EVALUATING THE ROLE OF MELATONIN ON THYROID PHYSIOLOGY AND DISEASES
Year 2024,
Volume: 48 Issue: 3, 1281 - 1292, 10.09.2024
Özlem Öztürk Ceylan
,
Beyza Yılmaz
Sibel Süzen
Abstract
Objective: Melatonin (MLT) is largely produced within the pinealocytes from tryptophan, happening during the dark. MLT’s binding sites have been established in numerous parts of the brain but also in the cells of the immune system, gonads, kidney, and cardiovascular system. MLT may directly or indirectly affect the thyroid gland and its activities. It can also prevent thyroid cell proliferation and interfere with thyroid hormone synthesis. The underlying mechanisms need to be carefully interpreted.
Result and Discussion: In this review the typical inhibitory effects of MLT on the thyroid gland and hormone secretion, as well as its antioxidant effects and relationship with thyroid diseases is investigated.
Ethical Statement
Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz
ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun
davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak
gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir
değişiklik yapmadığımı, etik görev ve sorumluluklara riayet ettiğimi beyan ederim.
Supporting Institution
ANKARA ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ
Project Number
19L0237007 NUMARALI ANKARA ÜNİVERSİTESİ BAP PROJESİ
Thanks
Doktora çalışmalarına başlamak istediğimde, tüm sevgisi ile kucaklayan, bilgi birikimi ve tecrübeleri ile ışık tutan, her adımımda desteğini eksik etmeyen, uzun yıllar süren çalışmalarıma gösterdiği sabırdan dolayı danışman hocam Sayın Prof. Dr. Sibel Süzen’e, çalışmalarımızın temelini oluşturmamızda bize desteğini esirgemeyen tüm çalışmalarımın aydınlatılmasında A.Ü Eczacılık Fakültesi Merkez Laboratuvarı cihaz ve ekipmanları ile gece gündüz çalışan Sayın Prof. Dr. Hakan Göker’e, mikrobiyolojik çalışmalarımı gerçekleştiren Sayın Prof. Dr. Nurten Altanlar’a, deneylerimi tamamladığım Farmasötik Kimya Anabilim Dalı’nın değerli Öğretim Üyelerine, Araştırma Görevlileri ve Yüksek Lisans/ Doktora öğrencilerine, tüm çalışmalarımda bana kendiyle geçecek anne saatinden özveri de ve fedakarlıkta bulunup başarıma başarı katan ve yardım eden Sevgili Kızım İrem Ceylan’a, sabırla akademik çalışmalarıma destek veren Sevgili Eşim Selim Ceylan’a, doğduğum günden beri sevgilerini her konuda hissettiren verdiğim her kararda motive edici desteklerini esirgemeyen biricik annem ve babama, bu süreçte hayatıma dokunan tüm dostlarıma sonsuz sevgi ve saygılarımla teşekkür ederim.
References
- 1. Lerner, A.B., Case, J.D., Takahashi, Y., Lee, T.H., Mori, W. (1958). Isolation of melatonin, the pineal gland factor that lightens melanocytes. The Journal of the American Chemical Society, 80, 2587.
- 2. Shirinzadeh, H., Ince, E., Westwell, A.D., Gurer-Orhan, H., Suzen, S. (2016). Novel indole-based melatonin analogues substituted with triazole, thiadiazole and carbothioamides: Studies on their antioxidant, chemopreventive and cytotoxic activities. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6), 1312-1321. [CrossRef]
- 3. Srinivasan, V., Gobbi, G., Shillcutt, S.D., Suzen, S. (2014). Melatonin: Therapeutic value and neuroprotection, CRC Press, New York, p.573.
- 4. Reiter R.J., Tan D.X., Rosales-Corral S., Galano A., Zhou X.J., Xu B. (2018). Mitochondria: Central organelles for melatonin's antioxidant and anti-aging actions. Molecules. 23 (2), 509. [CrossRef]
- 5. Zhao, D., Yu, Y., Shen, Y., Liu, Q., Zhao, Z., Sharma, R., Reiter, R.J. (2019) Melatonin synthesis and function: Evolutionary history in animals and plants. Frontiers in Endocrinology, 10, 249. [CrossRef]
- 6. Suzen, S., Atayik, M.C., Sirinzade, H., Entezari, B., Gurer-Orhan, H., Çakatay, U. (2022) Melatonin and redox homeostasis. Melatonin Research, 5 (3), 304-324. [CrossRef]
- 7. Lee, J.G., Woo, Y.S., Park, S.W., Seog, D.H., Seo, M.K., Bahk, W.M. (2019). The neuroprotective effects of melatonin: possible role in the pathophysiology of neuropsychiatric disease. Brain Sciences. 21;9(10), 285. [CrossRef]
- 8. Ozcan-Sezer, S., Ince, E., Akdemir, A., Öztürk-Ceylan, Ö., Suzen, S., Gurer-Orhan, H. (2019). Aromatase inhibition by 2-methyl indole hydrazone derivatives evaluated via molecular docking and in vitro activity studies. Xenobiotica, 49(5), 549-556. [CrossRef]
- 9. Tan, D.X., Chen, L.D., Poeggeler, B. (1993). Melatonin: A potent, endogenous hydroxyl radical scavenger. Endocrine Journal, 1, 57– 60.
- 10. Matuszak, Z., Reszka, K., Ghignell, C.F. (1997). Reaction of melatonin and related indoles with hydroxyl radicals: Epr and spin trapping investigations. Free Radical Biology and Medicine, 23(3), 367-372.
- 11. Reiter, R.J. (1995). Functional pleiotropy of the neurohormone melatonin: antioxidant protection and neuroendocrine regulation. Frontiers in Neuroendocrinology, 16(4), 383– 415.
- 12. Prezioso, G., Giannini, C., Chiarelli, F. (2018). Effect of thyroid hormones on neurons and neurodevelopment. Hormone Research in Paediatric, 90(2), 73–81. [CrossRef]
- 13. Kader, M.A., Al-Obaidi, W., Rija, F.F., Al-Tamimi, A. (2015). Study of melatonin level and some biochemical parameters in women with thyroid disorders. Journal of King Abdulaziz University, 27(2), 7-12. [CrossRef]
- 14. Maldonado, M.D., Murillo-Cabezas, F., Terron, M.P., Flores, L.J., Tan, D.X., Manchester, L.C., Reiter, R.J. (2007). The potential of melatonin in reducing morbidity-mortality after craniocerebral trauma. Journal of Pineal Research, 42, 1–11. [CrossRef]
- 15. Cernysiov, V., Gerasimcik, N., Mauricas, M., Girkontaite, I. (2009). Regulation of T-cell-independent and T-cell-dependent antibody production by circadian rhythm and melatonin. International Immunology, 22(1), 25–34 [CrossRef]
- 16. Reiter, R.J., Tan, D.X., Korkmaz, A., Rosales-Corral, S.A. (2014). Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Human Reproduction Update, Human Reproduction Update, 20(2), 293–307. [CrossRef]
- 17. Ryabinina, A.Y., Bryk, A.A., Blagonravov, M.L., Goryachev, V.A., Mozhaev, A.A., Ovechkina, V.S. (2024). Circadian rhythms of body temperature and locomotor activity in spontaneously hypertensive rats under frequent changes in light conditions. Pathophysiology, 31(1), 127-146. [CrossRef]
- 18. Teixeira-Coelho, F., Fonseca, C.G., Vaz, F.F., Barbosa, N.H.S., Soares, D.D., Pires, W., Wanner, S.P. (2021). Physical exercise-ınduced thermoregulatory responses in trained rats: Effects of manipulating the duration and ıntensity of aerobic training sessions. Journal of Thermal Biology, 97, 102878. [CrossRef]
- 19. Cardinali, D.P., Brown, G.M., Pandi-Perumal, S.R. (2022). Melatonin's benefits and risks as a therapy for sleep disturbances in the elderly: Current insights. Nature and Science of Sleep, 14, 1843-1855. [CrossRef]
- 20. Bedrosian, T.A., Nelson, R.J. (2017). Timing of light exposure affects mood and brain circuits. Translational Psychiatry, 7(1), e1017 [CrossRef]
- 21. Li, H., Zhang, Y. (2023). Effects of physical activity and circadian rhythm differences on the mental health of college students in schools closed by COVID-19. International Journal of Environmental Research and Public Health, 20(1), 95. [CrossRef]
- 22. Tan, D.X., Reiter, R.J. (2020). An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants. The Journal of Experimental Botany, 71(16), 4677-4689. [CrossRef]
- 23. Kuzmenko, N.V., Tsyrlin, V.A., Pliss, M.G., Galagudza, M.M. (2021). Seasonal variations in levels of human thyroid-stimulating hormone and thyroid hormones: A meta-analysis. Chronobiology International, 38(3), 301-317. [CrossRef]
- 24. Luo, F., Sandhu, A.F., Rungratanawanich, W., Williams, G.E., Akbar, M., Zhou, S., Song, B.J., Wang, X. (2020). Melatonin and autophagy in aging-related neurodegenerative diseases. International Journal of Molecular Sciences, 21(19), 7174. [CrossRef]
- 25. Karaaslan, C., Suzen, S. (2015). Antioxidant properties of melatonin and its potential action in diseases. Current Topics in Medicinal Chemistry, 15(9), 894-903. [CrossRef]
- 26. Farhood, B., Goradel, N.H., Mortezaee, K., Khanlarkhani, N., Najafi, M., Sahebkar, A. (2019). Melatonin and cancer: From the promotion of genomic stability to use in cancer treatment. Journal of Cellular Physiology, 234(5), 5613–5627. [CrossRef]
- 27. Hsieh, C.T., Yen, T.L., Chen, Y.H., Jan, J.S., Teng, R.D., Yang, C.H., Sun, J.M. (2023). Aging-associated thyroid dysfunction contributes to oxidative stress and worsened functional outcomes following traumatic brain injury. Antioxidants, 12(2), 217. [CrossRef]
- 28. Garcia-Marin, R., Fernandez-Santos, J.M., Morillo-Bernal, J., Gordillo-Martinez, F., Vazquez-Roman, V., Utrilla, J.C., Carrillo-Vico, A., Guerrero, J.M., Martin-Lacave, I. (2015). Melatonin in the thyroid gland: Regulation by thyroid-stimulating hormone and role in thyroglobulin gene expression. Journal of Physiology and Pharmacology: An Official Journal of the Polish Physiological Society, 66(5), 643–652.
- 29. Liu, J., Clough, S.J., Hutchinson, A.J., Adamah-Biassi, E.B., Popovska-Gorevski, M., Dubocovich, M.L. (2016). MT 1 and MT 2 Melatonin receptors: A therapeutic perspective. Annual Review of Pharmacology and Toxicology, 56(1), 361–383. [CroosRef]
- 30. Üstündağ, H., Şentürk, E., Gül, M. (2020). Melatonin and hyperthyroidism. Archives of Basic and Clinical Research, 2(2), 59-64. [CrossRef]
- 31. Mortezaee, K., Najafi, M., Farhood, B., Ahmadi, A., Potes, Y., Shabeeb, D., Musa, A.E. (2019). Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sciences. 228, 228–241. [CrossRef]
- 32. Chaker, L., Bianco, A.C., Jonklaas, J., Peeters, R.P. (2017). Hypothyroidism. The Lancet, 390(10101), 1550–1562. [CrossRef]
- 33. Hapon, M.B., Gamarra-Luques, C., Jahn, G.A. (2010). Short term hypothyroidism affects ovarian function in the cycling rat. Reproductive Biology and Endocrinology, 8(1), 14. [CrossRef]
- 34. Andrade, M.A., Olarte, R.O. (2019). Hypothyrıidism. In: J. Khan and P.S. Hseieh (Eds.), Cellular Metabolism and Related Disorders, (p. 228). London: IntechOpen. [CrossRef]
- 35. Maganhin, C.C., Fuchs, L.F.P., Simões, R.S., Oliveira-Filho, R.M., de Jesus Simões, M., Baracat, E.C., Soares, J.M. (2013). Effects of melatonin on ovarian follicles. European Journal of Obstetrics&Gynecology and Reproductive Biology, 166(2), 178–184. [CrossRef]
- 36. Albuquerque, Y.M.L., Silva, W.E., Souza, F.A.L., Teixeira, V.W., Teixeira, Á.A.C. (2020). Melatonin on hypothyroidism and gonadal development in rats: A review. JBRA Assisted Reproduction, 24(4), 498-506 [CrossRef]
- 37. Hall, J.E. (2015). Thyroid Metabolic Hormones. In: J.E.Hall (Ed.), Guyton and Hall Textbook of Medical Physiology, (pp: 951-963).Philadelphia: Elsevier.
- 38. Zasada, K., Karbownik-Lewinska, M. (2015). Comparison of potential protective effects of melatonin and propylthiouracil against lipid peroxidation caused by nitrobenzene in the thyroid gland. Toxicology and Industrial Health, 31(12), 1195–1201. [CrossRef]
- 39. Taheri, P., Mogheiseh, A., Shojaee Tabrizi, A., Nazifi, S., Salavati, S., Koohi, F. (2019). Changes in thyroid hormones, leptin, ghrelin and, galanin following oral melatonin administration in intact and castrated dogs: A preliminary study. BMC Veterinary Research. 15(1), 145. [CrossRef]
- 40. Rao, G., Verma, R., Mukherjee, A., Haldar, C., Agrawal, N.K. (2016). Melatonin alleviates hyperthyroidism induced oxidative stress and neuronal cell death in hippocampus of aged female golden hamster, Mesocricetus auratus. Experimental Gerontology, 82, 125–130. [CrossRef]
- 41. Dardente, H., Migaud, M. (2021). Thyroid hormone and hypothalamic stem cells in seasonal functions. Vitamins and Hormones, 116, 91–131. [CrossRef]
- 42. Nanda, N. (2016). Oxidative stress in hypothyroidism. International Journal of Clinical and Experimental Physiology, 3(1), 4-9 [CrossRef]
- 43. Shankar Singh, S., Laskar, P., Deb, A., Sutradhar, S. (2022). Melatonin modulates hypophyseal-thyroid function through differential activation of MT1 and MT2 receptors in hypothyroid mice. In: I.K. Athanassiou (Ed.), Hypothyroidism - New Aspects of an Old Disease, (p.178). London: IntechOpen. [CrossRef]
- 44. Tomer, Y., Davies, T.F. (2003). Searching for the autoimmune thyroid disease susceptibility genes: From gene mapping to gene function. Endocrine Reviews, 24(5), 694–717. [CrossRef]
- 45. Nucera, C., Muzzi, P., Tiveron, C., Farsetti, A., Regina, F., Foglio, B., Shih, S., Moretti, F., Pietra, L., Mancini, F., Sacchi, A., Trimarchi, F., Vercelli, A., Pontecorvi, A. (2010). Maternal thyroid hormones are transcriptionally active during embryo–foetal development: results from a novel transgenic mouse model. Journal of Cellular and Molecular Medicine, 14(10), 2417–2435. [CrossRef]
- 46. Poppe, K. (2021). Management of endocrine disease: thyroid and female infertility: More questions than answers. European Journal of Endocrinology, 184(4), R123–R135. [CrossRef]
- 47. Bucci, I., Giuliani, C., Di Dalmazi, G., Formoso, G., Napolitano, G. (2022). Thyroid autoimmunity in female infertility and assisted reproductive technology outcome. Frontiers in Endocrinology, 13, 768363. [CrossRef]
- 48. Ghosh, H., Rai, S., Manzar, M.D., Pandi-Perumal, S.R., Brown, G.M., Reiter, R.J., Cardinali, D.P. (2022). Differential expression and interaction of melatonin and thyroid hormone receptors with estrogen receptor α improve ovarian functions in letrozole-induced rat polycystic ovary syndrome. Life Sciences, 295, 120086. [CrossRef]
- 49. Aci, R., Ciftci, G., Yigit, S., Sezer, O., Keskin, A. (2023). Clock 3111 T/C and Period3 VNTR gene polymorphisms and proteins, and melatonin levels in women with infertility. Journal of Assisted Reproduction and Genetics, 40(5), 1109–1116. [CrossRef]
- 50. de Albuquerque, Y.M.L., Ferreira, C.G.M., D´assunção, C.G., Baptista, M.G.P., Alves, R.C., Wanderley Teixeira, V., Teixeira, Á.A.C. (2020). Effect of melatonin on gonad and thyroid development of offspring of hypothyroid pregnant rats. Biotechnic & Histochemistry, 95(7), 522–531. [CrossRef]
- 51. Hidayat, M., Chaudhry, S., Salman, S., Lone, K.P. (2019). Melatonin prevents apoptosis in brains of neonates induced by maternal hypothyroidism. Journal of Ayub Medical College, 31(4), 580–585.
- 52. Lim, C.T., Khoo, B. (2000). Normal physiology of ACTH and GH release in the hypothalamus and anterior pituitary in man, MDText.com, Retrieved May 11,2024, from www.endotext.org
- 53. Ejaz, H., Figaro, J.K., Woolner, A.M.F., Thottakam, B.M., Galley, H.F. (2021). Maternal serum melatonin increases during pregnancy and falls immediately after delivery implicating the placenta as a major source of melatonin. Frontiers in Endocrinology, 11, 623038. [CrossRef]
- 54. Jia, H., Sun, W., Li, X., Xu, W. (2022). Melatonin promotes apoptosis of thyroid cancer cells via regulating the signaling of microRNA-21 (miR-21) and microRNA-30e (miR-30e). Bioengineered, 13(4), 9588–9601. [CrossRef]
- 55. Gurunathan, S., Qasim, M., Kang, M.H., Kim, J.H. (2021). Role and therapeutic potential of melatonin in various type of cancers. OncoTargets and Therapy, 14, 2019–2052. [CrossRef]
- 56. Zou, Z.W., Liu, T., Li, Y., Chen, P., Peng, X., Ma, C., Zhang, W.J., Li, P.D. (2018). Melatonin suppresses thyroid cancer growth and overcomes radioresistance via inhibition of p65 phosphorylation and induction of ROS. Redox Biology, 16, 226–236. [CrossRef]
- 57. Monteiro, K.K.A.C., Shiroma, M.E., Damous, L.L., Simões, M.d.J., Simões, R.d.S., Cipolla-Neto, J., Baracat, E.C., Soares-Jr, J.M. (2024). Antioxidant actions of melatonin: A systematic review of animal studies. Antioxidants, 13, 439. [CrossRef]
- 58. Reiter, R.J., Mayo, J.C., Tan, D.X., Sainz, R.M., Alatorre-Jimenez, M., Qin, L. (2016). Melatonin as an antioxidant: Under promises but over delivers. Journal of Pineal Research, 61(3), 253-78. [CrossRef]
- 59. Alqasim, A.A., Noureldin, E.E.M., Hammadi, S.H., Esheba, G.E. (2017). Effect of melatonin versus vitamin D as antioxidant and Hepatoprotective agents in STZ-induced diabetic rats. Journal of Diabetes Metabolic Disorders, 16(1), 41. [CrossRef]
- 60. Johns, J.R., Platts, J.A. (2014). Theoretical insight into the antioxidant properties of melatonin and derivatives. Organic and Biomolecular Chemistry, 12(39), 7820-7827. [CrossRef]
- 61. Merhan, O. (2022). Biochemistry and Antioxidant Effects of Melatonin. In: V. Gelen, E. Şengül and A. Kükürt (Eds.), Melatonin- Recent Updates (p.142). London: IntechOpen. [CrossRef]
- 62. Ghorbani-Anarkooli, M., Dabirian, S., Zendedel, A., Moladoust, H., Bahadori, M. (2021). Effects of melatonin on the toxicity and proliferation of human anaplastic thyroid cancer cell line. Acta Histochemica, 123(3), 151700. [CrossRef]
- 63. Aras, S., Tanzer, İ.O., Karaçavuş, S., Sayir, N., Erdem, E., Hacımustafaoğlu, F., Erdoğan, C.E., Sapmaz, T., İkizcel, T., Pençe, H.H., Baydili, K.N., Katmer, T. (2023). Effect of melatonin on low and high dose radiotherapy induced thyroid injury. Biotechnic Histochemistry, 98(5), 346–352. [CrossRef]
- 64. Shang, X., Zhong, X., Tian, X. (2016). Metabolomics of papillary thyroid carcinoma tissues: Potential biomarkers for diagnosis and promising targets for therapy. Tumour Biology, 37(8), 11163-11175. [CrossRef]
- 65. Stępniak, J., Karbownik-Lewińska, M. (2024). Protective effects of melatonin against carcinogen-ınduced oxidative damage in the thyroid. Cancers, 16(9), 1646. [CrossRef]
- 66. Iwan, P., Stepniak, J., Karbownik-Lewinska, M. (2021). Pro-oxidative effect of KIO3 and protective effect of melatonin in the thyroid—comparison to other tissues. Life, 11(6), 592. [CrossRef]
- 67. Iwan P, Stepniak J, Karbownik-Lewinska M. (2021). Cumulative protective effect of melatonin and indole-3-propionic acid against KIO3—induced lipid peroxidation in porcine thyroid. Toxics, 9(5), 89. [CrossRef]
- 68. Ho, A.S., Luu, M., Barrios, L., Chen, I., Melany, M., Ali, N., Patio, C., Chen, Y., Bose, S., Fan, X., Mallen-St Clair, J., Braunstein, G.D., Sacks, W.L., Zumsteg, Z.S. (2020). Incidence and mortality risk spectrum across aggressive variants of papillary thyroid carcinoma. JAMA Oncology, 6(5), 706. [CrossRef]
- 69. Ikegami, K., Refetoff, S., van Cauter, E., Yoshimura, T. (2019). Interconnection between circadian clocks and thyroid function. Nature Reviews Endocrinology, 15(10), 590–600. [CrossRef]
- 70. Luo, J., Sands, M., Wactawski-Wende, J., Song, Y., Margolis, K.L. (2013). Sleep disturbance and incidence of thyroid cancer in postmenopausal women the women’s health initiative. American Journal of Epidemiology, 177(1), 42–49. [CrossRef]
- 71. Mannic, T., Meyer, P., Triponez, F., Pusztaszeri, M., le Martelot, G., Mariani, O., Schmitter, D., Sage, D., Philippe, J., Dibner, C. (2013). Circadian clock characteristics are altered in human thyroid malignant nodules. The Journal of Clinical Endocrinology & Metabolism, 98(11), 4446–4456. [CrossRef]
- 72. Zhang, D., Jones, R.R., James, P., Kitahara, C.M., Xiao, Q. (2021). Associations between artificial light at night and risk for thyroid cancer: A large US cohort study. Cancer, 127(9), 1448–1458. [CrossRef]
- 73. Liao, Y., Gao, Y., Chang, A., Li, Z., Wang, H., Cao, J., Gu, W., Tang, R. (2020). Melatonin synergizes BRAF‐targeting agent dabrafenib for the treatment of anaplastic thyroid cancer by inhibiting AKT/hTERT signalling. Journal of Cellular and Molecular Medicine, 24(20), 12119–12130. [CrossRef]
- 74. Huang, A., Sanches, D. (2023). Abstract 4853: Evaluating the role of melatonin in thyroid cancer cell (MDA-T41) apoptosis and metabolism modulation. Cancer Research, 83(7), 4853–4853. [CrossRef]
- 75. Zou, Z.W., Liu, T., Li, Y., Chen, P., Peng, X., Ma, C., Zhang, W.J., Li, P.D. (2018). Melatonin suppresses thyroid cancer growth and overcomes radioresistance via inhibition of p65 phosphorylation and induction of ROS. Redox Biology, 16, 226-236. [CrossRef]
- 76. Baltaci, A.K., Mogulkoc, R., Kul, A., Bediz, C.S., Ugur, A. (2004). Opposite effects of zinc and melatonin on thyroid hormones in rats. Toxicology, 195(1), 69–75. [CrossRef]
- 77. Reiter, R., Tan, D., Rosales-Corral, S., Galano, A., Zhou, X., Xu, B. (2018), Mitochondria: Central organelles for melatonin′s antioxidant and anti-aging actions. Molecules, 23(2), 509. [CrossRef]
- 78. Stępniak, J., Rynkowska, A., Karbownik-Lewińska, M. (2022). Membrane lipids in the thyroid comparing to those in non-endocrine tissues are less sensitive to pro-oxidative effects of fenton reaction substrates. Frontiers in Molecular Biosciences, 9, 901062. [CrossRef]
- 79. Zhao, D., Yu, Y., Shen, Y., Liu, Q., Zhao, Z., Sharma, R., Reiter, R.J. (2019). Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Frontiers in Endocrinology, 10, 249. [CrossRef]
MELATONİNİN TİROİD FİZYOLOJİ VE HASTALIKLARI ÜZERİNDEKİ ROLÜNÜN DEĞERLENDİRİLMESİ
Year 2024,
Volume: 48 Issue: 3, 1281 - 1292, 10.09.2024
Özlem Öztürk Ceylan
,
Beyza Yılmaz
Sibel Süzen
Abstract
Amaç: Melatonin (MLT) büyük ölçüde triptofandan pinealositler içinde üretilir. Karanlıkta serotonin-N-asetiltransferaz aktivitesinde büyük bir artış olduğunda gerçekleşir ve serotoninin N-asetilserotonine dönüşmesine neden olur. MLT'nin bağlanma bölgeleri beynin birçok yerinde ve aynı zamanda bağışıklık sistemi, gonadlar, böbrek ve kardiyovasküler sistem hücrelerinde tespit edilmiştir. MLT, MT1 ve MT2 membran reseptörleri aracılığıyla birçok farmakolojik ve fizyolojik aktiviteyi etkiler. Ayrıca, reseptör aracılı olmayan etkileri ile antioksidan aktivite gösterir. MLT doğrudan veya dolaylı olarak tiroid bezini ve faaliyetlerini etkileyebilir. Altta yatan mekanizmaların dikkatle yorumlanması gerekmektedir.
Sonuç ve Tartışma: Bu derlemede, MLT'nin tiroid bezi ve hormon salgısı üzerindeki tipik inhibitör etkilerinin yanı sıra antioksidan etkileri ve tiroid hastalıkları ile ilişkisi incelenmiştir.
Project Number
19L0237007 NUMARALI ANKARA ÜNİVERSİTESİ BAP PROJESİ
References
- 1. Lerner, A.B., Case, J.D., Takahashi, Y., Lee, T.H., Mori, W. (1958). Isolation of melatonin, the pineal gland factor that lightens melanocytes. The Journal of the American Chemical Society, 80, 2587.
- 2. Shirinzadeh, H., Ince, E., Westwell, A.D., Gurer-Orhan, H., Suzen, S. (2016). Novel indole-based melatonin analogues substituted with triazole, thiadiazole and carbothioamides: Studies on their antioxidant, chemopreventive and cytotoxic activities. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6), 1312-1321. [CrossRef]
- 3. Srinivasan, V., Gobbi, G., Shillcutt, S.D., Suzen, S. (2014). Melatonin: Therapeutic value and neuroprotection, CRC Press, New York, p.573.
- 4. Reiter R.J., Tan D.X., Rosales-Corral S., Galano A., Zhou X.J., Xu B. (2018). Mitochondria: Central organelles for melatonin's antioxidant and anti-aging actions. Molecules. 23 (2), 509. [CrossRef]
- 5. Zhao, D., Yu, Y., Shen, Y., Liu, Q., Zhao, Z., Sharma, R., Reiter, R.J. (2019) Melatonin synthesis and function: Evolutionary history in animals and plants. Frontiers in Endocrinology, 10, 249. [CrossRef]
- 6. Suzen, S., Atayik, M.C., Sirinzade, H., Entezari, B., Gurer-Orhan, H., Çakatay, U. (2022) Melatonin and redox homeostasis. Melatonin Research, 5 (3), 304-324. [CrossRef]
- 7. Lee, J.G., Woo, Y.S., Park, S.W., Seog, D.H., Seo, M.K., Bahk, W.M. (2019). The neuroprotective effects of melatonin: possible role in the pathophysiology of neuropsychiatric disease. Brain Sciences. 21;9(10), 285. [CrossRef]
- 8. Ozcan-Sezer, S., Ince, E., Akdemir, A., Öztürk-Ceylan, Ö., Suzen, S., Gurer-Orhan, H. (2019). Aromatase inhibition by 2-methyl indole hydrazone derivatives evaluated via molecular docking and in vitro activity studies. Xenobiotica, 49(5), 549-556. [CrossRef]
- 9. Tan, D.X., Chen, L.D., Poeggeler, B. (1993). Melatonin: A potent, endogenous hydroxyl radical scavenger. Endocrine Journal, 1, 57– 60.
- 10. Matuszak, Z., Reszka, K., Ghignell, C.F. (1997). Reaction of melatonin and related indoles with hydroxyl radicals: Epr and spin trapping investigations. Free Radical Biology and Medicine, 23(3), 367-372.
- 11. Reiter, R.J. (1995). Functional pleiotropy of the neurohormone melatonin: antioxidant protection and neuroendocrine regulation. Frontiers in Neuroendocrinology, 16(4), 383– 415.
- 12. Prezioso, G., Giannini, C., Chiarelli, F. (2018). Effect of thyroid hormones on neurons and neurodevelopment. Hormone Research in Paediatric, 90(2), 73–81. [CrossRef]
- 13. Kader, M.A., Al-Obaidi, W., Rija, F.F., Al-Tamimi, A. (2015). Study of melatonin level and some biochemical parameters in women with thyroid disorders. Journal of King Abdulaziz University, 27(2), 7-12. [CrossRef]
- 14. Maldonado, M.D., Murillo-Cabezas, F., Terron, M.P., Flores, L.J., Tan, D.X., Manchester, L.C., Reiter, R.J. (2007). The potential of melatonin in reducing morbidity-mortality after craniocerebral trauma. Journal of Pineal Research, 42, 1–11. [CrossRef]
- 15. Cernysiov, V., Gerasimcik, N., Mauricas, M., Girkontaite, I. (2009). Regulation of T-cell-independent and T-cell-dependent antibody production by circadian rhythm and melatonin. International Immunology, 22(1), 25–34 [CrossRef]
- 16. Reiter, R.J., Tan, D.X., Korkmaz, A., Rosales-Corral, S.A. (2014). Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Human Reproduction Update, Human Reproduction Update, 20(2), 293–307. [CrossRef]
- 17. Ryabinina, A.Y., Bryk, A.A., Blagonravov, M.L., Goryachev, V.A., Mozhaev, A.A., Ovechkina, V.S. (2024). Circadian rhythms of body temperature and locomotor activity in spontaneously hypertensive rats under frequent changes in light conditions. Pathophysiology, 31(1), 127-146. [CrossRef]
- 18. Teixeira-Coelho, F., Fonseca, C.G., Vaz, F.F., Barbosa, N.H.S., Soares, D.D., Pires, W., Wanner, S.P. (2021). Physical exercise-ınduced thermoregulatory responses in trained rats: Effects of manipulating the duration and ıntensity of aerobic training sessions. Journal of Thermal Biology, 97, 102878. [CrossRef]
- 19. Cardinali, D.P., Brown, G.M., Pandi-Perumal, S.R. (2022). Melatonin's benefits and risks as a therapy for sleep disturbances in the elderly: Current insights. Nature and Science of Sleep, 14, 1843-1855. [CrossRef]
- 20. Bedrosian, T.A., Nelson, R.J. (2017). Timing of light exposure affects mood and brain circuits. Translational Psychiatry, 7(1), e1017 [CrossRef]
- 21. Li, H., Zhang, Y. (2023). Effects of physical activity and circadian rhythm differences on the mental health of college students in schools closed by COVID-19. International Journal of Environmental Research and Public Health, 20(1), 95. [CrossRef]
- 22. Tan, D.X., Reiter, R.J. (2020). An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants. The Journal of Experimental Botany, 71(16), 4677-4689. [CrossRef]
- 23. Kuzmenko, N.V., Tsyrlin, V.A., Pliss, M.G., Galagudza, M.M. (2021). Seasonal variations in levels of human thyroid-stimulating hormone and thyroid hormones: A meta-analysis. Chronobiology International, 38(3), 301-317. [CrossRef]
- 24. Luo, F., Sandhu, A.F., Rungratanawanich, W., Williams, G.E., Akbar, M., Zhou, S., Song, B.J., Wang, X. (2020). Melatonin and autophagy in aging-related neurodegenerative diseases. International Journal of Molecular Sciences, 21(19), 7174. [CrossRef]
- 25. Karaaslan, C., Suzen, S. (2015). Antioxidant properties of melatonin and its potential action in diseases. Current Topics in Medicinal Chemistry, 15(9), 894-903. [CrossRef]
- 26. Farhood, B., Goradel, N.H., Mortezaee, K., Khanlarkhani, N., Najafi, M., Sahebkar, A. (2019). Melatonin and cancer: From the promotion of genomic stability to use in cancer treatment. Journal of Cellular Physiology, 234(5), 5613–5627. [CrossRef]
- 27. Hsieh, C.T., Yen, T.L., Chen, Y.H., Jan, J.S., Teng, R.D., Yang, C.H., Sun, J.M. (2023). Aging-associated thyroid dysfunction contributes to oxidative stress and worsened functional outcomes following traumatic brain injury. Antioxidants, 12(2), 217. [CrossRef]
- 28. Garcia-Marin, R., Fernandez-Santos, J.M., Morillo-Bernal, J., Gordillo-Martinez, F., Vazquez-Roman, V., Utrilla, J.C., Carrillo-Vico, A., Guerrero, J.M., Martin-Lacave, I. (2015). Melatonin in the thyroid gland: Regulation by thyroid-stimulating hormone and role in thyroglobulin gene expression. Journal of Physiology and Pharmacology: An Official Journal of the Polish Physiological Society, 66(5), 643–652.
- 29. Liu, J., Clough, S.J., Hutchinson, A.J., Adamah-Biassi, E.B., Popovska-Gorevski, M., Dubocovich, M.L. (2016). MT 1 and MT 2 Melatonin receptors: A therapeutic perspective. Annual Review of Pharmacology and Toxicology, 56(1), 361–383. [CroosRef]
- 30. Üstündağ, H., Şentürk, E., Gül, M. (2020). Melatonin and hyperthyroidism. Archives of Basic and Clinical Research, 2(2), 59-64. [CrossRef]
- 31. Mortezaee, K., Najafi, M., Farhood, B., Ahmadi, A., Potes, Y., Shabeeb, D., Musa, A.E. (2019). Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sciences. 228, 228–241. [CrossRef]
- 32. Chaker, L., Bianco, A.C., Jonklaas, J., Peeters, R.P. (2017). Hypothyroidism. The Lancet, 390(10101), 1550–1562. [CrossRef]
- 33. Hapon, M.B., Gamarra-Luques, C., Jahn, G.A. (2010). Short term hypothyroidism affects ovarian function in the cycling rat. Reproductive Biology and Endocrinology, 8(1), 14. [CrossRef]
- 34. Andrade, M.A., Olarte, R.O. (2019). Hypothyrıidism. In: J. Khan and P.S. Hseieh (Eds.), Cellular Metabolism and Related Disorders, (p. 228). London: IntechOpen. [CrossRef]
- 35. Maganhin, C.C., Fuchs, L.F.P., Simões, R.S., Oliveira-Filho, R.M., de Jesus Simões, M., Baracat, E.C., Soares, J.M. (2013). Effects of melatonin on ovarian follicles. European Journal of Obstetrics&Gynecology and Reproductive Biology, 166(2), 178–184. [CrossRef]
- 36. Albuquerque, Y.M.L., Silva, W.E., Souza, F.A.L., Teixeira, V.W., Teixeira, Á.A.C. (2020). Melatonin on hypothyroidism and gonadal development in rats: A review. JBRA Assisted Reproduction, 24(4), 498-506 [CrossRef]
- 37. Hall, J.E. (2015). Thyroid Metabolic Hormones. In: J.E.Hall (Ed.), Guyton and Hall Textbook of Medical Physiology, (pp: 951-963).Philadelphia: Elsevier.
- 38. Zasada, K., Karbownik-Lewinska, M. (2015). Comparison of potential protective effects of melatonin and propylthiouracil against lipid peroxidation caused by nitrobenzene in the thyroid gland. Toxicology and Industrial Health, 31(12), 1195–1201. [CrossRef]
- 39. Taheri, P., Mogheiseh, A., Shojaee Tabrizi, A., Nazifi, S., Salavati, S., Koohi, F. (2019). Changes in thyroid hormones, leptin, ghrelin and, galanin following oral melatonin administration in intact and castrated dogs: A preliminary study. BMC Veterinary Research. 15(1), 145. [CrossRef]
- 40. Rao, G., Verma, R., Mukherjee, A., Haldar, C., Agrawal, N.K. (2016). Melatonin alleviates hyperthyroidism induced oxidative stress and neuronal cell death in hippocampus of aged female golden hamster, Mesocricetus auratus. Experimental Gerontology, 82, 125–130. [CrossRef]
- 41. Dardente, H., Migaud, M. (2021). Thyroid hormone and hypothalamic stem cells in seasonal functions. Vitamins and Hormones, 116, 91–131. [CrossRef]
- 42. Nanda, N. (2016). Oxidative stress in hypothyroidism. International Journal of Clinical and Experimental Physiology, 3(1), 4-9 [CrossRef]
- 43. Shankar Singh, S., Laskar, P., Deb, A., Sutradhar, S. (2022). Melatonin modulates hypophyseal-thyroid function through differential activation of MT1 and MT2 receptors in hypothyroid mice. In: I.K. Athanassiou (Ed.), Hypothyroidism - New Aspects of an Old Disease, (p.178). London: IntechOpen. [CrossRef]
- 44. Tomer, Y., Davies, T.F. (2003). Searching for the autoimmune thyroid disease susceptibility genes: From gene mapping to gene function. Endocrine Reviews, 24(5), 694–717. [CrossRef]
- 45. Nucera, C., Muzzi, P., Tiveron, C., Farsetti, A., Regina, F., Foglio, B., Shih, S., Moretti, F., Pietra, L., Mancini, F., Sacchi, A., Trimarchi, F., Vercelli, A., Pontecorvi, A. (2010). Maternal thyroid hormones are transcriptionally active during embryo–foetal development: results from a novel transgenic mouse model. Journal of Cellular and Molecular Medicine, 14(10), 2417–2435. [CrossRef]
- 46. Poppe, K. (2021). Management of endocrine disease: thyroid and female infertility: More questions than answers. European Journal of Endocrinology, 184(4), R123–R135. [CrossRef]
- 47. Bucci, I., Giuliani, C., Di Dalmazi, G., Formoso, G., Napolitano, G. (2022). Thyroid autoimmunity in female infertility and assisted reproductive technology outcome. Frontiers in Endocrinology, 13, 768363. [CrossRef]
- 48. Ghosh, H., Rai, S., Manzar, M.D., Pandi-Perumal, S.R., Brown, G.M., Reiter, R.J., Cardinali, D.P. (2022). Differential expression and interaction of melatonin and thyroid hormone receptors with estrogen receptor α improve ovarian functions in letrozole-induced rat polycystic ovary syndrome. Life Sciences, 295, 120086. [CrossRef]
- 49. Aci, R., Ciftci, G., Yigit, S., Sezer, O., Keskin, A. (2023). Clock 3111 T/C and Period3 VNTR gene polymorphisms and proteins, and melatonin levels in women with infertility. Journal of Assisted Reproduction and Genetics, 40(5), 1109–1116. [CrossRef]
- 50. de Albuquerque, Y.M.L., Ferreira, C.G.M., D´assunção, C.G., Baptista, M.G.P., Alves, R.C., Wanderley Teixeira, V., Teixeira, Á.A.C. (2020). Effect of melatonin on gonad and thyroid development of offspring of hypothyroid pregnant rats. Biotechnic & Histochemistry, 95(7), 522–531. [CrossRef]
- 51. Hidayat, M., Chaudhry, S., Salman, S., Lone, K.P. (2019). Melatonin prevents apoptosis in brains of neonates induced by maternal hypothyroidism. Journal of Ayub Medical College, 31(4), 580–585.
- 52. Lim, C.T., Khoo, B. (2000). Normal physiology of ACTH and GH release in the hypothalamus and anterior pituitary in man, MDText.com, Retrieved May 11,2024, from www.endotext.org
- 53. Ejaz, H., Figaro, J.K., Woolner, A.M.F., Thottakam, B.M., Galley, H.F. (2021). Maternal serum melatonin increases during pregnancy and falls immediately after delivery implicating the placenta as a major source of melatonin. Frontiers in Endocrinology, 11, 623038. [CrossRef]
- 54. Jia, H., Sun, W., Li, X., Xu, W. (2022). Melatonin promotes apoptosis of thyroid cancer cells via regulating the signaling of microRNA-21 (miR-21) and microRNA-30e (miR-30e). Bioengineered, 13(4), 9588–9601. [CrossRef]
- 55. Gurunathan, S., Qasim, M., Kang, M.H., Kim, J.H. (2021). Role and therapeutic potential of melatonin in various type of cancers. OncoTargets and Therapy, 14, 2019–2052. [CrossRef]
- 56. Zou, Z.W., Liu, T., Li, Y., Chen, P., Peng, X., Ma, C., Zhang, W.J., Li, P.D. (2018). Melatonin suppresses thyroid cancer growth and overcomes radioresistance via inhibition of p65 phosphorylation and induction of ROS. Redox Biology, 16, 226–236. [CrossRef]
- 57. Monteiro, K.K.A.C., Shiroma, M.E., Damous, L.L., Simões, M.d.J., Simões, R.d.S., Cipolla-Neto, J., Baracat, E.C., Soares-Jr, J.M. (2024). Antioxidant actions of melatonin: A systematic review of animal studies. Antioxidants, 13, 439. [CrossRef]
- 58. Reiter, R.J., Mayo, J.C., Tan, D.X., Sainz, R.M., Alatorre-Jimenez, M., Qin, L. (2016). Melatonin as an antioxidant: Under promises but over delivers. Journal of Pineal Research, 61(3), 253-78. [CrossRef]
- 59. Alqasim, A.A., Noureldin, E.E.M., Hammadi, S.H., Esheba, G.E. (2017). Effect of melatonin versus vitamin D as antioxidant and Hepatoprotective agents in STZ-induced diabetic rats. Journal of Diabetes Metabolic Disorders, 16(1), 41. [CrossRef]
- 60. Johns, J.R., Platts, J.A. (2014). Theoretical insight into the antioxidant properties of melatonin and derivatives. Organic and Biomolecular Chemistry, 12(39), 7820-7827. [CrossRef]
- 61. Merhan, O. (2022). Biochemistry and Antioxidant Effects of Melatonin. In: V. Gelen, E. Şengül and A. Kükürt (Eds.), Melatonin- Recent Updates (p.142). London: IntechOpen. [CrossRef]
- 62. Ghorbani-Anarkooli, M., Dabirian, S., Zendedel, A., Moladoust, H., Bahadori, M. (2021). Effects of melatonin on the toxicity and proliferation of human anaplastic thyroid cancer cell line. Acta Histochemica, 123(3), 151700. [CrossRef]
- 63. Aras, S., Tanzer, İ.O., Karaçavuş, S., Sayir, N., Erdem, E., Hacımustafaoğlu, F., Erdoğan, C.E., Sapmaz, T., İkizcel, T., Pençe, H.H., Baydili, K.N., Katmer, T. (2023). Effect of melatonin on low and high dose radiotherapy induced thyroid injury. Biotechnic Histochemistry, 98(5), 346–352. [CrossRef]
- 64. Shang, X., Zhong, X., Tian, X. (2016). Metabolomics of papillary thyroid carcinoma tissues: Potential biomarkers for diagnosis and promising targets for therapy. Tumour Biology, 37(8), 11163-11175. [CrossRef]
- 65. Stępniak, J., Karbownik-Lewińska, M. (2024). Protective effects of melatonin against carcinogen-ınduced oxidative damage in the thyroid. Cancers, 16(9), 1646. [CrossRef]
- 66. Iwan, P., Stepniak, J., Karbownik-Lewinska, M. (2021). Pro-oxidative effect of KIO3 and protective effect of melatonin in the thyroid—comparison to other tissues. Life, 11(6), 592. [CrossRef]
- 67. Iwan P, Stepniak J, Karbownik-Lewinska M. (2021). Cumulative protective effect of melatonin and indole-3-propionic acid against KIO3—induced lipid peroxidation in porcine thyroid. Toxics, 9(5), 89. [CrossRef]
- 68. Ho, A.S., Luu, M., Barrios, L., Chen, I., Melany, M., Ali, N., Patio, C., Chen, Y., Bose, S., Fan, X., Mallen-St Clair, J., Braunstein, G.D., Sacks, W.L., Zumsteg, Z.S. (2020). Incidence and mortality risk spectrum across aggressive variants of papillary thyroid carcinoma. JAMA Oncology, 6(5), 706. [CrossRef]
- 69. Ikegami, K., Refetoff, S., van Cauter, E., Yoshimura, T. (2019). Interconnection between circadian clocks and thyroid function. Nature Reviews Endocrinology, 15(10), 590–600. [CrossRef]
- 70. Luo, J., Sands, M., Wactawski-Wende, J., Song, Y., Margolis, K.L. (2013). Sleep disturbance and incidence of thyroid cancer in postmenopausal women the women’s health initiative. American Journal of Epidemiology, 177(1), 42–49. [CrossRef]
- 71. Mannic, T., Meyer, P., Triponez, F., Pusztaszeri, M., le Martelot, G., Mariani, O., Schmitter, D., Sage, D., Philippe, J., Dibner, C. (2013). Circadian clock characteristics are altered in human thyroid malignant nodules. The Journal of Clinical Endocrinology & Metabolism, 98(11), 4446–4456. [CrossRef]
- 72. Zhang, D., Jones, R.R., James, P., Kitahara, C.M., Xiao, Q. (2021). Associations between artificial light at night and risk for thyroid cancer: A large US cohort study. Cancer, 127(9), 1448–1458. [CrossRef]
- 73. Liao, Y., Gao, Y., Chang, A., Li, Z., Wang, H., Cao, J., Gu, W., Tang, R. (2020). Melatonin synergizes BRAF‐targeting agent dabrafenib for the treatment of anaplastic thyroid cancer by inhibiting AKT/hTERT signalling. Journal of Cellular and Molecular Medicine, 24(20), 12119–12130. [CrossRef]
- 74. Huang, A., Sanches, D. (2023). Abstract 4853: Evaluating the role of melatonin in thyroid cancer cell (MDA-T41) apoptosis and metabolism modulation. Cancer Research, 83(7), 4853–4853. [CrossRef]
- 75. Zou, Z.W., Liu, T., Li, Y., Chen, P., Peng, X., Ma, C., Zhang, W.J., Li, P.D. (2018). Melatonin suppresses thyroid cancer growth and overcomes radioresistance via inhibition of p65 phosphorylation and induction of ROS. Redox Biology, 16, 226-236. [CrossRef]
- 76. Baltaci, A.K., Mogulkoc, R., Kul, A., Bediz, C.S., Ugur, A. (2004). Opposite effects of zinc and melatonin on thyroid hormones in rats. Toxicology, 195(1), 69–75. [CrossRef]
- 77. Reiter, R., Tan, D., Rosales-Corral, S., Galano, A., Zhou, X., Xu, B. (2018), Mitochondria: Central organelles for melatonin′s antioxidant and anti-aging actions. Molecules, 23(2), 509. [CrossRef]
- 78. Stępniak, J., Rynkowska, A., Karbownik-Lewińska, M. (2022). Membrane lipids in the thyroid comparing to those in non-endocrine tissues are less sensitive to pro-oxidative effects of fenton reaction substrates. Frontiers in Molecular Biosciences, 9, 901062. [CrossRef]
- 79. Zhao, D., Yu, Y., Shen, Y., Liu, Q., Zhao, Z., Sharma, R., Reiter, R.J. (2019). Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Frontiers in Endocrinology, 10, 249. [CrossRef]