossRef]
- 20. Magaldi, S., Mata-Essayag, S., De Capriles, C.H., Perez, C., Colella, M., Olaizola, C., Ontiveros, Y. (2004). Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases, 8(1), 39-45. [CrossRef]
- 21. Ramdane, F., Essid, R., Mkadmini, K., Hammami, M., Fares, N., Mahammed, M.H., Hadj, M.D.O. (2017). Phytochemical composition and biological activities of Asteriscus graveolens (Forssk) extracts. Process Biochemistry, 56, 186-192. [CrossRef]
- 22. Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R., Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western nepal. Plants, 8(4), 96. [CrossRef]
- 23. Choma, I., Jesionek, W. (2015). TLC-direct bioautography as a high throughput method for detection of antimicrobials in plants. Chromatography, 2(2), 225-238. [CrossRef]
- 24. Kamatham, S., Kumar, N., Gudipalli, P. (2015). Isolation and characterization of gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. and their anti-proliferative effect on human epidermoid carcinoma A431 cells. Toxicology Reports, 2, 520-529. [CrossRef]
- 25. Boulenouar, N., Marouf, A., Cheriti, A., Belboukhari, N. (2012). Medicinal plants extracts as source of antifungal agents against Fusarium oxysporum f. sp. albedinis. Journal of Agricultural Science and Technology, 14, 659-669.
- 26. Ghazi, R., Boulenouar, N., Cheriti, A., Reddy, K., Govender, P. (2020). Bioguided fractionation of citrullus colocynthis extracts and antifungal activity against Fusarium oxysporum f.sp. albedinis. Current Bioactive Compounds, 16(3), 302-307. [CrossRef]
- 27. Dewanjee, S., Gangopadhyay, M., Bhattacharya, N., Khanra, R., Dua, T.K. (2015). Bioautography and its scope in the field of natural product chemistry. Journal of Pharmaceutical Analysis, 5(2), 75-84. [CrossRef]
- 28. Suleiman, M.M., McGaw, L., Naidoo, V., and Eloff, J. (2010). Detection of antimicrobial compounds by bioautography of different extracts of leaves of selected South African tree species. African Journal of Traditional, Complementary and Alternative Medicines, 7(1), 64-78.
- 29. Balouiri, M., Sadiki, M., and Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. [CrossRef]
- 30. Prieto, J.A., Patiño, O.J., Plazas, E.A., Pabón, L.C., Ávila, M.C., Guzmán, J.D., Cuca, L.E. (2013). Natural products from plants as potential source agents for controlling fusarium. Fungicides-Showcases of Integrated Plant Disease Management from Around the World. Croacia: Intech, 233-278.
- 31. El Hadrami, A., El Idrissi-Tourane, A., El Hassni, M., Daayf, F., and El Hadrami, I. (2005). Toxin-based in-vitro selection and its potential application to date palm for resistance to the bayoud Fusarium wilt. Comptes Rendus Biologies, 328(8), 732-744.
- 32. El Haci, I.A., Mazari, W., Atik-Bekkara, F., Hassani, F., Gherib, M. (2017). Assessment of the cytotoxic activity and the reduction power of Limoniastrum feei Girard (Batt.): A medicinal plant from Algerian Sahara. Oriental Pharmacy and Experimental Medicine, 17(2), 143-150.
- 33. Munari, C. (2006). Investigation phytochimique de plantes alpines: Etude d'espèces du genre Oxytropis (Fabaceae) et isolement de composés antifongiques et antiradicalaires à partir d'Oxytropis fetida (Vill.) DC., Potentilla grandiflora L. (Rosaceae) et Vaccinium uliginosum ssp., University of Geneva. Retrieved from https://nbn-resolving.org/urn:nbn:ch:unige-33548/. Accesed date: 20.02.2024.
- 34. Abou-Zaid, M.M., Lombardo, D.A., Nozzolillo, C. (2009). Methyl gallate is a natural constituent of maple (Genus Acer) leaves. Natural Product Research, 23(15), 1373-1377. [CrossRef]
- 35. Chong, K., Atong, M., Rossall, S. (2012). The role of syringic acid in the interaction between oil palm and Ganoderma boninense, the causal agent of basal stem rot. Plant Pathology, 61(5), 953-963. [CrossRef]
- 36. Chong, K.P., Rossall, S., and Atong, M. (2009). In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against Ganoderma boninense. Journal of Agricultural Science, 1(2), 15.
- 37. Vogt, T. (2010). Phenylpropanoid Biosynthesis. Molecular Plant, 3(1), 2-20. [CrossRef]
ASTERISCUS GRAVEOLENS'TEN İZOLE EDİLEN METİL GALAT VE SİRİNGİK ASİDİN FUSARIUM OXYSPORUM F. SP. ALBEDINIS’E KARŞI ANTİFUNGAL AKTİVİTESİ
Year 2024,
Volume: 48 Issue: 4-1st international Conference on Trends Methods in Analytical Chemistry (CTMAC 2023), 1303 - 1312, 25.11.2024
Zeyneb Belhi
,
Zahira Roucham
,
Noureddine Boulenouar
,
Abdelkrim Cheriti
Abstract
Amaç: Bu çalışmanın amacı, Asteriscus graveolens toprak üstü kısımları ekstresinden Fusarium oxysporum f. sp. albedinis'e (Foa) karşı antifungal aktiviteden sorumlu bileşikleri izole etmek ve tanımlamak ve Fusarium solgunluğunun kontrolü için seçilen bileşiklerin in vitro etkilerini değerlendirmektir.
Gereç ve Yöntem: Asteriscus graveolens'te fenolik bileşiklerin varlığını ortaya koyduk ve bu bileşiklerden elde edilen toprak üstü kısım ekstrelerinin antifungal aktiviteleri doğrudan biyootografi ile Fusarium oxysporum f. sp. albedinis'e (Foa) karşı misel büyümesi üzerindeki etkileri açısından araştırıldı. Antifungal bileşikler silika jel kolon kromatografisi ve ince tabaka kromatografisi kullanılarak A. graveolens ekstresinden izole edilmiştir. Antifungal bileşiklerin yapısal tanımlaması NMR (1H ve 13C) spektrofotometrisi[A1] ve LC-MS/MS[A2] kullanılarak yapılmıştır.
Sonuç ve Tartışma: İzole edilen bileşikler, spektral ve fiziksel verilerinin literatürle karşılaştırılmasına dayanarak metil gallat (MG) ve siringik asit (SA) olarak tanımlanmıştır.
References
- 1. Belhi, Z., Boulenouar, N., Cheriti, A., Marouf, A. (2020). Antifungal and anti-cellulases activity of Limoniastrum feei extracts to promote Bayoud disease treatment using bioautography. Cogent Food and Agriculture, 6(1), 1726083. [CrossRef]
- 2. Hussain, A., Aslam, B., Gilani, M.M., Khan, J.A., Anwar, M.W. (2019). Biochemical and histopathological investigations of hepatoprotective potential of Phoenix dactylifera against isoniazid induced toxicity in animal model. Pakistan Journal of Agricultural Sciences, 56(2), 489-493. [CrossRef]
- 3. El Hadrami, I., El Bellaj, M., El Idrissi, A., J'Aiti, F., El Jaafari, S., Daayf, F. (1998). Biotechnologies végétales et amélioration du palmier dattier (Phoenix dactylifera L.), pivot de l'agriculture oasienne marocaine. Cahiers Agricultures, 7(6), 463-468.
- 4. Ait Kettout, T., Rahmania, F. (2010). Identification par CG-SM de l’acide phénylacétique produit par Fusarium oxysporum f. sp. albedinis, agent causal du bayoud. Comptes Rendus Biologies, 333(11), 808-813. [CrossRef]
- 5. Thrane, U. (2014). Fusarium. In C.A. Batt and M.L. Tortorello (Eds.), Encyclopedia of Food Microbiology (Second Edition). Oxford: Academic Press, pp. 76-81.
- 6. Fourie, G., Steenkamp, E.T., Ploetz, R.C., Gordon, T.R., Viljoen, A. (2011). Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infection, Genetics and Evolution, 11(3), 533-542. [CrossRef]
- 7. Muhammad, A., Hussain, I., Khanzada, K.A., Kumar, L., Ali, M., Yasmin, T., Hyder, M.Z. (2017). Molecular characterization of Fusarium oxysporum f. sp. cubense (Foc) tropical race 4 causing Panama disease in Cavendish banana in Pakistan. Pakistan Journal of Agricultural Sciences, 54(1), 1-8.
- 8. Belhi, Z., Boulenouar, N., and Cheriti, A. (2020). The use of natural products against Fusarium oxysporum: A review. The Natural Products Journal, 10, 1-12. [CrossRef]
- 9. Bashir, M.R., Atiq, M., Sajid, M., Hussain, A., Mehmood, A. (2018). Impact of organic matter and soil types on the development of Fusarium wilt of chilli. Pakistan Journal of Agricultural Sciences, 55(4), 749-753.
- 10. Fatima, S.A., Huang, Q., Sarfaraz, Z., Luo, P. (2019). Effects of the interaction of Fusarium head blight and stripe rust on wheat yield parameters. Pakistan Journal of Agricultural Sciences, 56(2), 351-358.
- 11. Munusamy, U., Mohd-Yusuf, Y., Baharum, N.A., Zaidi, K., and Othman, R.Y. (2019). RT-qPCR profiling of pathogenesis related genes in Musa acuminata cv.'Berangan'seedlings challenged with Fusarium oxysporum f. sp. cubense tropical race 4. Pakistan Journal of Agricultural Sciences, 56(1), 37-42.
- 12. Slinkard, K., Singleton, V.L. (1977). Total phenol analysis: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55.
- 13. Sengul, M., Yildiz, H., Gungor, N., Cetin, B., Eser, Z., Ercisli, S. (2009). Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pakistan Journal of Pharmaceutical Sciences, 22(1), 102-106.
- 14. Chandra, S., Khan, S., Avula, B., Lata, H., Yang, M.H., ElSohly, M.A., Khan, I.A. (2014). Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evidence-based Complementary and Alternative Medicine, 2014(1), 253875.
- 15. Boulenouar, N., Marouf, A., Cheriti, A. (2011). Antifungal activity and phytochemical screening of extracts from Phoenix dactylifera L. cultivars. Natural Product Research, 25(20), 1999-2002. [CrossRef]
- 16. Rana, B., Singh, U., Taneja, V. (1996). A rapid method for detecting fungi-toxic substances. World Journal of Microbiology and Biotechnology, 12(3), 301-302.
- 17. Mahlo, S.M., Chauke, H.R., McGaw, L., Eloff, J. (2016). Antioxidant and antifungal activity of selected medicinal plant extracts against phytopathogenic fungi. African Journal of Traditional, Complementary and Alternative Medicines, 13(4), 216-222.
- 18. Saxena, G., Farmer, S., Towers, G., Hancock, R. (1995). Use of specific dyes in the detection of antimicrobial compounds from crude plant extracts using a thin layer chromatography agar overlay technique. Phytochemical Analysis, 6(3), 125-129. [CrossRef]
- 19. Boulenouar, N., Marouf, A., Cheriti, A. (2009). Effect of some poisonous plants extracts on Fusarium oxysporum f. sp. albedinis. Journal of Biological Sciences, 9(6), 594-600. [CrossRef]
- 20. Magaldi, S., Mata-Essayag, S., De Capriles, C.H., Perez, C., Colella, M., Olaizola, C., Ontiveros, Y. (2004). Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases, 8(1), 39-45. [CrossRef]
- 21. Ramdane, F., Essid, R., Mkadmini, K., Hammami, M., Fares, N., Mahammed, M.H., Hadj, M.D.O. (2017). Phytochemical composition and biological activities of Asteriscus graveolens (Forssk) extracts. Process Biochemistry, 56, 186-192. [CrossRef]
- 22. Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R., Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western nepal. Plants, 8(4), 96. [CrossRef]
- 23. Choma, I., Jesionek, W. (2015). TLC-direct bioautography as a high throughput method for detection of antimicrobials in plants. Chromatography, 2(2), 225-238. [CrossRef]
- 24. Kamatham, S., Kumar, N., Gudipalli, P. (2015). Isolation and characterization of gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. and their anti-proliferative effect on human epidermoid carcinoma A431 cells. Toxicology Reports, 2, 520-529. [CrossRef]
- 25. Boulenouar, N., Marouf, A., Cheriti, A., Belboukhari, N. (2012). Medicinal plants extracts as source of antifungal agents against Fusarium oxysporum f. sp. albedinis. Journal of Agricultural Science and Technology, 14, 659-669.
- 26. Ghazi, R., Boulenouar, N., Cheriti, A., Reddy, K., Govender, P. (2020). Bioguided fractionation of citrullus colocynthis extracts and antifungal activity against Fusarium oxysporum f.sp. albedinis. Current Bioactive Compounds, 16(3), 302-307. [CrossRef]
- 27. Dewanjee, S., Gangopadhyay, M., Bhattacharya, N., Khanra, R., Dua, T.K. (2015). Bioautography and its scope in the field of natural product chemistry. Journal of Pharmaceutical Analysis, 5(2), 75-84. [CrossRef]
- 28. Suleiman, M.M., McGaw, L., Naidoo, V., and Eloff, J. (2010). Detection of antimicrobial compounds by bioautography of different extracts of leaves of selected South African tree species. African Journal of Traditional, Complementary and Alternative Medicines, 7(1), 64-78.
- 29. Balouiri, M., Sadiki, M., and Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. [CrossRef]
- 30. Prieto, J.A., Patiño, O.J., Plazas, E.A., Pabón, L.C., Ávila, M.C., Guzmán, J.D., Cuca, L.E. (2013). Natural products from plants as potential source agents for controlling fusarium. Fungicides-Showcases of Integrated Plant Disease Management from Around the World. Croacia: Intech, 233-278.
- 31. El Hadrami, A., El Idrissi-Tourane, A., El Hassni, M., Daayf, F., and El Hadrami, I. (2005). Toxin-based in-vitro selection and its potential application to date palm for resistance to the bayoud Fusarium wilt. Comptes Rendus Biologies, 328(8), 732-744.
- 32. El Haci, I.A., Mazari, W., Atik-Bekkara, F., Hassani, F., Gherib, M. (2017). Assessment of the cytotoxic activity and the reduction power of Limoniastrum feei Girard (Batt.): A medicinal plant from Algerian Sahara. Oriental Pharmacy and Experimental Medicine, 17(2), 143-150.
- 33. Munari, C. (2006). Investigation phytochimique de plantes alpines: Etude d'espèces du genre Oxytropis (Fabaceae) et isolement de composés antifongiques et antiradicalaires à partir d'Oxytropis fetida (Vill.) DC., Potentilla grandiflora L. (Rosaceae) et Vaccinium uliginosum ssp., University of Geneva. Retrieved from https://nbn-resolving.org/urn:nbn:ch:unige-33548/. Accesed date: 20.02.2024.
- 34. Abou-Zaid, M.M., Lombardo, D.A., Nozzolillo, C. (2009). Methyl gallate is a natural constituent of maple (Genus Acer) leaves. Natural Product Research, 23(15), 1373-1377. [CrossRef]
- 35. Chong, K., Atong, M., Rossall, S. (2012). The role of syringic acid in the interaction between oil palm and Ganoderma boninense, the causal agent of basal stem rot. Plant Pathology, 61(5), 953-963. [CrossRef]
- 36. Chong, K.P., Rossall, S., and Atong, M. (2009). In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against Ganoderma boninense. Journal of Agricultural Science, 1(2), 15.
- 37. Vogt, T. (2010). Phenylpropanoid Biosynthesis. Molecular Plant, 3(1), 2-20. [CrossRef]