MOLECULAR ANALYSIS OF THE MCR-1 GENE IN PSEUDOMONAS AERUGINOSA AND ACINETOBACTER BAUMANII STRAINS
Year 2024,
Volume: 48 Issue: 3, 1004 - 1010, 10.09.2024
Ömer Akgül
Abstract
Objective: The emergence of antibiotic resistance in Pseudomonas aeruginosa and Acinetobacter baumanii isolates poses serious risks to public health. Our study aimed to investigate the presence of colistin resistance and mcr-1 gene positivity in these isolates.
Material and Method: Culture, biochemical tests, antibiotic susceptibility tests, and molecular tests were used to isolate and identify P. aeruginosa and A. baumanii strains.
Result and Discussion: A sum of 156 clinical isolates of Pseudomonas aeruginosa (n = 89) and Acinetobacter baumannii (n = 67) were obtained using the 550 clinical samples collected in one year from the largest hospital in Van, Turkey. The results of antibiotic susceptibility tests showed that approximately 82.8% of P. aeruginosa and 94.6% of A. baumannii strains were multidrug-resistant (MDR). Colistin resistance was detected in 11.23% (10/89) of P. aeruginosa isolates and 11.94% (8/67) of A. baumannii isolates using agar dilution and microdilution methods. Out of the 18 colistin-resistant isolates, the mcr-1 gene was detected in three P. aeruginosa and two A. baumannii strains. The detection of plasmid-mediated colistin resistance in P. aeruginosa and A. baumannii is of great concern due to the high potential for colistin resistance to spread in clinical settings. Understanding the unique circumstances of worldwide colistin resistance can be facilitated by promoting the creation of quick processes for identifying colistin resistance profiles and putting them into practice in hospital laboratories. Colistin and carbapenem treatment are two effective ways to treat emerging resistant super-microbes and slow down the emergence of resistance.
Ethical Statement
Our study was authorized by the Van Training and Research Hospital's clinical research ethics committee (decision dated 25/01/2018 and numbered 2018/02) to evaluate the accuracy of blood collection in patients.
Supporting Institution
IT WAS NOT SUPPORTED BY ANY INSTITUTION.
Thanks
I would like to thank Van Yüzüncü Yıl University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology.
References
- 1. Bialvaei, A.Z., and Samadi K.H. (2015). Colistin, mechanisms and prevalence of resistance. Current Medical Research and Opinion, 31(4), 707-721. [CrossRef]
- 2. Vogel, G. (2017) Meet WHO’s dirty dozen: The 12 bacteria for which new drugs are most urgently needed. Science. Availible from: https://www.sciencemag.org/news/2017/02/meet- ho-s-dirtydozen- 12-bacteria-which-new-drugs-are-most-urgently-needed. [CrossRef]
- 3. Willyard, C. (2017). Drug-resistant bacteria ranked. Nature, 543(7643), 15. [CrossRef]
- 4. Vincent, J.L., Rello, J., Marshall, J., Silva, E., Anzueto, A., Martin, C.D., Epic II Group of Investigators. (2009). International study of the prevalence and outcomes of infection in intensive care units. JAMA, 302(21), 2323-2329. [CrossRef]
- 5. Wright, H., Bonomo, R.A., Paterson, D.L. (2017). New agents for the treatment of infections with Gram-negative bacteria: Restoring the miracle or false dawn? Clinical Microbiology and Infection, 23(10), 704-712. [CrossRef]
- 6. Shin, B., and Park, W. (2017). Antibiotic resistance of pathogenic Acinetobacter species and emerging combination therapy. Journal of Microbiology, 55, 837-849. [CrossRef]
- 7. Henry, R., Vithanage, N., Harrison, P., Seemann, T., Coutts, S., Moffatt, J.H., Boyce, J.D. (2012). Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-β-1, 6-N-acetylglucosamine. Antimicrobial Agents and Chemotherapy, 56(1), 59-69. [CrossRef]
- 8. Zavascki, A.P., Carvalhaes, C.G., Picao, R.C., Gales, A.C. (2010). Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: Resistance mechanisms and implications for therapy. Expert Review of Anti-infective Therapy, 8(1), 71-93. [CrossRef]
- 9. Infectious Diseases Society of America (IDSA). (2011). Combating antimicrobial resistance: Policy recommendations to save lives. Clinical Infectious Diseases, 52(suppl_5), 397-428. [CrossRef]
- 10. Nation, R.L., Velkov, T., Li, J. (2014). Colistin and polymyxin B: Peas in a pod, or chalk and cheese? Clinical Infectious Diseases, 59(1), 88-94. [CrossRef]
- 11. Li, J., Rayner, C.R., Nation, R.L., Owen, R.J., Spelman, D., Tan, K.E., Liolios, L. (2006). Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 50(9), 2946-2950. [CrossRef]
- 12. Boll, J.M., Tucker, A.T., Klein, D.R., Beltran, A.M., Brodbelt, J.S., Davies, B.W., Trent, M.S. (2015). Reinforcing lipid A acylation on the cell surface of Acinetobacter baumannii promotes cationic antimicrobial peptide resistance and desiccation survival. MBio, 6(3), 1110-1128. [CrossRef]
- 13. Guo, L., Lim, K.B., Poduje, C.M., Daniel, M., Gunn, J.S., Hackett, M., Miller, S.I. (1998). Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell, 95(2), 189-198. [CrossRef]
- 14. Bishop, R.E., Gibbons, H.S., Guina, T., Trent, M.S., Miller, S.I., Raetz, C.R. (2000). Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria. The EMBO Journal, 19(19), 5071-5080. [CrossRef]
- 15. Moffatt, J.H., Harper, M., Harrison, P., Hale, J.D., Vinogradov, E., Seemann, T., Boyce, J.D. (2010). Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrobial Agents and Chemotherapy, 54(12), 4971-4977. [CrossRef]
- 16. Yu, Z., Qin, W., Lin, J., Fang, S., Qiu, J. (2015). Antibacterial mechanisms of polymyxin and bacterial resistance. Biomed Research International, 2015 (679109). [CrossRef]
- 17. Wang, X., Quinn, P.J. (2010). Lipopolysaccharide: Biosynthetic pathway and structure modification. Progress in Lipid Research, 49(2), 97-107. [CrossRef]
- 18. Olaitan, A.O., Morand, S., Rolain, J.M. (2014). Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Frontiers in Microbiology, 5, 643. [CrossRef]
- 19. Dortet, L., Potron, A., Bonnin, R.A., Plesiat, P., Naas, T., Filloux, A., Larrouy-Maumus, G. (2018). Rapid detection of colistin resistance in Acinetobacter baumannii using MALDI-TOF-based lipidomics on intact bacteria. Scientific Reports, 8(1), 16910. [CrossRef]
- 20. Hasman, H., Hammerum, A.M., Hansen, F., Hendriksen, R.S., Olesen, B., Agersø, Y., Skov, R.L. (2015). Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Eurosurveillance, 20(49), 30085. [CrossRef]
- 21. Zeng, K.J., Doi, Y., Patil, S., Huang, X., Tian, G.B. (2016). Emergence of the plasmid-mediated mcr-1 gene in colistin-resistant Enterobacter aerogenes and Enterobacter cloacae. Antimicrobial Agents and Chemotherapy, 60(6), 3862. [CrossRef]
- 22. Campos, J., Cristino, L., Peixe, L., Antunes, P. (2016). MCR-1 in multidrug-resistant and copper-tolerant clinically relevant Salmonella 1,4,[5],12:i:- and S. Rissen clones in Portugal, 2011 to 2015. Eurosurveillance, 21(26), 30270. [CrossRef]
- 23. Liu, B.T., Song, F.J., Zou, M., Hao, Z.H., Shan, H. (2017). Emergence of colistin resistance gene mcr-1 in Cronobacter sakazakii producing NDM-9 and in Escherichia coli from the same animal. Antimicrobial Agents and Chemotherapy, 61(2), 10-1128. [CrossRef]
- 24. Kieffer, N., Nordmann, P., Poirel, L. (2017). Moraxella species as potential sources of MCR-like polymyxin resistance determinants. Antimicrobial Agents and Chemotherapy, 61(6), 10-1128. [CrossRef]
- 25. Zhao, F., Zong, Z. (2016). Kluyvera ascorbata strain from hospital sewage carrying the mcr-1 colistin resistance gene. Antimicrobial Agents and Chemotherapy, 60(12), 7498-7501. [CrossRef]
- 26. Thanh, D.P., Tuyen, H.T., Nguyen, T.N.T., The, H.C., Wick, R.R., Thwaites, G.E., Holt, K.E. (2016). Inducible colistin resistance via a disrupted plasmid-borne mcr-1 gene in a 2008 Vietnamese Shigella sonnei isolate. Journal of Antimicrobial Chemotherapy, 71(8), 2314. [CrossRef]
- 27. Li, X.P., Fang, L.X., Jiang, P., Pan, D., Xia, J., Liao, X.P., Sun, J. (2017). Emergence of the colistin resistance gene mcr-1 in Citrobacter freundii. International Journal of Antimicrobial Agents, 49(6), 786-787. [CrossRef]
- 28. Wayne, P.A. (2017). Clinical and Laboratory Standards Institute. Performance Standards for 205 Antimicrobial Susceptibility Testing: 27th Informational Supplement. M100-S27. Clinical 206 and Laboratory Standards Institute.
- 29. Wiegand, I., Hilpert, K., Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163-175. [CrossRef]
- 30. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0, valid from 2016-01-01.
- 31. Feliciello, I., Chinali, G. (1993). A modified alkaline lysis method for the preparation of highly purified plasmid DNA from Escherichia coli. Analytical Biochemistry, 212(2), 394-401. [CrossRef]
- 32. Liu, B.T., Song, F.J., Zou, M., Hao, Z.H., Shan, H. (2017). Emergence of colistin resistance gene mcr-1 in Cronobacter sakazakii producing NDM-9 and in Escherichia coli from the same animal. Antimicrobial Agents and Chemotherapy, 61(2), 10-1128.
- 33. Tran, T.B., Velkov, T., Nation, R.L., Forrest, A., Tsuji, B.T., Bergen, P.J., Li, J. (2016). Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: Are we there yet? International Journal of Antimicrobial Agents, 48(6), 592-597. [CrossRef]
- 34. McPhee, J.B., Lewenza, S., Hancock, R.E. (2003). Cationic antimicrobial peptides activate a two‐component regulatory system, PmrA‐PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Molecular Microbiology, 50(1), 205-217. [CrossRef]
- 35. Behera, I.C., Swain, S.K., Chandra, M. (2017). Incidence of colistin-resistant Acinetobacter baumannii in an Indian tertiary care teaching hospital. International Journal of Applied Research, 3(12), 283-286.
- 36. Oikonomou, O., Sarrou, S., Papagiannitsis, C.C., Georgiadou, S., Mantzarlis, K., Zakynthinos, E., Petinaki, E. (2015). Rapid dissemination of colistin and carbapenem resistant Acinetobacter baumannii in Central Greece: Mechanisms of resistance, molecular identification and epidemiological data. BMC Infectious Diseases, 15, 1-6. [CrossRef]
- 37. Lescat, M., Poirel, L., Jayol, A., Nordmann, P. (2019). Performances of the rapid polymyxin Acinetobacter and Pseudomonas tests for colistin susceptibility testing. Microbial Drug Resistance, 25(4), 520-523. [CrossRef]
- 38. Snesrud, E., Maybank, R., Kwak, Y.I., Jones, A.R., Hinkle, M.K., McGann, P. (2018). Chromosomally encoded mcr-5 in colistin-nonsusceptible Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 62(8), e00679-18. [CrossRef]
- 39. Lima, W.G., Alves, M.C., Cruz, W.S., Paiva, M.C. (2018). Chromosomally encoded and plasmid-mediated polymyxins resistance in Acinetobacter baumannii: A huge public health threat. European Journal of Clinical Microbiology & Infectious Diseases, 37, 1009-1019. [CrossRef]
PSEUDOMONAS AERUGINOSA VE ACINETOBACTER BAUMANII SUŞLARINDA MCR-1 GENİNİN MOLEKÜLER ANALİZİ
Year 2024,
Volume: 48 Issue: 3, 1004 - 1010, 10.09.2024
Ömer Akgül
Abstract
Amaç: Pseudomonas aeruginosa ve Acinetobacter baumanii izolatları içerisinde birçok antibiyotiğe direnç meydana gelmesiyle birlikte halk sağlığı açısından ciddi riskler ortaya çıkmıştır. Çalışmamızın amacı bu suşlar içerisinde kolistin direnci varlığı ile mcr-1 geni pozitifliğinin araştırılmasını hedeflemektedir.
Gereç ve Yöntem: P. aeruginosa ve A. baumanii suşlarının izolasyonu ve identifikasyonu amacıyla farklı yöntemler kullanılmıştır. Bunlar sırasıyla kültür, biyokimyasal testler, antibiyotik duyarlılık testleri ve moleküler testlerdir.
Sonuç ve Tartışma: Türkiye’nin Van kentindeki en büyük hastaneden bir yılda toplanan 550 klinik örnekten tam olarak 156 klinik P. aeruginosa (n = 89) ve A. baumannii (n = 67) izolatı elde edildi. Yapılan antibiyotik duyarlılık testleri araştırma sonuçlarına göre yaklaşık %82.8 P. aeruginosa ve %94.6 A. baumannii suşlarının MDR olduğu görüldü. Agar dilüsyon ve mikro dilüsyon yöntemleri kullanılarak P. aeruginosa izolatlarının %11.23'sinde (10/89) ve A. baumannii izolatlarının %11.94'unda (8/67) kolistin direnci keşfedildi. Kolistine dirençli 18 izolat arasında mcr-1 geni, üç P. aeruginosa ve iki A. baumannii suşunda tespit edildi. P. aeruginosa ve A. baumannii'da plazmit aracılı kolistin direncinin meydana gelmesi, kolistin direncinin klinik alanlarda yayılma eğiliminin yüksek oranda olması nedeniyle oldukça önemlidir. Küresel kolistin direncinin özel durumunun anlaşılması için kolistin direnç profillerinin tespitine yönelik hızlı prosedürlerin geliştirilmesi ve bu prosedürlerin hastane laboratuvarlarında uygulanması teşvik edilmelidir. Kolistin ve karbapenemin kombinasyonu ile oluşturulacak terapinin uygulanması, direnç gelişimi sürecinin hızının azaltılmasına ve ortaya çıkan bu dirençli süper mikropların tedavisinde yardımcı olabilir.
References
- 1. Bialvaei, A.Z., and Samadi K.H. (2015). Colistin, mechanisms and prevalence of resistance. Current Medical Research and Opinion, 31(4), 707-721. [CrossRef]
- 2. Vogel, G. (2017) Meet WHO’s dirty dozen: The 12 bacteria for which new drugs are most urgently needed. Science. Availible from: https://www.sciencemag.org/news/2017/02/meet- ho-s-dirtydozen- 12-bacteria-which-new-drugs-are-most-urgently-needed. [CrossRef]
- 3. Willyard, C. (2017). Drug-resistant bacteria ranked. Nature, 543(7643), 15. [CrossRef]
- 4. Vincent, J.L., Rello, J., Marshall, J., Silva, E., Anzueto, A., Martin, C.D., Epic II Group of Investigators. (2009). International study of the prevalence and outcomes of infection in intensive care units. JAMA, 302(21), 2323-2329. [CrossRef]
- 5. Wright, H., Bonomo, R.A., Paterson, D.L. (2017). New agents for the treatment of infections with Gram-negative bacteria: Restoring the miracle or false dawn? Clinical Microbiology and Infection, 23(10), 704-712. [CrossRef]
- 6. Shin, B., and Park, W. (2017). Antibiotic resistance of pathogenic Acinetobacter species and emerging combination therapy. Journal of Microbiology, 55, 837-849. [CrossRef]
- 7. Henry, R., Vithanage, N., Harrison, P., Seemann, T., Coutts, S., Moffatt, J.H., Boyce, J.D. (2012). Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-β-1, 6-N-acetylglucosamine. Antimicrobial Agents and Chemotherapy, 56(1), 59-69. [CrossRef]
- 8. Zavascki, A.P., Carvalhaes, C.G., Picao, R.C., Gales, A.C. (2010). Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: Resistance mechanisms and implications for therapy. Expert Review of Anti-infective Therapy, 8(1), 71-93. [CrossRef]
- 9. Infectious Diseases Society of America (IDSA). (2011). Combating antimicrobial resistance: Policy recommendations to save lives. Clinical Infectious Diseases, 52(suppl_5), 397-428. [CrossRef]
- 10. Nation, R.L., Velkov, T., Li, J. (2014). Colistin and polymyxin B: Peas in a pod, or chalk and cheese? Clinical Infectious Diseases, 59(1), 88-94. [CrossRef]
- 11. Li, J., Rayner, C.R., Nation, R.L., Owen, R.J., Spelman, D., Tan, K.E., Liolios, L. (2006). Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 50(9), 2946-2950. [CrossRef]
- 12. Boll, J.M., Tucker, A.T., Klein, D.R., Beltran, A.M., Brodbelt, J.S., Davies, B.W., Trent, M.S. (2015). Reinforcing lipid A acylation on the cell surface of Acinetobacter baumannii promotes cationic antimicrobial peptide resistance and desiccation survival. MBio, 6(3), 1110-1128. [CrossRef]
- 13. Guo, L., Lim, K.B., Poduje, C.M., Daniel, M., Gunn, J.S., Hackett, M., Miller, S.I. (1998). Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell, 95(2), 189-198. [CrossRef]
- 14. Bishop, R.E., Gibbons, H.S., Guina, T., Trent, M.S., Miller, S.I., Raetz, C.R. (2000). Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria. The EMBO Journal, 19(19), 5071-5080. [CrossRef]
- 15. Moffatt, J.H., Harper, M., Harrison, P., Hale, J.D., Vinogradov, E., Seemann, T., Boyce, J.D. (2010). Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrobial Agents and Chemotherapy, 54(12), 4971-4977. [CrossRef]
- 16. Yu, Z., Qin, W., Lin, J., Fang, S., Qiu, J. (2015). Antibacterial mechanisms of polymyxin and bacterial resistance. Biomed Research International, 2015 (679109). [CrossRef]
- 17. Wang, X., Quinn, P.J. (2010). Lipopolysaccharide: Biosynthetic pathway and structure modification. Progress in Lipid Research, 49(2), 97-107. [CrossRef]
- 18. Olaitan, A.O., Morand, S., Rolain, J.M. (2014). Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Frontiers in Microbiology, 5, 643. [CrossRef]
- 19. Dortet, L., Potron, A., Bonnin, R.A., Plesiat, P., Naas, T., Filloux, A., Larrouy-Maumus, G. (2018). Rapid detection of colistin resistance in Acinetobacter baumannii using MALDI-TOF-based lipidomics on intact bacteria. Scientific Reports, 8(1), 16910. [CrossRef]
- 20. Hasman, H., Hammerum, A.M., Hansen, F., Hendriksen, R.S., Olesen, B., Agersø, Y., Skov, R.L. (2015). Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Eurosurveillance, 20(49), 30085. [CrossRef]
- 21. Zeng, K.J., Doi, Y., Patil, S., Huang, X., Tian, G.B. (2016). Emergence of the plasmid-mediated mcr-1 gene in colistin-resistant Enterobacter aerogenes and Enterobacter cloacae. Antimicrobial Agents and Chemotherapy, 60(6), 3862. [CrossRef]
- 22. Campos, J., Cristino, L., Peixe, L., Antunes, P. (2016). MCR-1 in multidrug-resistant and copper-tolerant clinically relevant Salmonella 1,4,[5],12:i:- and S. Rissen clones in Portugal, 2011 to 2015. Eurosurveillance, 21(26), 30270. [CrossRef]
- 23. Liu, B.T., Song, F.J., Zou, M., Hao, Z.H., Shan, H. (2017). Emergence of colistin resistance gene mcr-1 in Cronobacter sakazakii producing NDM-9 and in Escherichia coli from the same animal. Antimicrobial Agents and Chemotherapy, 61(2), 10-1128. [CrossRef]
- 24. Kieffer, N., Nordmann, P., Poirel, L. (2017). Moraxella species as potential sources of MCR-like polymyxin resistance determinants. Antimicrobial Agents and Chemotherapy, 61(6), 10-1128. [CrossRef]
- 25. Zhao, F., Zong, Z. (2016). Kluyvera ascorbata strain from hospital sewage carrying the mcr-1 colistin resistance gene. Antimicrobial Agents and Chemotherapy, 60(12), 7498-7501. [CrossRef]
- 26. Thanh, D.P., Tuyen, H.T., Nguyen, T.N.T., The, H.C., Wick, R.R., Thwaites, G.E., Holt, K.E. (2016). Inducible colistin resistance via a disrupted plasmid-borne mcr-1 gene in a 2008 Vietnamese Shigella sonnei isolate. Journal of Antimicrobial Chemotherapy, 71(8), 2314. [CrossRef]
- 27. Li, X.P., Fang, L.X., Jiang, P., Pan, D., Xia, J., Liao, X.P., Sun, J. (2017). Emergence of the colistin resistance gene mcr-1 in Citrobacter freundii. International Journal of Antimicrobial Agents, 49(6), 786-787. [CrossRef]
- 28. Wayne, P.A. (2017). Clinical and Laboratory Standards Institute. Performance Standards for 205 Antimicrobial Susceptibility Testing: 27th Informational Supplement. M100-S27. Clinical 206 and Laboratory Standards Institute.
- 29. Wiegand, I., Hilpert, K., Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163-175. [CrossRef]
- 30. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0, valid from 2016-01-01.
- 31. Feliciello, I., Chinali, G. (1993). A modified alkaline lysis method for the preparation of highly purified plasmid DNA from Escherichia coli. Analytical Biochemistry, 212(2), 394-401. [CrossRef]
- 32. Liu, B.T., Song, F.J., Zou, M., Hao, Z.H., Shan, H. (2017). Emergence of colistin resistance gene mcr-1 in Cronobacter sakazakii producing NDM-9 and in Escherichia coli from the same animal. Antimicrobial Agents and Chemotherapy, 61(2), 10-1128.
- 33. Tran, T.B., Velkov, T., Nation, R.L., Forrest, A., Tsuji, B.T., Bergen, P.J., Li, J. (2016). Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: Are we there yet? International Journal of Antimicrobial Agents, 48(6), 592-597. [CrossRef]
- 34. McPhee, J.B., Lewenza, S., Hancock, R.E. (2003). Cationic antimicrobial peptides activate a two‐component regulatory system, PmrA‐PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Molecular Microbiology, 50(1), 205-217. [CrossRef]
- 35. Behera, I.C., Swain, S.K., Chandra, M. (2017). Incidence of colistin-resistant Acinetobacter baumannii in an Indian tertiary care teaching hospital. International Journal of Applied Research, 3(12), 283-286.
- 36. Oikonomou, O., Sarrou, S., Papagiannitsis, C.C., Georgiadou, S., Mantzarlis, K., Zakynthinos, E., Petinaki, E. (2015). Rapid dissemination of colistin and carbapenem resistant Acinetobacter baumannii in Central Greece: Mechanisms of resistance, molecular identification and epidemiological data. BMC Infectious Diseases, 15, 1-6. [CrossRef]
- 37. Lescat, M., Poirel, L., Jayol, A., Nordmann, P. (2019). Performances of the rapid polymyxin Acinetobacter and Pseudomonas tests for colistin susceptibility testing. Microbial Drug Resistance, 25(4), 520-523. [CrossRef]
- 38. Snesrud, E., Maybank, R., Kwak, Y.I., Jones, A.R., Hinkle, M.K., McGann, P. (2018). Chromosomally encoded mcr-5 in colistin-nonsusceptible Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 62(8), e00679-18. [CrossRef]
- 39. Lima, W.G., Alves, M.C., Cruz, W.S., Paiva, M.C. (2018). Chromosomally encoded and plasmid-mediated polymyxins resistance in Acinetobacter baumannii: A huge public health threat. European Journal of Clinical Microbiology & Infectious Diseases, 37, 1009-1019. [CrossRef]