ANALYSIS OF MYCOTOXINS CAUSING DNA METHYLATION BY ELECTROANALYTICAL METHODS
Year 2024,
Volume: 48 Issue: 3, 1264 - 1280, 10.09.2024
Manolya Müjgan Gürbüz
,
Tülay Çoban
,
Burcu Doğan Topal
Abstract
Objective: The analysis of mycotoxins affecting DNA methylation is of great importance in toxicology for food safety. Control and understanding of mycotoxin exposure, combined with improved food processing techniques and appropriate storage practices, allows for increased food safety.
Result and Discussion: This review summarizes the changes in DNA methylation caused by several common mycotoxins (aflatoxin B1, ochratoxin A, etc.) and the electroanalytical methods used for their detection.
References
- 1. Bennett, J.W., Klich, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16(3), 497-516. [CrossRef]
- 2. Zain, M.E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, 15(2), 129-144. [CrossRef]
- 3. Smith, M., Madec, S., Coton, E., Hymery, N. (2016). Natural Co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins, 8(4), 94. [CrossRef]
- 4. Yue, J., López, J.M (2020). Understanding MAPK signaling pathways in apoptosis. International Journal of Molecular Sciences, 21(7), 2346. [CrossRef]
- 5. Jones, P.A., Takai, D. (2001). The role of DNA methylation in mammalian epigenetics. Science, 293(5532), 1068-1070. [CrossRef]
- 6. Valente, A., Vieira, L., Silva, M.J., Ventura, C. (2023). The Effect of Nanomaterials on DNA Methylation: A review. Nanomaterials, 13(12), 1880. [CrossRef]
- 7. Robertson, K.D. (2001). DNA methylation, methyltransferases, and cancer. Oncogene, 20(24), 3139-3155. [CrossRef]
- 8. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes and Development, 16(1), 6-21. [CrossRef]
- 9. Krska, R., Richard, J.L., Schuhmacher, R., Slate, A.B., Whitaker, T.B. (2012). Romer Labs Guide to Mycotoxins [4 th Edition].
- 10. Steyn, P.S. (1995). Mycotoxins, general view, chemistry and structure. Toxicology Letters, 82-83(C), 843-851. [CrossRef]
- 11. Otimenyin, S. (2022). Herbal biomolecules acting on central nervous system. Herbal Biomolecules in Healthcare Applications, 475-523. [CrossRef]
- 12. United States Pharmacopeia (2024). USP Monographs, Ergoloid Mesylates. USP-NF. Rockville, MD: United States Pharmacopeia. [CrossRef]
- 13. Galaverna, G., Dall’Asta, C. (2012). Sampling techniques for the determination of mycotoxins in food matrices. Comprehensive Sampling and Sample Preparation: Analytical Techniques for Scientists, 381-403. [CrossRef]
- 14. Heussner, A.H., Bingle, L.E.H. (2015). Comparative ochratoxin toxicity: A review of the available data. Toxins, 7(10), 4253-4282. [CrossRef]
- 15. Sorrenti, V., Di Giacomo, C., Acquaviva, R., Barbagallo, I., Bognanno, M., Galvano, F. (2013). Toxicity of ochratoxin a and its modulation by antioxidants: A review. Toxins, 5(10), 1742-1766. [CrossRef]
- 16. Kőszegi, T., Poór, M. (2016). Ochratoxin A: Molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins, 8(4), 111. [CrossRef]
- 17. Cope, R.B. (2018). Trichothecenes. Veterinary Toxicology: Basic and Clinical Principles: Third Edition, 1043-1053. [CrossRef]
- 18. Voss, K.A., Riley, R.T. (2013). Fumonisin toxicity and mechanism of action: Overview and current perspectives. Food Safety, 1(1), 2013006. [CrossRef]
- 19. Galaverna, G., Dall'Asta, C. (2012). Sampling techniques for the determination of mycotoxins in food matrices. In Comprehensive Sampling and Sample Preparation (Vol. 4, pp. 381-403). Elsevier, Academic Press. [CrossRef]
- 20. Brajter-Toth, A. (2003). Electroanalytical methods: Guide to experiments and applications edited by fritz scholz. Journal of the American Chemical Society, 125(11), 3398-3398. [CrossRef]
- 21. Brachi, M., El Housseini, W., Beaver, K., Jadhav, R., Dantanarayana, A., Boucher, D.G., Minteer, S.D. (2024). Advanced electroanalysis for electrosynthesis. ACS Organic and Inorganic Au, 4(2), 141-187.
- 22. Uslu, B., Ozkan, S.A. (2011). Electroanalytical methods for the determination of pharmaceuticals: A review of recent trends and developments. Analytical Letters, 44(16), 2644-2702. [CrossRef]
- 23. Wu, F., Khlangwiset, P. (2010). Health economic impacts and cost-effectiveness of aflatoxin-reduction strategies in Africa: case studies in biocontrol and post-harvest interventions. Food Additives and Contaminants, 27(4), 496-509. [CrossRef]
- 24. Bbosa, G.S., Kitya, D., Odda, J., Ogwal-Okeng, J. (2013). Aflatoxins metabolism, effects on epigenetic mechanisms and their role in carcinogenesis. Scientific Research, 5, 10A. [CrossRef]
- 25. Schwerdt, G., Freudinger, R., Mildenberger, S., Silbernagl, S., Gekle, M. (1999). The nephrotoxin ochratoxin A induces apoptosis in cultured human proximal tubule cells. Cell Biology and Toxicology, 15(6), 405-415.
- 26. Magan, N. (2004). Mycotoxins in food: Detection and Control.CRC Press. Pp:12-22. [CrossRef]
- 27. Kunene, K., Sayegh, S., Weber, M., Sabela, M., Voiry, D., Iatsunskyi, I., Coy, E., Kanchi, S., Bisetty, K., Bechelany, M. (2023). Smart electrochemical immunosensing of aflatoxin B1 based on a palladium nanoparticle-boron nitride-coated carbon felt electrode for the wine industry. Talanta, 253, 124000. [CrossRef]
- 28. Zhang, T., Xu, S., Lin, X., Liu, J., Wang, K. (2023). Label-Free Electrochemical aptasensor based on the vertically-aligned mesoporous silica films for determination of aflatoxin B1. Biosensors, 13(6), 661. [CrossRef]
- 29. Baruah, S., Mohanta, D., Betty, C.A. (2024). Highly sensitive and label free on-site monitoring immunosensor for detection of Aflatoxin B1 from real samples. Analytical Biochemistry, 689, 115493. [CrossRef]
- 30. Ong, J.Y., Phang, S.W., Goh, C.T., Pike, A., Tan, L.L. (2023). Impedimetric polyaniline-based aptasensor for aflatoxin b 1 determination in agricultural products. Foods, 12(8), 1698. [CrossRef]
- 31. Shi, L., Wang, Z., Yang, G., Yang, H., Zhao, F. (2020). A novel electrochemical immunosensor for aflatoxin B1 based on Au nanoparticles-poly 4-aminobenzoic acid supported graphene. Applied Surface Science, 527, 146934. [CrossRef]
- 32. Shi, L., Wang, Z., Wu, N., Chen, X., Yang, G., Liu, W. (2020). A simple electrochemical immunosensor for highly sensitive detection of aflatoxin b1 based on gold nanoparticle decorated carboxylated graphene oxide. International Journal of Electrochemical Science, 15(2), 1655-1668. [CrossRef]
- 33. Ben Abdallah, Z., Grauby-Heywang, C., Beven, L., Cassagnere, S., Moroté, F., Maillard, E., Sghaier, H., Cohen Bouhacina, T. (2019). Development of an ultrasensitive label-free immunosensor for fungal aflatoxin B1 detection. Biochemical Engineering Journal, 150, 107262. [CrossRef]
- 34. Singh, A.K., Dhiman, T.K., Lakshmi, V.S.G.B., Solanki, P.R. (2021). Dimanganese trioxide (Mn2O3) based label-free electrochemical biosensor for detection of Aflatoxin-B1. Bioelectrochemistry, 137, 107684. [CrossRef]
- 35. Abera, B.D., Falco, A., Ibba, P., Cantarella, G., Petti, L., Lugli, P. (2019). Development of flexible dispense-printed electrochemical immunosensor for aflatoxin m1 detection in milk. Sensors 19(18), 3912. [CrossRef]
- 36. Zhang, H., Shi, Z., Cheng, S., Yang, Q., Sun, X., Guo, Y. (2019). Ultrasensitive immunosensor for aflatoxin b1 detection based on screen-printed carbon electrode modified by Ferrocene @Multi-Walled Carbon Nanotubes. International Journal of Electrochemical Science, 14(9), 9170-9180. [CrossRef]
- 37. Hernández-Hernández, A.A., Castañeda-Ovando, A., Mendoza-Huizar, L.H., Franco-Guzmán, M., Meneses-Pimentel, K.X., Vidal, C.A.G., Paez-Hernandez, M.E., Romero, G.A.Á. (2021). A novel voltammetric approach for the quantification of aflatoxin b1 using a bismuth-modified electrode. Journal of The Electrochemical Society, 168(2), 026512. [CrossRef]
- 38. Wang, C., Li, Y., Zhao, Q. (2019). A signal-on electrochemical aptasensor for rapid detection of aflatoxin B1 based on competition with complementary DNA. Biosensors and Bioelectronics, 144, 111641. [CrossRef]
- 39. Bhardwaj, H., Pandey, M.K., Rajesh, Sumana, G. (2019). Electrochemical aflatoxin B1 immunosensor based on the use of graphene quantum dots and gold nanoparticles. Microchimica Acta, 186(8), 1-12. [CrossRef]
- 40. Kulikova, T.N., Porfireva, A.V., Evtugyn, G.A., Hianik, T. (2019). Electrochemical aptasensor with layer-by-layer deposited polyaniline for aflatoxin M1 voltammetric determination. Electroanalysis, 31(10), 1913-1924. [CrossRef]
- 41. Gevaerd, A., Banks, C.E., Bergamini, M.F., Marcolino-Junior, L.H. (2020). nanomodified screen-printed electrode for direct determination of aflatoxin B1 in malted barley samples. Sensors and Actuators B: Chemical, 307, 127547. [CrossRef]
- 42. Wang, Z., Li, J., Xu, L., Feng, Y., Lu, X. (2014). Electrochemical sensor for determination of aflatoxin B 1 based on multiwalled carbon nanotubes-supported Au/Pt bimetallic nanoparticles. Journal of Solid State Electrochemistry, 18, 2487-2496. [CrossRef]
- 43. Gökçe, G., Ben Aissa, S., Nemčeková, K., Catanante, G., Raouafi, N., Marty, J.L. (2020). Aptamer-modified pencil graphite electrodes for the impedimetric determination of ochratoxin A. Food Control, 115, 107271. [CrossRef]
- 44. Arteshi, Y., Lima, D., Tittlemier, S.A., Kuss, S. (2023). Rapid and inexpensive voltammetric detection of ochratoxin A in wheat matrices. Bioelectrochemistry, 152, 108451. [CrossRef]
- 45. Kaur, N., Bharti, A., Batra, S., Rana, S., Rana, S., Bhalla, A., Prabhakar, N. (2019). An electrochemical aptasensor based on graphene doped chitosan nanocomposites for determination of Ochratoxin A. Microchemical Journal, 144, 102-109. [CrossRef]
- 46. Hou, Y., Long, N., Jia, B., Liao, X., Yang, M., Fu, L., Xhou, L., Sheng, P., Kong, W. (2022). Development of a label-free electrochemical aptasensor for ultrasensitive detection of ochratoxin A. Food Control, 135, 108833.
- 47. Sun, C., Liao, X., Huang, P., Shan, G., Ma, X., Fu, L., Zhou, L., Kong, W. (2020). A self-assembled electrochemical immunosensor for ultra-sensitive detection of ochratoxin A in medicinal and edible malt. Food Chemistry, 315, 126289. [CrossRef]
- 48. Kunene, K., Weber, M., Sabela, M., Voiry, D., Kanchi, S., Bisetty, K., Bechelany, M. (2020). Highly-efficient electrochemical label-free immunosensor for the detection of ochratoxin A in coffee samples. Sensors and Actuators B: Chemical, 305, 127438. [CrossRef]
- 49. Argoubi, W., Algethami, F.K., Raouafi, N. (2024). Enhanced sensitivity in electrochemical detection of ochratoxin A within food samples using ferrocene- and aptamer-tethered gold nanoparticles on disposable electrodes. RSC Advances, 14(12), 8007-8015. [CrossRef]
- 50. Suea-Ngam, A., Howes, P.D., Stanley, C.E., Demello, A.J. (2019). An exonuclease I-Assisted Silver-Metallized electrochemical aptasensor for ochratoxin A detection. ACS Sensors, 4(6), 1560-1568. [CrossRef]
- 51. Huang, H., Ouyang, W., Feng, K., Camarada, M.B., Liao, T., Tang, X., Liu, R., Hou, D., Liao, X. (2024). Rational design of molecularly imprinted electrochemical sensor based on Nb2C-MWCNTs heterostructures for highly sensitive and selective detection of Ochratoxin a. Food Chemistry, 456, 140007. [CrossRef]
- 52. Yola, M.L., Gupta, V.K., Atar, N. (2016). New molecular imprinted voltammetric sensor for determination of ochratoxin A. Materials Science and Engineering: C, 61, 368-375. [CrossRef]
- 53. Afzali, D., Fathirad, F., Ghaseminezhad, S. (2016). Determination of trace amounts of ochratoxin A in different food samples based on gold nanoparticles modified carbon paste electrode. Journal of Food Science Technology, 53, 909-914. [CrossRef]
- 54. Pacheco, J.G., Castro, M., Machado, S., Barroso, M.F., Nouws, H.P., Delerue-Matos, C. (2015). Molecularly imprinted electrochemical sensor for ochratoxin A detection in food samples. Sensors and Actuators B: Chemical, 215, 107-112. [CrossRef]
- 55. Mishra, R.K., Hayat, A., Catanante, G., Istamboulie, G., Marty, J. (2016). Sensitive quantitation of Ochratoxin A in cocoa beans using differential pulse voltammetry based aptasensor. Food Chemistry, 192, 799-804. [CrossRef]
- 56. Munawar, H., Garcia-Cruz, A., Majewska, M., Karim, K., Kutner, W., Piletsky, S.A. (2020). Electrochemical determination of fumonisin B1 using a chemosensor with a recognition unit comprising molecularly imprinted polymer nanoparticles. Sensors and Actuators B: Chemical, 321, 128552. [CrossRef]
- 57. Wei, M., Xin, L., Feng, S., Liu, Y. (2020). Simultaneous electrochemical determination of ochratoxin A and fumonisin B1 with an aptasensor based on the use of a Y-shaped DNA structure on gold nanorods. Microchimica Acta, 187(2), 1-7. [CrossRef]
- 58. Mao, L., Ji, K., Yao, L., Xue, X., Wen, W., Zhang, X., Wang, S. (2019). Molecularly imprinted photoelectrochemical sensor for fumonisin B1 based on GO-CdS heterojunction. Biosensors and Bioelectronics, 127, 57-63. [CrossRef]
- 59. Dhiman, T.K., Lakshmi, G.B.V.S., Dave, K., Roychoudhury, A., Dalal, N., Jha, S. K., Kumar, A., Han, K.H., Solanki, P.R. (2021). Rapid and Label-Free electrochemical detection of fumonisin-B1 using microfluidic biosensing platform based on Ag-CeO 2 nanocomposite. Journal of The Electrochemical Society, 168(7), 077510. [CrossRef]
- 60. Wei, M., Zhao, F., Feng, S., Jin, H. (2019). A novel electrochemical aptasensor for fumonisin B 1 determination using DNA and exonuclease-I as signal amplification strategy.BMC Chemistry, 13, 129. [CrossRef]
- 61. Zhang, X., Li, Z., Hong, L., Wang, X., Cao, J. (2023). Tetrahedral DNA Nanostructure-Engineered Paper-Based electrochemical aptasensor for fumonisin B1 detection coupled with Au@Pt nanocrystals as an amplification label. Journal of Agricultural and Food Chemistry, 71(48), 19121-19128. [CrossRef]
- 62. Sarpal, S., Singh, A. K., Bhardwaj, H., Puri, N. K., Solanki, P. R. (2023). Graphene oxide-Mn3O4 nanocomposites for advanced electrochemical biosensor for fumonisin B1 detection. Nanotechnology, 34(46), 465708. [CrossRef]
- 63. Lu, L., Seenivasan, R., Wang, Y., Yu, J., Gunasekaran, S. (2016). An Electrochemical Immunosensor for Rapid and Sensitive Detection of Mycotoxins Fumonisin B1 and Deoxynivalenol. Electrochimica Acta, 213, 89-97. [CrossRef]
- 64. Naghshbandi, B., Adabi, M., Pooshang Bagheri, K., Tavakolipour, H. (2022). Design of a new electrochemical aptasensor based on screen printed carbon electrode modified with gold nanoparticles for the detection of fumonisin B1 in maize flour. Journal of Nanobiotechnology, 20(1), 534.
- 65. Masikini, M., Mailu, S.N., Tsegaye, A., Njomo, N., Molapo, K.M., Ikpo, C.O., Sunday, C.E., Rassie, C., Wilson, L., Baker, P.G.L., Iwuoha, E.I. (2014). A fumonisins immunosensor based on polyanilino-carbon nanotubes doped with palladium telluride quantum dots. Sensors, 15(1), 529-546.
- 66. Sangu, S.S., Illias, N.M., Ong, C.C., Gopinath, S.C.B., Saheed, M.S.M. (2021). MXene-Based Aptasensor: Characterization and High-Performance Voltammetry detection of deoxynivalenol. BioNanoScience, 11(2), 314-323. [CrossRef]
- 67. Valera, E., García-Febrero, R., Elliott, C.T., Sánchez-Baeza, F., Marco, M.P. (2019). Electrochemical nanoprobe-based immunosensor for deoxynivalenol mycotoxin residues analysis in wheat samples. Analytical and Bioanalytical Chemistry, 411, 1915-1926.
- 68. Wang, L., Jin, H., Wei, M., Ren, W., Zhang, Y., Jiang, L., Wei, T., He, B. (2021). A DNAzyme-assisted triple-amplified electrochemical aptasensor for ultra-sensitive detection of T-2 toxin. Sensors and Actuators B: Chemical, 328, 129063. [CrossRef]
- 69. Fernandez Solis, L.N., Silva Junior, GJ., Bertotti, M., Angnes, L., Pereira, S. V., Fernández-Baldo, M.A., Regiart, M. (2024). Electrochemical microfluidic immunosensor with graphene-decorated gold nanoporous for T-2 mycotoxin detection. Talanta, 273, 125971. [CrossRef]
- 70. Zhang, Y., He, B., Zhao, R., Bai, C., Zhang, Y., Jin, H., Wei, M., Ren, W., Suo, Z., Xu, Y. (2022). Electrochemical aptasensor based on the target-induced strand displacement strategy-driven for T-2 toxin detection. Science of The Total Environment, 849, 157769. [CrossRef]
- 71. Zhong, H., Yu, C., Gao, R., Chen, J., Yu, Y., Geng, Y., Wen, Y., He, J. (2019). A novel sandwich aptasensor for detecting T-2 toxin based on rGO-TEPA-Au@Pt nanorods with a dual signal amplification strategy. Biosensors and Bioelectronics, 144, 111635. [CrossRef]
- 72. Said, N.A.M., Herzog, G., Twomey, K., Ogurtsov, V.I. (2022). Electrochemical characterization of Silicon-Based Gold Microband Electrode array and its application for labelless T-2/HT-2 toxin immunosensing. Materials Science Forum, 1055, 137-146. [CrossRef]
- 73. Moradi, M., Azizi-Lalabadi, M., Motamedi, P., Sadeghi, E. (2021). Electrochemical determination of T2 toxin by graphite/polyacrylonitrile nanofiber electrode. Food Science & Nutrition, 9(2), 1171-1179. [CrossRef]
- 74. Keyvan, E., Yurdakul, Ö. (2015). Çeşitli gıdalarda okratoksin A varlığı. Mehmet Akif Ersoy University Journal of Health Sciences Institute, 3(1), 27-33.
- 75. María-Hormigos, R., Gismera, M.J., Sevilla, M.T., Rumbero, Á., Procopio, J.R. (2016). Rapid and easy detection of deoxynivalenol on a bismuth oxide screen-printed electrode. Electroanalysis, 29(1), 60-66. [CrossRef]
- 76. Radi, A.E., Eissa, A., Wahdan, T. (2019). Impedimetric sensor for deoxynivalenol based on electropolymerised molecularly imprinted polymer on the surface of screen-printed gold electrode. International Journal of Environmental Analytical Chemistry, 101(15), 2586–2597. [CrossRef]
- 77. Malvano, F., Pilloton, R., Rubino, A., Albanese, D. Rapid detection of deoxynivalenol in dry pasta using a label-free immunosensor. Biosensors, 12(4), 240. [CrossRef]
- 78. Subak, H., Selvolini, G., Macchiagodena, M., Ozkan-Ariksoysal, D., Pagliai, M., Procacci, P., Marrazza, G. (2021). Mycotoxins aptasensing: From molecular docking to electrochemical detection of deoxynivalenol. Bioelectrochemistry, 138, 107691. [CrossRef]
DNA METİLASYONUNA NEDEN OLAN MİKOTOKSİNLERİN ELEKTROANALİTİK YÖNTEMLERLE ANALİZİ
Year 2024,
Volume: 48 Issue: 3, 1264 - 1280, 10.09.2024
Manolya Müjgan Gürbüz
,
Tülay Çoban
,
Burcu Doğan Topal
Abstract
Amaç: DNA metilasyonunu etkileyen mikotoksinlerin analizi toksikolojide gıda güvenliği açısından oldukça önemlidir. Mikotoksin maruziyetinin kontrolü ile anlaşılması, gelişmiş gıda işleme teknikleri ve uygun depolama uygulamalarıyla birleştirildiğinde, gıda güvenliğinin artırılmasına olanak verir.
Sonuç ve Tartışma: Bu derleme, çeşitli yaygın mikotoksinlerin (aflatoksin B1, okratoksin A, vb.) neden olduğu DNA metilasyonundaki değişiklikleri ve bunların tespiti için kullanılan elektroanalitik yöntemleri özetlemektedir.
References
- 1. Bennett, J.W., Klich, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16(3), 497-516. [CrossRef]
- 2. Zain, M.E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, 15(2), 129-144. [CrossRef]
- 3. Smith, M., Madec, S., Coton, E., Hymery, N. (2016). Natural Co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins, 8(4), 94. [CrossRef]
- 4. Yue, J., López, J.M (2020). Understanding MAPK signaling pathways in apoptosis. International Journal of Molecular Sciences, 21(7), 2346. [CrossRef]
- 5. Jones, P.A., Takai, D. (2001). The role of DNA methylation in mammalian epigenetics. Science, 293(5532), 1068-1070. [CrossRef]
- 6. Valente, A., Vieira, L., Silva, M.J., Ventura, C. (2023). The Effect of Nanomaterials on DNA Methylation: A review. Nanomaterials, 13(12), 1880. [CrossRef]
- 7. Robertson, K.D. (2001). DNA methylation, methyltransferases, and cancer. Oncogene, 20(24), 3139-3155. [CrossRef]
- 8. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes and Development, 16(1), 6-21. [CrossRef]
- 9. Krska, R., Richard, J.L., Schuhmacher, R., Slate, A.B., Whitaker, T.B. (2012). Romer Labs Guide to Mycotoxins [4 th Edition].
- 10. Steyn, P.S. (1995). Mycotoxins, general view, chemistry and structure. Toxicology Letters, 82-83(C), 843-851. [CrossRef]
- 11. Otimenyin, S. (2022). Herbal biomolecules acting on central nervous system. Herbal Biomolecules in Healthcare Applications, 475-523. [CrossRef]
- 12. United States Pharmacopeia (2024). USP Monographs, Ergoloid Mesylates. USP-NF. Rockville, MD: United States Pharmacopeia. [CrossRef]
- 13. Galaverna, G., Dall’Asta, C. (2012). Sampling techniques for the determination of mycotoxins in food matrices. Comprehensive Sampling and Sample Preparation: Analytical Techniques for Scientists, 381-403. [CrossRef]
- 14. Heussner, A.H., Bingle, L.E.H. (2015). Comparative ochratoxin toxicity: A review of the available data. Toxins, 7(10), 4253-4282. [CrossRef]
- 15. Sorrenti, V., Di Giacomo, C., Acquaviva, R., Barbagallo, I., Bognanno, M., Galvano, F. (2013). Toxicity of ochratoxin a and its modulation by antioxidants: A review. Toxins, 5(10), 1742-1766. [CrossRef]
- 16. Kőszegi, T., Poór, M. (2016). Ochratoxin A: Molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins, 8(4), 111. [CrossRef]
- 17. Cope, R.B. (2018). Trichothecenes. Veterinary Toxicology: Basic and Clinical Principles: Third Edition, 1043-1053. [CrossRef]
- 18. Voss, K.A., Riley, R.T. (2013). Fumonisin toxicity and mechanism of action: Overview and current perspectives. Food Safety, 1(1), 2013006. [CrossRef]
- 19. Galaverna, G., Dall'Asta, C. (2012). Sampling techniques for the determination of mycotoxins in food matrices. In Comprehensive Sampling and Sample Preparation (Vol. 4, pp. 381-403). Elsevier, Academic Press. [CrossRef]
- 20. Brajter-Toth, A. (2003). Electroanalytical methods: Guide to experiments and applications edited by fritz scholz. Journal of the American Chemical Society, 125(11), 3398-3398. [CrossRef]
- 21. Brachi, M., El Housseini, W., Beaver, K., Jadhav, R., Dantanarayana, A., Boucher, D.G., Minteer, S.D. (2024). Advanced electroanalysis for electrosynthesis. ACS Organic and Inorganic Au, 4(2), 141-187.
- 22. Uslu, B., Ozkan, S.A. (2011). Electroanalytical methods for the determination of pharmaceuticals: A review of recent trends and developments. Analytical Letters, 44(16), 2644-2702. [CrossRef]
- 23. Wu, F., Khlangwiset, P. (2010). Health economic impacts and cost-effectiveness of aflatoxin-reduction strategies in Africa: case studies in biocontrol and post-harvest interventions. Food Additives and Contaminants, 27(4), 496-509. [CrossRef]
- 24. Bbosa, G.S., Kitya, D., Odda, J., Ogwal-Okeng, J. (2013). Aflatoxins metabolism, effects on epigenetic mechanisms and their role in carcinogenesis. Scientific Research, 5, 10A. [CrossRef]
- 25. Schwerdt, G., Freudinger, R., Mildenberger, S., Silbernagl, S., Gekle, M. (1999). The nephrotoxin ochratoxin A induces apoptosis in cultured human proximal tubule cells. Cell Biology and Toxicology, 15(6), 405-415.
- 26. Magan, N. (2004). Mycotoxins in food: Detection and Control.CRC Press. Pp:12-22. [CrossRef]
- 27. Kunene, K., Sayegh, S., Weber, M., Sabela, M., Voiry, D., Iatsunskyi, I., Coy, E., Kanchi, S., Bisetty, K., Bechelany, M. (2023). Smart electrochemical immunosensing of aflatoxin B1 based on a palladium nanoparticle-boron nitride-coated carbon felt electrode for the wine industry. Talanta, 253, 124000. [CrossRef]
- 28. Zhang, T., Xu, S., Lin, X., Liu, J., Wang, K. (2023). Label-Free Electrochemical aptasensor based on the vertically-aligned mesoporous silica films for determination of aflatoxin B1. Biosensors, 13(6), 661. [CrossRef]
- 29. Baruah, S., Mohanta, D., Betty, C.A. (2024). Highly sensitive and label free on-site monitoring immunosensor for detection of Aflatoxin B1 from real samples. Analytical Biochemistry, 689, 115493. [CrossRef]
- 30. Ong, J.Y., Phang, S.W., Goh, C.T., Pike, A., Tan, L.L. (2023). Impedimetric polyaniline-based aptasensor for aflatoxin b 1 determination in agricultural products. Foods, 12(8), 1698. [CrossRef]
- 31. Shi, L., Wang, Z., Yang, G., Yang, H., Zhao, F. (2020). A novel electrochemical immunosensor for aflatoxin B1 based on Au nanoparticles-poly 4-aminobenzoic acid supported graphene. Applied Surface Science, 527, 146934. [CrossRef]
- 32. Shi, L., Wang, Z., Wu, N., Chen, X., Yang, G., Liu, W. (2020). A simple electrochemical immunosensor for highly sensitive detection of aflatoxin b1 based on gold nanoparticle decorated carboxylated graphene oxide. International Journal of Electrochemical Science, 15(2), 1655-1668. [CrossRef]
- 33. Ben Abdallah, Z., Grauby-Heywang, C., Beven, L., Cassagnere, S., Moroté, F., Maillard, E., Sghaier, H., Cohen Bouhacina, T. (2019). Development of an ultrasensitive label-free immunosensor for fungal aflatoxin B1 detection. Biochemical Engineering Journal, 150, 107262. [CrossRef]
- 34. Singh, A.K., Dhiman, T.K., Lakshmi, V.S.G.B., Solanki, P.R. (2021). Dimanganese trioxide (Mn2O3) based label-free electrochemical biosensor for detection of Aflatoxin-B1. Bioelectrochemistry, 137, 107684. [CrossRef]
- 35. Abera, B.D., Falco, A., Ibba, P., Cantarella, G., Petti, L., Lugli, P. (2019). Development of flexible dispense-printed electrochemical immunosensor for aflatoxin m1 detection in milk. Sensors 19(18), 3912. [CrossRef]
- 36. Zhang, H., Shi, Z., Cheng, S., Yang, Q., Sun, X., Guo, Y. (2019). Ultrasensitive immunosensor for aflatoxin b1 detection based on screen-printed carbon electrode modified by Ferrocene @Multi-Walled Carbon Nanotubes. International Journal of Electrochemical Science, 14(9), 9170-9180. [CrossRef]
- 37. Hernández-Hernández, A.A., Castañeda-Ovando, A., Mendoza-Huizar, L.H., Franco-Guzmán, M., Meneses-Pimentel, K.X., Vidal, C.A.G., Paez-Hernandez, M.E., Romero, G.A.Á. (2021). A novel voltammetric approach for the quantification of aflatoxin b1 using a bismuth-modified electrode. Journal of The Electrochemical Society, 168(2), 026512. [CrossRef]
- 38. Wang, C., Li, Y., Zhao, Q. (2019). A signal-on electrochemical aptasensor for rapid detection of aflatoxin B1 based on competition with complementary DNA. Biosensors and Bioelectronics, 144, 111641. [CrossRef]
- 39. Bhardwaj, H., Pandey, M.K., Rajesh, Sumana, G. (2019). Electrochemical aflatoxin B1 immunosensor based on the use of graphene quantum dots and gold nanoparticles. Microchimica Acta, 186(8), 1-12. [CrossRef]
- 40. Kulikova, T.N., Porfireva, A.V., Evtugyn, G.A., Hianik, T. (2019). Electrochemical aptasensor with layer-by-layer deposited polyaniline for aflatoxin M1 voltammetric determination. Electroanalysis, 31(10), 1913-1924. [CrossRef]
- 41. Gevaerd, A., Banks, C.E., Bergamini, M.F., Marcolino-Junior, L.H. (2020). nanomodified screen-printed electrode for direct determination of aflatoxin B1 in malted barley samples. Sensors and Actuators B: Chemical, 307, 127547. [CrossRef]
- 42. Wang, Z., Li, J., Xu, L., Feng, Y., Lu, X. (2014). Electrochemical sensor for determination of aflatoxin B 1 based on multiwalled carbon nanotubes-supported Au/Pt bimetallic nanoparticles. Journal of Solid State Electrochemistry, 18, 2487-2496. [CrossRef]
- 43. Gökçe, G., Ben Aissa, S., Nemčeková, K., Catanante, G., Raouafi, N., Marty, J.L. (2020). Aptamer-modified pencil graphite electrodes for the impedimetric determination of ochratoxin A. Food Control, 115, 107271. [CrossRef]
- 44. Arteshi, Y., Lima, D., Tittlemier, S.A., Kuss, S. (2023). Rapid and inexpensive voltammetric detection of ochratoxin A in wheat matrices. Bioelectrochemistry, 152, 108451. [CrossRef]
- 45. Kaur, N., Bharti, A., Batra, S., Rana, S., Rana, S., Bhalla, A., Prabhakar, N. (2019). An electrochemical aptasensor based on graphene doped chitosan nanocomposites for determination of Ochratoxin A. Microchemical Journal, 144, 102-109. [CrossRef]
- 46. Hou, Y., Long, N., Jia, B., Liao, X., Yang, M., Fu, L., Xhou, L., Sheng, P., Kong, W. (2022). Development of a label-free electrochemical aptasensor for ultrasensitive detection of ochratoxin A. Food Control, 135, 108833.
- 47. Sun, C., Liao, X., Huang, P., Shan, G., Ma, X., Fu, L., Zhou, L., Kong, W. (2020). A self-assembled electrochemical immunosensor for ultra-sensitive detection of ochratoxin A in medicinal and edible malt. Food Chemistry, 315, 126289. [CrossRef]
- 48. Kunene, K., Weber, M., Sabela, M., Voiry, D., Kanchi, S., Bisetty, K., Bechelany, M. (2020). Highly-efficient electrochemical label-free immunosensor for the detection of ochratoxin A in coffee samples. Sensors and Actuators B: Chemical, 305, 127438. [CrossRef]
- 49. Argoubi, W., Algethami, F.K., Raouafi, N. (2024). Enhanced sensitivity in electrochemical detection of ochratoxin A within food samples using ferrocene- and aptamer-tethered gold nanoparticles on disposable electrodes. RSC Advances, 14(12), 8007-8015. [CrossRef]
- 50. Suea-Ngam, A., Howes, P.D., Stanley, C.E., Demello, A.J. (2019). An exonuclease I-Assisted Silver-Metallized electrochemical aptasensor for ochratoxin A detection. ACS Sensors, 4(6), 1560-1568. [CrossRef]
- 51. Huang, H., Ouyang, W., Feng, K., Camarada, M.B., Liao, T., Tang, X., Liu, R., Hou, D., Liao, X. (2024). Rational design of molecularly imprinted electrochemical sensor based on Nb2C-MWCNTs heterostructures for highly sensitive and selective detection of Ochratoxin a. Food Chemistry, 456, 140007. [CrossRef]
- 52. Yola, M.L., Gupta, V.K., Atar, N. (2016). New molecular imprinted voltammetric sensor for determination of ochratoxin A. Materials Science and Engineering: C, 61, 368-375. [CrossRef]
- 53. Afzali, D., Fathirad, F., Ghaseminezhad, S. (2016). Determination of trace amounts of ochratoxin A in different food samples based on gold nanoparticles modified carbon paste electrode. Journal of Food Science Technology, 53, 909-914. [CrossRef]
- 54. Pacheco, J.G., Castro, M., Machado, S., Barroso, M.F., Nouws, H.P., Delerue-Matos, C. (2015). Molecularly imprinted electrochemical sensor for ochratoxin A detection in food samples. Sensors and Actuators B: Chemical, 215, 107-112. [CrossRef]
- 55. Mishra, R.K., Hayat, A., Catanante, G., Istamboulie, G., Marty, J. (2016). Sensitive quantitation of Ochratoxin A in cocoa beans using differential pulse voltammetry based aptasensor. Food Chemistry, 192, 799-804. [CrossRef]
- 56. Munawar, H., Garcia-Cruz, A., Majewska, M., Karim, K., Kutner, W., Piletsky, S.A. (2020). Electrochemical determination of fumonisin B1 using a chemosensor with a recognition unit comprising molecularly imprinted polymer nanoparticles. Sensors and Actuators B: Chemical, 321, 128552. [CrossRef]
- 57. Wei, M., Xin, L., Feng, S., Liu, Y. (2020). Simultaneous electrochemical determination of ochratoxin A and fumonisin B1 with an aptasensor based on the use of a Y-shaped DNA structure on gold nanorods. Microchimica Acta, 187(2), 1-7. [CrossRef]
- 58. Mao, L., Ji, K., Yao, L., Xue, X., Wen, W., Zhang, X., Wang, S. (2019). Molecularly imprinted photoelectrochemical sensor for fumonisin B1 based on GO-CdS heterojunction. Biosensors and Bioelectronics, 127, 57-63. [CrossRef]
- 59. Dhiman, T.K., Lakshmi, G.B.V.S., Dave, K., Roychoudhury, A., Dalal, N., Jha, S. K., Kumar, A., Han, K.H., Solanki, P.R. (2021). Rapid and Label-Free electrochemical detection of fumonisin-B1 using microfluidic biosensing platform based on Ag-CeO 2 nanocomposite. Journal of The Electrochemical Society, 168(7), 077510. [CrossRef]
- 60. Wei, M., Zhao, F., Feng, S., Jin, H. (2019). A novel electrochemical aptasensor for fumonisin B 1 determination using DNA and exonuclease-I as signal amplification strategy.BMC Chemistry, 13, 129. [CrossRef]
- 61. Zhang, X., Li, Z., Hong, L., Wang, X., Cao, J. (2023). Tetrahedral DNA Nanostructure-Engineered Paper-Based electrochemical aptasensor for fumonisin B1 detection coupled with Au@Pt nanocrystals as an amplification label. Journal of Agricultural and Food Chemistry, 71(48), 19121-19128. [CrossRef]
- 62. Sarpal, S., Singh, A. K., Bhardwaj, H., Puri, N. K., Solanki, P. R. (2023). Graphene oxide-Mn3O4 nanocomposites for advanced electrochemical biosensor for fumonisin B1 detection. Nanotechnology, 34(46), 465708. [CrossRef]
- 63. Lu, L., Seenivasan, R., Wang, Y., Yu, J., Gunasekaran, S. (2016). An Electrochemical Immunosensor for Rapid and Sensitive Detection of Mycotoxins Fumonisin B1 and Deoxynivalenol. Electrochimica Acta, 213, 89-97. [CrossRef]
- 64. Naghshbandi, B., Adabi, M., Pooshang Bagheri, K., Tavakolipour, H. (2022). Design of a new electrochemical aptasensor based on screen printed carbon electrode modified with gold nanoparticles for the detection of fumonisin B1 in maize flour. Journal of Nanobiotechnology, 20(1), 534.
- 65. Masikini, M., Mailu, S.N., Tsegaye, A., Njomo, N., Molapo, K.M., Ikpo, C.O., Sunday, C.E., Rassie, C., Wilson, L., Baker, P.G.L., Iwuoha, E.I. (2014). A fumonisins immunosensor based on polyanilino-carbon nanotubes doped with palladium telluride quantum dots. Sensors, 15(1), 529-546.
- 66. Sangu, S.S., Illias, N.M., Ong, C.C., Gopinath, S.C.B., Saheed, M.S.M. (2021). MXene-Based Aptasensor: Characterization and High-Performance Voltammetry detection of deoxynivalenol. BioNanoScience, 11(2), 314-323. [CrossRef]
- 67. Valera, E., García-Febrero, R., Elliott, C.T., Sánchez-Baeza, F., Marco, M.P. (2019). Electrochemical nanoprobe-based immunosensor for deoxynivalenol mycotoxin residues analysis in wheat samples. Analytical and Bioanalytical Chemistry, 411, 1915-1926.
- 68. Wang, L., Jin, H., Wei, M., Ren, W., Zhang, Y., Jiang, L., Wei, T., He, B. (2021). A DNAzyme-assisted triple-amplified electrochemical aptasensor for ultra-sensitive detection of T-2 toxin. Sensors and Actuators B: Chemical, 328, 129063. [CrossRef]
- 69. Fernandez Solis, L.N., Silva Junior, GJ., Bertotti, M., Angnes, L., Pereira, S. V., Fernández-Baldo, M.A., Regiart, M. (2024). Electrochemical microfluidic immunosensor with graphene-decorated gold nanoporous for T-2 mycotoxin detection. Talanta, 273, 125971. [CrossRef]
- 70. Zhang, Y., He, B., Zhao, R., Bai, C., Zhang, Y., Jin, H., Wei, M., Ren, W., Suo, Z., Xu, Y. (2022). Electrochemical aptasensor based on the target-induced strand displacement strategy-driven for T-2 toxin detection. Science of The Total Environment, 849, 157769. [CrossRef]
- 71. Zhong, H., Yu, C., Gao, R., Chen, J., Yu, Y., Geng, Y., Wen, Y., He, J. (2019). A novel sandwich aptasensor for detecting T-2 toxin based on rGO-TEPA-Au@Pt nanorods with a dual signal amplification strategy. Biosensors and Bioelectronics, 144, 111635. [CrossRef]
- 72. Said, N.A.M., Herzog, G., Twomey, K., Ogurtsov, V.I. (2022). Electrochemical characterization of Silicon-Based Gold Microband Electrode array and its application for labelless T-2/HT-2 toxin immunosensing. Materials Science Forum, 1055, 137-146. [CrossRef]
- 73. Moradi, M., Azizi-Lalabadi, M., Motamedi, P., Sadeghi, E. (2021). Electrochemical determination of T2 toxin by graphite/polyacrylonitrile nanofiber electrode. Food Science & Nutrition, 9(2), 1171-1179. [CrossRef]
- 74. Keyvan, E., Yurdakul, Ö. (2015). Çeşitli gıdalarda okratoksin A varlığı. Mehmet Akif Ersoy University Journal of Health Sciences Institute, 3(1), 27-33.
- 75. María-Hormigos, R., Gismera, M.J., Sevilla, M.T., Rumbero, Á., Procopio, J.R. (2016). Rapid and easy detection of deoxynivalenol on a bismuth oxide screen-printed electrode. Electroanalysis, 29(1), 60-66. [CrossRef]
- 76. Radi, A.E., Eissa, A., Wahdan, T. (2019). Impedimetric sensor for deoxynivalenol based on electropolymerised molecularly imprinted polymer on the surface of screen-printed gold electrode. International Journal of Environmental Analytical Chemistry, 101(15), 2586–2597. [CrossRef]
- 77. Malvano, F., Pilloton, R., Rubino, A., Albanese, D. Rapid detection of deoxynivalenol in dry pasta using a label-free immunosensor. Biosensors, 12(4), 240. [CrossRef]
- 78. Subak, H., Selvolini, G., Macchiagodena, M., Ozkan-Ariksoysal, D., Pagliai, M., Procacci, P., Marrazza, G. (2021). Mycotoxins aptasensing: From molecular docking to electrochemical detection of deoxynivalenol. Bioelectrochemistry, 138, 107691. [CrossRef]