OPTIMIZATION FORMULATION OF INSULIN-LOADED POLY-CAPROLACTONE NANOPARTICLES FOR CHRONIC WOUND HEALING USING BOX-BEHNKEN DESIGN
Year 2025,
Volume: 49 Issue: 3, 900 - 914, 19.09.2025
Tamer Tekin
,
Ayşegül Yıldız
,
Fatma Nur Tuğcu Demiröz
,
Füsun Acartürk
Abstract
Objective: The aim of this study is to optimize the formulation of insulin-loaded poly-caprolactone nanoparticles (INS-PCL-NP) for use in chronic wound healing using Box-Behnken experimental design.
Material and Method: The response of independent variables (poly-caprolactone concentration, polyvinyl alcohol concentration and sonication time) on dependent variables (particle size, PDI and encapsulation efficiency) were evaluated. Nanoparticle formulations were produced by the double emulsion (w/o/w)-solvent evaporation method. The resulting formulations were characterized in terms of particle size, zeta potential, and encapsulation efficiency to determine the optimum formulation. Further analyses, including morphological analyses, Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and in vitro drug release studies were conducted on the optimized formulation.
Result and Discussion: According to the results of the characterization studies, it was observed that the optimized nanoparticles had a particle size of 618.5±11.2 nm, a PDI of 0.194±0.021, a zeta potential of -8.21±1.1 mV and an encapsulation efficiency of 73.1±4.2%. In morphological analysis, it was observed that the nanoparticles had a spherical structure. The optimized nanoparticle formulation showed a rapid release of 49.1±2.1% within the first 24 hours, followed by a controlled release for 168 hours.
References
-
1. Holl, J., Kowalewski, C., Zimek, Z., Fiedor, P., Kaminski, A., Oldak, T., Moniuszko, M., Eljaszewicz, A. (2021). Chronic diabetic wounds and their treatment with skin substitutes. Cells, 10(3), 655. [CrossRef]
-
2. Buch, P.J., Chai, Y., Goluch, E.D. (2019). Treating polymicrobial infections in chronic diabetic wounds. Clinical Microbiology Reviews, 32(2), 10-1128. [CrossRef]
-
3. Wang, J., Xu, J. (2020). Effects of topical insulin on wound healing: A review of animal and human evidences. Diabetes, Metabolic Syndrome and Obesity, 719-727. [CrossRef]
-
4. Oryan, A., Alemzadeh, E. (2017). Effects of insulin on wound healing: A review of animal and human evidences. Life Sciences, 174, 59-67. [CrossRef]
-
5. Reiber, G.E., McDonell, M.B., Schleyer, A.M., Fihn, S.D., Reda, D.J. (1995). A comprehensive system for quality improvement in ambulatory care: Assessing the quality of diabetes care. Patient Education and Counseling, 26(1-3), 337-341. [CrossRef]
-
6. Tanaka, A., Nagate, T., Matsuda, H. (2005). Acceleration of wound healing by gelatin film dressings with epidermal growth factor. Journal of Veterinary Medical Science, 67(9), 909-913. [CrossRef]
-
7. Hrynyk, M., Neufeld, R.J. (2014). Insulin and wound healing. Burns, 40(8), 1433-1446. [CrossRef]
-
8. Ribeiro, M.C., Correa, V.L.R., da Silva, F.K.L., Casas, A.A., das Chagas, A.D.L., de Oliveira, L.P., Miguel, M.P., Diniz, D.G.A., Amaral, A.C., de Menezes, L.B. (2020). Wound healing treatment using insulin within polymeric nanoparticles in the diabetes animal model. European Journal of Pharmaceutical Sciences, 150, 105330. [CrossRef]
-
9. Iqbal, M., Zafar, N., Fessi, H., Elaissari, A. (2015). Double emulsion solvent evaporation techniques used for drug encapsulation. International Journal of Pharmaceutics, 496(2), 173-190. [CrossRef]
-
10. Abdelkader, D.H., Tambuwala, M.M., Mitchell, C.A., Osman, M.A., El-Gizawy, S.A., Faheem, A.M., El-Tanani, M., McCarron, P.A. (2018). Enhanced cutaneous wound healing in rats following topical delivery of insulin-loaded nanoparticles embedded in poly (vinyl alcohol)-borate hydrogels. Drug Delivery and Translational Research, 8, 1053-1065. [CrossRef]
-
11. de Araújo, T.M., Teixeira, Z., Barbosa-Sampaio, H.C., Rezende, L.F., Boschero, A.C., Durán, N., Höehr, N.F. (2013). Insulin-loaded poly (ε-caprolactone) nanoparticles: Efficient, sustained and safe insulin delivery system. Journal of Biomedical Nanotechnology, 9(6), 1098-1106. [CrossRef]
-
12. Socha, M., Sapin, A., Damge, C., Maincent, P. (2009). Influence of polymers ratio on insulin-loaded nanoparticles based on poly-ε-caprolactone and Eudragit® RS for oral administration. Drug Delivery, 16(8), 430-436. [CrossRef]
-
13. El Yousfi, R., Brahmi, M., Dalli, M., Achalhi, N., Azougagh, O., Tahani, A., Touzani, R., El Idrissi, A. (2023). Recent advances in nanoparticle development for drug delivery: A comprehensive review of polycaprolactone-based multi-arm architectures. Polymers, 15(8), 1835. [CrossRef]
-
14. Byun, Y., Hwang, J.B., Bang, S.H., Darby, D., Cooksey, K., Dawson, P.L., Park, H.J., Whiteside, S. (2011). Formulation and characterization of α-tocopherol loaded poly ɛ-caprolactone (PCL) nanoparticles. Lwt-Food Science and Technology, 44(1), 24-28. [CrossRef]
-
15. Shaikh, M.V., Kala, M., Nivsarkar, M. (2017). Formulation and optimization of doxorubicin loaded polymeric nanoparticles using Box-Behnken design: Ex-vivo stability and in-vitro activity. European Journal of Pharmaceutical Sciences, 100, 262-272. [CrossRef]
-
16. Gajra, B., Patel, R.R., Dalwadi, C. (2016). Formulation, optimization and characterization of cationic polymeric nanoparticles of mast cell stabilizing agent using the Box–Behnken experimental design. Drug Development and Industrial Pharmacy, 42(5), 747-757. [CrossRef]
-
17. Neumiller, J.J., Chen, G., Newsome, C., Hughes, S., Lazarus, P., White Jr, J.R. (2021). Assessment of regular and NPH insulin concentration via two methods of quantification: the Washington State Insulin Concentration Study (WICS). Journal of Diabetes Science and Technology, 15(2), 324-328. [CrossRef]
-
18. Sharma, D., Maheshwari, D., Philip, G., Rana, R., Bhatia, S., Singh, M., Gabrani, R., Sharma, S.K., Ali, J., Sharma, R.K., Dang, S. (2014). Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using box‐Behnken design: In vitro and in vivo evaluation. BioMed Research International, 2014(1), 156010. [CrossRef]
-
19. Wissing, S.A., Müller, R.H. (2002). Solid lipid nanoparticles as carrier for sunscreens: In vitro release and in vivo skin penetration. Journal of Controlled Release, 81(3), 225-233. [CrossRef]
-
20. Khabbaz, B., Solouk, A., Mirzadeh, H. (2019). Polyvinyl alcohol/soy protein isolate nanofibrous patch for wound-healing applications. Progress in Biomaterials, 8, 185-196. [CrossRef]
-
21. Mahmoud, B.S., McConville, C. (2023). Box–Behnken design of experiments of polycaprolactone nanoparticles loaded with irinotecan hydrochloride. Pharmaceutics, 15(4), 1271. [CrossRef]
-
22. Nawaz, T., Iqbal, M., Khan, B. A., Nawaz, A., Hussain, T., Hosny, K.M., Abualsunun, W.A., Rizg, W.Y. (2021). Development and optimization of acriflavine-loaded polycaprolactone nanoparticles using Box–Behnken design for burn wound healing applications. Polymers, 14(1), 101. [CrossRef]
-
23. Romero-Pérez, A., García-García, E., Zavaleta-Mancera, A., Ramírez-Bribiesca, J.E., Revilla-Vázquez, A., Hernández-Calva, L.M., López-Arellano, R., Cruz-Monterrosa, R.G. (2010). Designing and evaluation of sodium selenite nanoparticles in vitro to improve selenium absorption in ruminants. Veterinary Research Communications, 34, 71-79. [CrossRef]
-
24. Solanki, A.B., Parikh, J.R., Parikh, R.H. (2007). Formulation and optimization of piroxicam proniosomes by 3-factor, 3-level Box-Behnken design. AAPS Pharmscitech, 8, 43-49. [CrossRef]
-
25. Higazy, I.M., Mahmoud, A.A., Ghorab, M.M., Ammar, H.O. (2021). Development and evaluation of polyvinyl alcohol stabilized polylactide-co-caprolactone-based nanoparticles for brain delivery. Journal of Drug Delivery Science and Technology, 61, 102274. [CrossRef]
-
26. Iqbal, M., Valour, J.P., Fessi, H., Elaissari, A. (2015). Preparation of biodegradable PCL particles via double emulsion evaporation method using ultrasound technique. Colloid and Polymer Science, 293, 861-873. [CrossRef]
-
27. Maltesen, M.J., Bjerregaard, S., Hovgaard, L., Havelund, S., van de Weert, M., Grohganz, H. (2011). Multivariate analysis of phenol in freeze-dried and spray-dried insulin formulations by NIR and FTIR. AAPS Pharmscitech, 12, 627-636. [CrossRef]
-
28. Badri, W., Miladi, K., Robin, S., Viennet, C., Nazari, Q.A., Agusti, G., Fessi, H., Elaissari, A. (2017). Polycaprolactone based nanoparticles loaded with indomethacin for anti-inflammatory therapy: From preparation to ex vivo study. Pharmaceutical Research, 34, 1773-1783. [CrossRef]
-
29. Zhao, X., Zu, Y., Zu, S., Wang, D., Zhang, Y., Zu, B. (2010). Insulin nanoparticles for transdermal delivery: Preparation and physicochemical characterization and in vitro evaluation. Drug Development and Industrial Pharmacy, 36(10), 1177-1185. [CrossRef]
-
30. Diwan, R., Ravi, P.R., Agarwal, S.I., Aggarwal, V. (2021). Cilnidipine loaded poly (ε-caprolactone) nanoparticles for enhanced oral delivery: Optimization using DoE, physical characterization, pharmacokinetic, and pharmacodynamic evaluation. Pharmaceutical Development and Technology, 26(3), 278-290. [CrossRef]
-
31. Shinde, T., Agnihotri, T.G., Gomte, S.S., Sharma, N., Jain, A. (2024). Quality by design-driven development of hydroxyurea-loaded polymeric nanoparticles. BioNanoScience, 14(3), 2691-2704. [CrossRef]
-
32. Kumar, A., Sawant, K. (2013). Encapsulation of exemestane in polycaprolactone nanoparticles: Optimization, characterization, and release kinetics. Cancer Nanotechnology, 4, 57-71. [CrossRef]
-
33. Costa, P., Lobo, J.M.S. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123-133. [CrossRef]
-
34. Tuğcu-Demiröz, F., Saar, S., Kara, A.A., Yıldız, A., Tunçel, E., Acartürk, F. (2021). Development and characterization of chitosan nanoparticles loaded nanofiber hybrid system for vaginal controlled release of benzydamine. European Journal of Pharmaceutical Sciences, 161, 105801. [CrossRef]
-
35. Suvakanta, D., Padala, N.M., Lilakanta, N., Prasanta, C. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica, 67(3), 217-223.
KRONİK YARA İYİLEŞMESİ İÇİN İNSÜLİN YÜKLÜ POLİ-KAPROLAKTON NANOPARTIKÜLLERİNİN BOX-BEHNKEN DENEYSEL TASARIMI KULLANILARAK OPTİMİZASYONU
Year 2025,
Volume: 49 Issue: 3, 900 - 914, 19.09.2025
Tamer Tekin
,
Ayşegül Yıldız
,
Fatma Nur Tuğcu Demiröz
,
Füsun Acartürk
Abstract
Amaç: Bu çalışmanın amacı kronik yara iyileşmesinde kullanılmak üzere insülin yüklü poli-kaprolakton nanopartiküllerinin (INS-PCL-NP) formülasyonunu Box-Behnken deneysel tasarımı kullanarak optimize etmektir.
Gereç ve Yöntem: Bağımsız değişkenlerin (poli-kaprolakton konsantrasyonu, polivinil alkol konsantrasyonu ve sonikasyon süresi) bağımlı değişkenlere (partikül boyutu, PDI ve kapsülleme verimliliği) tepkisi değerlendirilmiştir. Nanopartikül formülasyonları çift emülsiyon (s/y/s)-çözücü buharlaştırma yöntemi ile üretilmiştir. Optimum formülasyonu belirlemek için nanopartiküller partikül boyutu, zeta potansiyeli ve enkapsülasyon etkinliği açısından karakterize edilmiştir. Deneysel tasarıma uygun olarak belirlenen optimum nanopartikül formülasyonu ile morfolojik analizler, FTIR, DSC analizleri ve in vitro ilaç salım çalışmaları yapılmıştır.
Sonuç ve Tartışma: Karakterizasyon çalışmalarının sonuçlarına göre, optimize edilmiş nanopartiküllerin 618.5±11.2 nm partikül boyutuna, 0.194±0.021 PDI'ye, -8.21±1.1 mV zeta potansiyeline ve %73.1±4.2 enkapsülasyon etkinliğine sahip olduğu görülmüştür. Morfolojik analizde, nanopartiküllerin küresel bir yapıya sahip olduğu görülmüştür. Optimize edilmiş nanopartikül formülasyonu, ilk 24 saat içinde %49.1±2.1'lik ilk salım, ardından 168 saat boyunca kontrollü salım göstermiştir.
References
-
1. Holl, J., Kowalewski, C., Zimek, Z., Fiedor, P., Kaminski, A., Oldak, T., Moniuszko, M., Eljaszewicz, A. (2021). Chronic diabetic wounds and their treatment with skin substitutes. Cells, 10(3), 655. [CrossRef]
-
2. Buch, P.J., Chai, Y., Goluch, E.D. (2019). Treating polymicrobial infections in chronic diabetic wounds. Clinical Microbiology Reviews, 32(2), 10-1128. [CrossRef]
-
3. Wang, J., Xu, J. (2020). Effects of topical insulin on wound healing: A review of animal and human evidences. Diabetes, Metabolic Syndrome and Obesity, 719-727. [CrossRef]
-
4. Oryan, A., Alemzadeh, E. (2017). Effects of insulin on wound healing: A review of animal and human evidences. Life Sciences, 174, 59-67. [CrossRef]
-
5. Reiber, G.E., McDonell, M.B., Schleyer, A.M., Fihn, S.D., Reda, D.J. (1995). A comprehensive system for quality improvement in ambulatory care: Assessing the quality of diabetes care. Patient Education and Counseling, 26(1-3), 337-341. [CrossRef]
-
6. Tanaka, A., Nagate, T., Matsuda, H. (2005). Acceleration of wound healing by gelatin film dressings with epidermal growth factor. Journal of Veterinary Medical Science, 67(9), 909-913. [CrossRef]
-
7. Hrynyk, M., Neufeld, R.J. (2014). Insulin and wound healing. Burns, 40(8), 1433-1446. [CrossRef]
-
8. Ribeiro, M.C., Correa, V.L.R., da Silva, F.K.L., Casas, A.A., das Chagas, A.D.L., de Oliveira, L.P., Miguel, M.P., Diniz, D.G.A., Amaral, A.C., de Menezes, L.B. (2020). Wound healing treatment using insulin within polymeric nanoparticles in the diabetes animal model. European Journal of Pharmaceutical Sciences, 150, 105330. [CrossRef]
-
9. Iqbal, M., Zafar, N., Fessi, H., Elaissari, A. (2015). Double emulsion solvent evaporation techniques used for drug encapsulation. International Journal of Pharmaceutics, 496(2), 173-190. [CrossRef]
-
10. Abdelkader, D.H., Tambuwala, M.M., Mitchell, C.A., Osman, M.A., El-Gizawy, S.A., Faheem, A.M., El-Tanani, M., McCarron, P.A. (2018). Enhanced cutaneous wound healing in rats following topical delivery of insulin-loaded nanoparticles embedded in poly (vinyl alcohol)-borate hydrogels. Drug Delivery and Translational Research, 8, 1053-1065. [CrossRef]
-
11. de Araújo, T.M., Teixeira, Z., Barbosa-Sampaio, H.C., Rezende, L.F., Boschero, A.C., Durán, N., Höehr, N.F. (2013). Insulin-loaded poly (ε-caprolactone) nanoparticles: Efficient, sustained and safe insulin delivery system. Journal of Biomedical Nanotechnology, 9(6), 1098-1106. [CrossRef]
-
12. Socha, M., Sapin, A., Damge, C., Maincent, P. (2009). Influence of polymers ratio on insulin-loaded nanoparticles based on poly-ε-caprolactone and Eudragit® RS for oral administration. Drug Delivery, 16(8), 430-436. [CrossRef]
-
13. El Yousfi, R., Brahmi, M., Dalli, M., Achalhi, N., Azougagh, O., Tahani, A., Touzani, R., El Idrissi, A. (2023). Recent advances in nanoparticle development for drug delivery: A comprehensive review of polycaprolactone-based multi-arm architectures. Polymers, 15(8), 1835. [CrossRef]
-
14. Byun, Y., Hwang, J.B., Bang, S.H., Darby, D., Cooksey, K., Dawson, P.L., Park, H.J., Whiteside, S. (2011). Formulation and characterization of α-tocopherol loaded poly ɛ-caprolactone (PCL) nanoparticles. Lwt-Food Science and Technology, 44(1), 24-28. [CrossRef]
-
15. Shaikh, M.V., Kala, M., Nivsarkar, M. (2017). Formulation and optimization of doxorubicin loaded polymeric nanoparticles using Box-Behnken design: Ex-vivo stability and in-vitro activity. European Journal of Pharmaceutical Sciences, 100, 262-272. [CrossRef]
-
16. Gajra, B., Patel, R.R., Dalwadi, C. (2016). Formulation, optimization and characterization of cationic polymeric nanoparticles of mast cell stabilizing agent using the Box–Behnken experimental design. Drug Development and Industrial Pharmacy, 42(5), 747-757. [CrossRef]
-
17. Neumiller, J.J., Chen, G., Newsome, C., Hughes, S., Lazarus, P., White Jr, J.R. (2021). Assessment of regular and NPH insulin concentration via two methods of quantification: the Washington State Insulin Concentration Study (WICS). Journal of Diabetes Science and Technology, 15(2), 324-328. [CrossRef]
-
18. Sharma, D., Maheshwari, D., Philip, G., Rana, R., Bhatia, S., Singh, M., Gabrani, R., Sharma, S.K., Ali, J., Sharma, R.K., Dang, S. (2014). Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using box‐Behnken design: In vitro and in vivo evaluation. BioMed Research International, 2014(1), 156010. [CrossRef]
-
19. Wissing, S.A., Müller, R.H. (2002). Solid lipid nanoparticles as carrier for sunscreens: In vitro release and in vivo skin penetration. Journal of Controlled Release, 81(3), 225-233. [CrossRef]
-
20. Khabbaz, B., Solouk, A., Mirzadeh, H. (2019). Polyvinyl alcohol/soy protein isolate nanofibrous patch for wound-healing applications. Progress in Biomaterials, 8, 185-196. [CrossRef]
-
21. Mahmoud, B.S., McConville, C. (2023). Box–Behnken design of experiments of polycaprolactone nanoparticles loaded with irinotecan hydrochloride. Pharmaceutics, 15(4), 1271. [CrossRef]
-
22. Nawaz, T., Iqbal, M., Khan, B. A., Nawaz, A., Hussain, T., Hosny, K.M., Abualsunun, W.A., Rizg, W.Y. (2021). Development and optimization of acriflavine-loaded polycaprolactone nanoparticles using Box–Behnken design for burn wound healing applications. Polymers, 14(1), 101. [CrossRef]
-
23. Romero-Pérez, A., García-García, E., Zavaleta-Mancera, A., Ramírez-Bribiesca, J.E., Revilla-Vázquez, A., Hernández-Calva, L.M., López-Arellano, R., Cruz-Monterrosa, R.G. (2010). Designing and evaluation of sodium selenite nanoparticles in vitro to improve selenium absorption in ruminants. Veterinary Research Communications, 34, 71-79. [CrossRef]
-
24. Solanki, A.B., Parikh, J.R., Parikh, R.H. (2007). Formulation and optimization of piroxicam proniosomes by 3-factor, 3-level Box-Behnken design. AAPS Pharmscitech, 8, 43-49. [CrossRef]
-
25. Higazy, I.M., Mahmoud, A.A., Ghorab, M.M., Ammar, H.O. (2021). Development and evaluation of polyvinyl alcohol stabilized polylactide-co-caprolactone-based nanoparticles for brain delivery. Journal of Drug Delivery Science and Technology, 61, 102274. [CrossRef]
-
26. Iqbal, M., Valour, J.P., Fessi, H., Elaissari, A. (2015). Preparation of biodegradable PCL particles via double emulsion evaporation method using ultrasound technique. Colloid and Polymer Science, 293, 861-873. [CrossRef]
-
27. Maltesen, M.J., Bjerregaard, S., Hovgaard, L., Havelund, S., van de Weert, M., Grohganz, H. (2011). Multivariate analysis of phenol in freeze-dried and spray-dried insulin formulations by NIR and FTIR. AAPS Pharmscitech, 12, 627-636. [CrossRef]
-
28. Badri, W., Miladi, K., Robin, S., Viennet, C., Nazari, Q.A., Agusti, G., Fessi, H., Elaissari, A. (2017). Polycaprolactone based nanoparticles loaded with indomethacin for anti-inflammatory therapy: From preparation to ex vivo study. Pharmaceutical Research, 34, 1773-1783. [CrossRef]
-
29. Zhao, X., Zu, Y., Zu, S., Wang, D., Zhang, Y., Zu, B. (2010). Insulin nanoparticles for transdermal delivery: Preparation and physicochemical characterization and in vitro evaluation. Drug Development and Industrial Pharmacy, 36(10), 1177-1185. [CrossRef]
-
30. Diwan, R., Ravi, P.R., Agarwal, S.I., Aggarwal, V. (2021). Cilnidipine loaded poly (ε-caprolactone) nanoparticles for enhanced oral delivery: Optimization using DoE, physical characterization, pharmacokinetic, and pharmacodynamic evaluation. Pharmaceutical Development and Technology, 26(3), 278-290. [CrossRef]
-
31. Shinde, T., Agnihotri, T.G., Gomte, S.S., Sharma, N., Jain, A. (2024). Quality by design-driven development of hydroxyurea-loaded polymeric nanoparticles. BioNanoScience, 14(3), 2691-2704. [CrossRef]
-
32. Kumar, A., Sawant, K. (2013). Encapsulation of exemestane in polycaprolactone nanoparticles: Optimization, characterization, and release kinetics. Cancer Nanotechnology, 4, 57-71. [CrossRef]
-
33. Costa, P., Lobo, J.M.S. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123-133. [CrossRef]
-
34. Tuğcu-Demiröz, F., Saar, S., Kara, A.A., Yıldız, A., Tunçel, E., Acartürk, F. (2021). Development and characterization of chitosan nanoparticles loaded nanofiber hybrid system for vaginal controlled release of benzydamine. European Journal of Pharmaceutical Sciences, 161, 105801. [CrossRef]
-
35. Suvakanta, D., Padala, N.M., Lilakanta, N., Prasanta, C. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica, 67(3), 217-223.