IRE1α İNHİBİTÖRÜ GSK2850163’ÜN NÜKLEOZİT METABOLİK İNHİBİTÖRÜ KAPESİTABİN ÜZERİNDEKİ GÜÇLENDİRİCİ ROLÜNÜN KOLON KANSERİ HÜCRELERİNDE DEĞERLENDİRİLMESİ
Year 2025,
Volume: 49 Issue: 3, 838 - 851, 19.09.2025
Yalçın Erzurumlu
,
Yağmur Doğanlar
Abstract
Amaç: Kapesitabin kolon kanseri tedavisine yönelik yaygın olarak kullanılan etkili ajanlardan birisidir. Ancak sistemik yan etkiler ve direnç gelişimi gibi olumsuz durumlar tedavi etkinliğini sınırlandırabilmektedir. Çalışmamızın amacı, UPR sinyal yolunun IRE1α/XBP-1 dalının seçici inhibitör olan GSK2850163 aracılı inhibe edilmesinin kolon kanseri hücrelerinde kapesitabine olan duyarlılığa olan etkilerinin araştırılmasıdır.
Gereç ve Yöntem: Çalışmalarımızda insan kolon kanseri hücreleri olan Caco-2 ve HT-29 hücreleri kullanılmıştır. Kapesitabin ve GSK2850163'ün hücre canlılığı üzerine olan etkileri WST-1 testi ile incelendi. Takiben belirlenen etkin konsantrasyonlarda kombinasyon çalışmaları ile canlılık analizlerine devam edildi. GSK2850163’ün IRE1α/XBP-1 yolu üzerindeki inhibe edici etkisi immünoblotlama çalışmaları ile doğrulandı. Kapesitabin ve GSK2850163 eş uygulama tedavisinin hücrelerin migrasyon ve invazyon yeteneği üzerine olan etkileri yara iyileşme ve matrijel-kaplı Boyden-chamber invazyon testi ile değerlendirildi.
Sonuç ve Tartışma: Çalışmamızda IRE1α/XBP-1’in GSK2850163 aracılı inhibisyonunun kolon kanseri hücrelerinin canlılığını, migrasyon ve invazyon kapasitesini önemli ölçüde sınırladığı belirlendi. Kapesitabin ve GSK2850163’ün eş uygulama tedavisinin yalnız başına kapesitabin veya GSK2850163 uygulamalarına kıyasla kolon kanseri hücreleri üzerinde daha etkili olduğunu gözlemlendi. Araştırma bulgularımız, kolon kanserine yönelik IRE1α/XBP-1 sinyal yolunun farmakolojik olarak hedeflenmesinin etkili tedavi yaklaşımları sunabileceğini önermektedir.
Ethical Statement
Yazarlar bu çalışma için etik komite onayının gerekli olmadığını beyan etmektedir.
Supporting Institution
Süleyman Demirel Üniversitesi
Project Number
TSG-2021-8302, TAB-2020-8253
Thanks
Bu çalışmanın hayata geçirilmesinde Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri birimi tarafından daha önce desteklenen projelerimizin (TSG-2021-8302, TAB-2020-8253) bütçesinden faydalanılmıştır.
References
-
1. Dekker, E., Tanis, P.J., Vleugels, J.L.A., Kasi, P.M., Wallace, M.B. (2019). Colorectal cancer. The Lancet, 394(10207), 1467-1480. [CrossRef]
-
2. Siegel, R.L., Kratzer, T.B., Giaquinto, A.N., Sung, H., Jemal, A. (2025). Cancer statistics, 2025. CA: A Cancer Journal for Clinicians, 75(1), 10-45. [CrossRef]
-
3. Sandler, R.S. (1996). Epidemiology and risk factors for colorectal cancer. Gastroenterology Clinics of North America, 25(4), 717-735. [CrossRef]
-
4. Wiese, W., Siwecka, N., Wawrzynkiewicz, A., Rozpędek-Kamińska, W., Kucharska, E., Majsterek, I. (2022). IRE1α Inhibitors as a promising therapeutic strategy in blood malignancies. Cancers, 14(10), 2526. [CrossRef]
-
5. Saeki, T., Takashima, S. (1999). Mechanism and possible biochemical modulation of capecitabine (Xeloda), a newly generated oral fluoropyrimidine. Gan to Kagaku Ryoho. Cancer and Chemotherapy, 26(4), 447–455.
-
6. Saif, M.W., Katirtzoglou, N.A., Syrigos, K.N. (2008). Capecitabine: An overview of the side effects and their management. Anti-Cancer Drugs, 19(5), 447-464. [CrossRef]
-
7. Alzahrani, S.M., Al Doghaither, H.A., Al-Ghafari, A.B., Pushparaj, P.N. (2023). 5‑Fluorouracil and capecitabine therapies for the treatment of colorectal cancer (Review). Oncology Reports, 50(4), 175. [CrossRef]
-
8. European Medicines Agency (EMA) Web site. (2008). Xeloda. Retrieved December 4, 2008, from https://www.ema.europa.eu/en/medicines/human/EPAR/xeloda. Access date: 20 October 2024.
-
9. Comella, P., Casaretti, R., Sandomenico, C., Avallone, A., Franco, L. (2008). Capecitabine, alone and in combination, in the management of patients with colorectal cancer: A review of the evidence. Drugs, 68(7), 949-961. [CrossRef]
-
10. Khaled, J., Kopsida, M., Lennernäs, H., Heindryckx, F. (2022). Drug resistance and endoplasmic reticulum stress in hepatocellular carcinoma. Cells, 11(4), 632. [CrossRef]
-
11. Qing, B., Wang, S., Du, Y., Liu, C., Li, W. (2023). Crosstalk between endoplasmic reticulum stress and multidrug-resistant cancers: Hope or frustration. Frontiers in Pharmacology, 14. [CrossRef]
-
12. Arruda, A.P., Parlakgül, G. (2023). Endoplasmic reticulum architecture and inter-organelle communication in metabolic health and disease. Cold Spring Harbor Perspectives in Biology, 15(2), a041261. [CrossRef]
-
13. Basseri, S., Austin, R.C. (2012). Endoplasmic reticulum stress and lipid metabolism: Mechanisms and therapeutic potential. Biochemistry Research International, 2012, 1-13. [CrossRef]
-
14. Phillips, B. P., Gomez-Navarro, N., Miller, E. A. (2020). Protein quality control in the endoplasmic reticulum. Current Opinion in Cell Biology, 65, 96-102. [CrossRef]
-
15. Chen, X., Shi, C., He, M., Xiong, S., Xia, X. (2023). Endoplasmic reticulum stress: Molecular mechanism and therapeutic targets. Signal Transduction and Targeted Therapy, 8(1), 1-40. [CrossRef]
-
16. Chen, X., Cubillos-Ruiz, J.R. (2021). Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nature reviews. Cancer, 21(2), 71-88. [CrossRef]
-
17. Raymundo, D.P., Doultsinos, D., Guillory, X., Carlesso, A., Eriksson, L.A., Chevet, E. (2020). Pharmacological targeting of IRE1 in cancer. Trends in Cancer, 6(12), 1018-1030. [CrossRef]
-
18. Unal, B., Kuzu, O. F., Jin, Y., Osorio, D., Kildal, W., Pradhan, M., Kung, S.H.Y., Oo, H.Z., Daugaard, M., Vendelbo, M., Patterson, J.B., Thomsen, M.K., Kuijjer, M.L., Saatcioglu, F. (2024). Targeting IRE1α reprograms the tumor microenvironment and enhances anti-tumor immunity in prostate cancer. Nature Communications, 15(1), 8895. [CrossRef]
-
19. Abbasi, S., Rivand, H., Eshaghi, F., Moosavi, M. A., Amanpour, S., McDermott, M.F., Rahmati, M. (2023). Inhibition of IRE1 RNase activity modulates tumor cell progression and enhances the response to chemotherapy in colorectal cancer. Medical Oncology, 40(9), 247. [CrossRef]
-
20. Bashir, S., Banday, M., Qadri, O., Bashir, A., Hilal, N., Nida-i-Fatima, Rader, S., Fazili, K.M. (2021). The molecular mechanism and functional diversity of UPR signaling sensor IRE1. Life Sciences, 265, 118740. [CrossRef]
-
21. Bartoszewska, S., Sławski, J., Collawn, J.F., Bartoszewski, R. (2023). Dual RNase activity of IRE1 as a target for anticancer therapies. Journal of Cell Communication and Signaling, 17(4), 1145. [CrossRef]
-
22. Shi, W., Chen, Z., Li, L., Liu, H., Zhang, R., Cheng, Q., Xu, D., Wu, L. (2019). Unravel the molecular mechanism of XBP1 in regulating the biology of cancer cells. Journal of Cancer, 10(9), 2035-2046. [CrossRef]
-
23. Sheng, X., Nenseth, H. Z., Qu, S., Kuzu, O. F., Frahnow, T., Simon, L., Saatcioglu, F. (2019). IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nature Communications, 10, 323. [CrossRef]
-
24. Jaaks, P., Coker, E.A., Vis, D.J., Edwards, O., Carpenter, E.F., Leto, S.M., Dwane, L., Sassi, F., Lightfoot, H., Barthorpe, S., van der Meer, D., Yang, W., Beck, A., Mironenko, T., Hall, C., Hall, J., Mali, I., Richardson, L., Tolley, C., Morris, J., Thomas, F., Lleshi, E., Aben, N., Benes, C.H., Bertotti, A., Trusolino, L., Wessels, L., Garnett, M.J. (2022). Effective drug combinations in breast, colon and pancreatic cancer cells. Nature, 603(7899), 166-173. [CrossRef]
-
25. Gilad, Y., Gellerman, G., Lonard, D.M., O’Malley, B.W. (2021). Drug Combination in cancer treatment-from cocktails to conjugated combinations. Cancers, 13(4), 669. [CrossRef]
-
26. Concha, N.O., Smallwood, A., Bonnette, W., Totoritis, R., Zhang, G., Federowicz, K., Yang, J., Qi, H., Chen, S., Campobasso, N., Choudhry, A.E., Shuster, L.E., Evans, K.A., Ralph, J., Sweitzer, S., Heerding, D.A. Buser, C.A. Su, D.S., DeYoung, M.P. (2015). Long-Range Inhibitor-Induced Conformational Regulation of Human IRE1α Endoribonuclease Activity. Molecular Pharmacology, 88(6), 1011-1023. [CrossRef]
-
27. Erzurumlu, Y., Doğan, H.K., Çatakli, D. (2022). Inhibition of Ire1α/Xbp-1 Branch of Upr By Gsk2850163 drives the sensitivity to tamoxifen in breast cancer cells. Journal of Faculty of Pharmacy of Ankara University, 46(3), 839-852. [CrossRef]
-
28. Erzurumlu, Y., Dogan, H.K., Catakli, D., Aydogdu, E., Muhammed, M.T. (2023). Estrogens drive the endoplasmic reticulum-associated degradation and promote proto-oncogene c-Myc expression in prostate cancer cells by androgen receptor/estrogen receptor signaling. Journal of Cell Communication and Signaling, 17(3), 793-811. [CrossRef]
-
29. Yoshino, H., Kumai, Y., Kashiwakura, I. (2017). Effects of endoplasmic reticulum stress on apoptosis induction in radioresistant macrophages. Molecular Medicine Reports, 15(5), 2867-2872. [CrossRef]
-
30. Fu, X., Cui, J., Meng, X., Jiang, P., Zheng, Q., Zhao, W., Chen, X. (2021). Endoplasmic reticulum stress, cell death and tumor: Association between endoplasmic reticulum stress and the apoptosis pathway in tumors. Oncology Reports, 45(3), 801-808. [CrossRef]
-
31. Zhang, W., Shi, Y., Oyang, L., Cui, S., Li, S., Li, J., Xu, X., Wu, N., Peng, Q., Tang, Y., Luo, X., Liao, Q., Jiang, X., Zhou, Y. (2024). Endoplasmic reticulum stress-A key guardian in cancer. Cell Death Discovery, 10(1), 343. [CrossRef]
-
32. Liang, D., Khoonkari, M., Avril, T., Chevet, E., Kruyt, F.A.E. (2021). The unfolded protein response as regulator of cancer stemness and differentiation: Mechanisms and implications for cancer therapy. Biochemical Pharmacology, 192, 114737. [CrossRef]
-
33. Chen, S., Chen, J., Hua, X., Sun, Y., Cui, R., Sha, J., Zhu, X. (2020). The emerging role of XBP1 in cancer. Biomedicine and Pharmacotherapy, 127, 110069. [CrossRef]
-
34. Erzurumlu, Y., Doğan, H.K., Çatakli, D. (2022). UPR’nin Ire1α/Xbp-1 dalının Gsk2850163 Aracılı inhibisyonu meme kanseri hücrelerinde tamoksifene duyarlılığı artırır. Ankara Universitesi Eczacılık Fakultesi Dergisi, 837-850. [CrossRef]
-
35. Le Goupil S., Laprade H., Aubry M., Chevet E. (2024). Exploring the IRE1 interactome: From canonical signaling functions to unexpected roles. The Journal of Biological Chemistry, 300(4), 107169. [CrossRef]
-
36. Park, S.M., Kang, T.I., So, J.S. (2021). Roles of XBP1s in transcriptional regulation of target genes. Biomedicines, 9(7), 791. [CrossRef]
-
37. Miger, J., Holmqvist, A., Sun, X.F., Albertsson, M. (2014). Low-dose capecitabine (Xeloda) for treatment for gastrointestinal cancer. Medical Oncology (Northwood, London, England), 31(3), 870. [CrossRef]
-
38. Xu, D., Chen, X., Li, X., Mao, Z., Tang, W., Zhang, W., Ding, L., Tang, J. (2019). Addition of capecitabine in breast cancer first-line chemotherapy improves survival of breast cancer patients. Journal of Cancer, 10(2), 418-429. [CrossRef]
-
39. Blum, J.L. (2001). The role of capecitabine, an oral, enzymatically activated fluoropyrimidine, in the treatment of metastatic breast cancer. The Oncologist, 6(1), 56-64. [CrossRef]
-
40. Hanahan, D., Weinberg, R.A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646-674. [CrossRef]
-
41. Novikov, N.M., Zolotaryova, S.Y., Gautreau, A.M., Denisov, E.V. (2021). Mutational drivers of cancer cell migration and invasion. British Journal of Cancer, 124(1), 102-114. [CrossRef]
-
42. Urra, H., Dufey, E., Avril, T., Chevet, E., Hetz, C. (2016). Endoplasmic reticulum stress and the hallmarks of cancer. Trends in Cancer, 2(5), 252-262. [CrossRef]
-
43. Cubillos-Ruiz, J.R., Bettigole, S.E., Glimcher, L.H. (2017). Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell, 168(4), 692-706. [CrossRef]
-
44. Logue, S.E., McGrath, E.P., Cleary, P., Greene, S., Mnich, K., Almanza, A., Chevet, E., Dwyer, R.M., Oommen, A., Legembre, P., Godey, F., Madden, E.C., Leuzzi, B., Obacz, J., Zeng, Q., Patterson, J.B., Jäger, R., Gorman, A.M., Samali, A. (2018). Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nature Communications, 9(1), 3267. [CrossRef]
-
45. Sun, H., Lin, D.C., Guo, X., Masouleh, B.K., Gery, S., Cao, Q., Alkan, S., Ikezoe, T., Akiba, C., Paquette, R., Chien, W., Müller-Tidow, C., Jing, Y., Agelopoulos, K., Müschen, M., Koeffler, H.P. (2016). Inhibition of IRE1α-driven pro-survival pathways is a promising therapeutic application in acute myeloid leukemia. Oncotarget, 7(14), 18736-18749. [CrossRef]
-
46. Jiang, D., Lynch, C., Medeiros, B.C., Liedtke, M., Bam, R., Tam, A.B., Yang, Z., Alagappan, M., Abidi, P., Le, Q.T., Giaccia, A.J., Denko, N.C., Niwa, M., Koong, A.C. (2016). Identification of doxorubicin as an inhibitor of the IRE1α-XBP1 axis of the unfolded protein response. Scientific Reports, 6, 33353. [CrossRef]
-
47. Harnoss, J.M., Le Thomas, A., Shemorry, A., Marsters, S.A., Lawrence, D.A., Lu, M., Chen, Y.C.A., Qing, J., Totpal, K., Kan, D., Segal, E., Merchant, M., Reichelt, M., Wallweber, H.A., Wang, W., Clark, K., Kaufman, S., Beresini, M.H., Laing, S.T., Sandoval, W., Lorenzo, M., Wu, J., Ly, J., Bruyn, T.D., Heidersbach, A., Haley, B., Gogineni, A.,Weimer, R.M., Lee, D., Braun, M.G., Rudolph, J., VanWyngarden, M.J., Sherbenou, D.W., Gomez-Bougie, P., Amiot, M., Acosta-Alvear, D.,Walter, P., Ashkenazi, A. (2019). Disruption of IRE1α through its kinase domain attenuates multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 116(33), 16420-16429. [CrossRef]
-
48. Jin, Y., Saatcioglu, F. (2020). Targeting the unfolded protein response in hormone-regulated cancers. Trends in Cancer, 6(2), 160-171. [CrossRef]
-
49. Pelizzari-Raymundo, D., Doultsinos, D., Pineau, R., Sauzay, C., Koutsandreas, T., Langlais, T., Carlesso, A., Gkotsi, E., Negroni, L., Avril, T., Chatziioannou, A., Chevet, E., Eriksson, L.A., Guillory, X. (2023). A novel IRE1 kinase inhibitor for adjuvant glioblastoma treatment. iScience, 26(5), 106687. [CrossRef]
-
50. Lucas, D., Sarkar, T., Niemeyer, C.Y., Harnoss, J.C., Schneider, M., Strowitzki, M.J., Harnoss, J.M. (2025). IRE1 is a promising therapeutic target in pancreatic cancer. American Journal of Physiology-Cell Physiology, 328(3), 806-824. [CrossRef]
EVALUATION OF THE BOOSTER ROLE OF IRE1α INHIBITOR GSK2850163 ON NUCLEOSIDE METABOLIC INHIBITOR CAPECITABINE IN COLON CANCER CELLS
Year 2025,
Volume: 49 Issue: 3, 838 - 851, 19.09.2025
Yalçın Erzurumlu
,
Yağmur Doğanlar
Abstract
Objective: Capecitabine is one of the widely used potent agents for the treatment of colon cancer. However, adverse events, such as systemic side effects and resistance development, may limit the effectiveness of the treatment. Our study aimed to investigate the impact of GSK2850163-mediated selective inhibition of the IRE1α/XBP-1 branch of the UPR signaling pathway on the sensitivity of colon cancer cells to capecitabine.
Material and Method: Human colon cancer cells Caco-2 and HT-29 were used in our studies. The effects of capecitabine and GSK2850163 on cell viability were examined by WST-1 test. Viability analyses were continued with combination studies to determine effective concentrations. The inhibitory effect of GSK2850163 on the IRE1α/XBP-1 pathway was confirmed by immunoblotting studies. The impact of capecitabine and GSK2850163 co-administration treatment on the migration and invasion ability of cells was evaluated by wound healing and matrigel-coated Boyden-chamber invasion test.
Result and Discussion: Our study determined that GSK2850163-mediated inhibition of IRE1α/XBP-1 significantly limited the viability, migration and invasion capacity of colon cancer cells. We observed that co-administration of capecitabine and GSK2850163 was more effective on colon cancer cells compared to capecitabine or GSK2850163 alone. Our research findings suggest that pharmacological targeting of the IRE1α/XBP-1 signaling pathway for colon cancer may offer effective treatment approaches.
Ethical Statement
The authors declare that ethics committee approval was not required for this study.
Supporting Institution
Suleyman Demirel University
Project Number
TSG-2021-8302, TAB-2020-8253
Thanks
To actualize of this study, the budget of our previously supported projects (TSG-2021-8302, TAB-2020-8253) by the Scientific Research Projects unit of Süleyman Demirel University was used.
References
-
1. Dekker, E., Tanis, P.J., Vleugels, J.L.A., Kasi, P.M., Wallace, M.B. (2019). Colorectal cancer. The Lancet, 394(10207), 1467-1480. [CrossRef]
-
2. Siegel, R.L., Kratzer, T.B., Giaquinto, A.N., Sung, H., Jemal, A. (2025). Cancer statistics, 2025. CA: A Cancer Journal for Clinicians, 75(1), 10-45. [CrossRef]
-
3. Sandler, R.S. (1996). Epidemiology and risk factors for colorectal cancer. Gastroenterology Clinics of North America, 25(4), 717-735. [CrossRef]
-
4. Wiese, W., Siwecka, N., Wawrzynkiewicz, A., Rozpędek-Kamińska, W., Kucharska, E., Majsterek, I. (2022). IRE1α Inhibitors as a promising therapeutic strategy in blood malignancies. Cancers, 14(10), 2526. [CrossRef]
-
5. Saeki, T., Takashima, S. (1999). Mechanism and possible biochemical modulation of capecitabine (Xeloda), a newly generated oral fluoropyrimidine. Gan to Kagaku Ryoho. Cancer and Chemotherapy, 26(4), 447–455.
-
6. Saif, M.W., Katirtzoglou, N.A., Syrigos, K.N. (2008). Capecitabine: An overview of the side effects and their management. Anti-Cancer Drugs, 19(5), 447-464. [CrossRef]
-
7. Alzahrani, S.M., Al Doghaither, H.A., Al-Ghafari, A.B., Pushparaj, P.N. (2023). 5‑Fluorouracil and capecitabine therapies for the treatment of colorectal cancer (Review). Oncology Reports, 50(4), 175. [CrossRef]
-
8. European Medicines Agency (EMA) Web site. (2008). Xeloda. Retrieved December 4, 2008, from https://www.ema.europa.eu/en/medicines/human/EPAR/xeloda. Access date: 20 October 2024.
-
9. Comella, P., Casaretti, R., Sandomenico, C., Avallone, A., Franco, L. (2008). Capecitabine, alone and in combination, in the management of patients with colorectal cancer: A review of the evidence. Drugs, 68(7), 949-961. [CrossRef]
-
10. Khaled, J., Kopsida, M., Lennernäs, H., Heindryckx, F. (2022). Drug resistance and endoplasmic reticulum stress in hepatocellular carcinoma. Cells, 11(4), 632. [CrossRef]
-
11. Qing, B., Wang, S., Du, Y., Liu, C., Li, W. (2023). Crosstalk between endoplasmic reticulum stress and multidrug-resistant cancers: Hope or frustration. Frontiers in Pharmacology, 14. [CrossRef]
-
12. Arruda, A.P., Parlakgül, G. (2023). Endoplasmic reticulum architecture and inter-organelle communication in metabolic health and disease. Cold Spring Harbor Perspectives in Biology, 15(2), a041261. [CrossRef]
-
13. Basseri, S., Austin, R.C. (2012). Endoplasmic reticulum stress and lipid metabolism: Mechanisms and therapeutic potential. Biochemistry Research International, 2012, 1-13. [CrossRef]
-
14. Phillips, B. P., Gomez-Navarro, N., Miller, E. A. (2020). Protein quality control in the endoplasmic reticulum. Current Opinion in Cell Biology, 65, 96-102. [CrossRef]
-
15. Chen, X., Shi, C., He, M., Xiong, S., Xia, X. (2023). Endoplasmic reticulum stress: Molecular mechanism and therapeutic targets. Signal Transduction and Targeted Therapy, 8(1), 1-40. [CrossRef]
-
16. Chen, X., Cubillos-Ruiz, J.R. (2021). Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nature reviews. Cancer, 21(2), 71-88. [CrossRef]
-
17. Raymundo, D.P., Doultsinos, D., Guillory, X., Carlesso, A., Eriksson, L.A., Chevet, E. (2020). Pharmacological targeting of IRE1 in cancer. Trends in Cancer, 6(12), 1018-1030. [CrossRef]
-
18. Unal, B., Kuzu, O. F., Jin, Y., Osorio, D., Kildal, W., Pradhan, M., Kung, S.H.Y., Oo, H.Z., Daugaard, M., Vendelbo, M., Patterson, J.B., Thomsen, M.K., Kuijjer, M.L., Saatcioglu, F. (2024). Targeting IRE1α reprograms the tumor microenvironment and enhances anti-tumor immunity in prostate cancer. Nature Communications, 15(1), 8895. [CrossRef]
-
19. Abbasi, S., Rivand, H., Eshaghi, F., Moosavi, M. A., Amanpour, S., McDermott, M.F., Rahmati, M. (2023). Inhibition of IRE1 RNase activity modulates tumor cell progression and enhances the response to chemotherapy in colorectal cancer. Medical Oncology, 40(9), 247. [CrossRef]
-
20. Bashir, S., Banday, M., Qadri, O., Bashir, A., Hilal, N., Nida-i-Fatima, Rader, S., Fazili, K.M. (2021). The molecular mechanism and functional diversity of UPR signaling sensor IRE1. Life Sciences, 265, 118740. [CrossRef]
-
21. Bartoszewska, S., Sławski, J., Collawn, J.F., Bartoszewski, R. (2023). Dual RNase activity of IRE1 as a target for anticancer therapies. Journal of Cell Communication and Signaling, 17(4), 1145. [CrossRef]
-
22. Shi, W., Chen, Z., Li, L., Liu, H., Zhang, R., Cheng, Q., Xu, D., Wu, L. (2019). Unravel the molecular mechanism of XBP1 in regulating the biology of cancer cells. Journal of Cancer, 10(9), 2035-2046. [CrossRef]
-
23. Sheng, X., Nenseth, H. Z., Qu, S., Kuzu, O. F., Frahnow, T., Simon, L., Saatcioglu, F. (2019). IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nature Communications, 10, 323. [CrossRef]
-
24. Jaaks, P., Coker, E.A., Vis, D.J., Edwards, O., Carpenter, E.F., Leto, S.M., Dwane, L., Sassi, F., Lightfoot, H., Barthorpe, S., van der Meer, D., Yang, W., Beck, A., Mironenko, T., Hall, C., Hall, J., Mali, I., Richardson, L., Tolley, C., Morris, J., Thomas, F., Lleshi, E., Aben, N., Benes, C.H., Bertotti, A., Trusolino, L., Wessels, L., Garnett, M.J. (2022). Effective drug combinations in breast, colon and pancreatic cancer cells. Nature, 603(7899), 166-173. [CrossRef]
-
25. Gilad, Y., Gellerman, G., Lonard, D.M., O’Malley, B.W. (2021). Drug Combination in cancer treatment-from cocktails to conjugated combinations. Cancers, 13(4), 669. [CrossRef]
-
26. Concha, N.O., Smallwood, A., Bonnette, W., Totoritis, R., Zhang, G., Federowicz, K., Yang, J., Qi, H., Chen, S., Campobasso, N., Choudhry, A.E., Shuster, L.E., Evans, K.A., Ralph, J., Sweitzer, S., Heerding, D.A. Buser, C.A. Su, D.S., DeYoung, M.P. (2015). Long-Range Inhibitor-Induced Conformational Regulation of Human IRE1α Endoribonuclease Activity. Molecular Pharmacology, 88(6), 1011-1023. [CrossRef]
-
27. Erzurumlu, Y., Doğan, H.K., Çatakli, D. (2022). Inhibition of Ire1α/Xbp-1 Branch of Upr By Gsk2850163 drives the sensitivity to tamoxifen in breast cancer cells. Journal of Faculty of Pharmacy of Ankara University, 46(3), 839-852. [CrossRef]
-
28. Erzurumlu, Y., Dogan, H.K., Catakli, D., Aydogdu, E., Muhammed, M.T. (2023). Estrogens drive the endoplasmic reticulum-associated degradation and promote proto-oncogene c-Myc expression in prostate cancer cells by androgen receptor/estrogen receptor signaling. Journal of Cell Communication and Signaling, 17(3), 793-811. [CrossRef]
-
29. Yoshino, H., Kumai, Y., Kashiwakura, I. (2017). Effects of endoplasmic reticulum stress on apoptosis induction in radioresistant macrophages. Molecular Medicine Reports, 15(5), 2867-2872. [CrossRef]
-
30. Fu, X., Cui, J., Meng, X., Jiang, P., Zheng, Q., Zhao, W., Chen, X. (2021). Endoplasmic reticulum stress, cell death and tumor: Association between endoplasmic reticulum stress and the apoptosis pathway in tumors. Oncology Reports, 45(3), 801-808. [CrossRef]
-
31. Zhang, W., Shi, Y., Oyang, L., Cui, S., Li, S., Li, J., Xu, X., Wu, N., Peng, Q., Tang, Y., Luo, X., Liao, Q., Jiang, X., Zhou, Y. (2024). Endoplasmic reticulum stress-A key guardian in cancer. Cell Death Discovery, 10(1), 343. [CrossRef]
-
32. Liang, D., Khoonkari, M., Avril, T., Chevet, E., Kruyt, F.A.E. (2021). The unfolded protein response as regulator of cancer stemness and differentiation: Mechanisms and implications for cancer therapy. Biochemical Pharmacology, 192, 114737. [CrossRef]
-
33. Chen, S., Chen, J., Hua, X., Sun, Y., Cui, R., Sha, J., Zhu, X. (2020). The emerging role of XBP1 in cancer. Biomedicine and Pharmacotherapy, 127, 110069. [CrossRef]
-
34. Erzurumlu, Y., Doğan, H.K., Çatakli, D. (2022). UPR’nin Ire1α/Xbp-1 dalının Gsk2850163 Aracılı inhibisyonu meme kanseri hücrelerinde tamoksifene duyarlılığı artırır. Ankara Universitesi Eczacılık Fakultesi Dergisi, 837-850. [CrossRef]
-
35. Le Goupil S., Laprade H., Aubry M., Chevet E. (2024). Exploring the IRE1 interactome: From canonical signaling functions to unexpected roles. The Journal of Biological Chemistry, 300(4), 107169. [CrossRef]
-
36. Park, S.M., Kang, T.I., So, J.S. (2021). Roles of XBP1s in transcriptional regulation of target genes. Biomedicines, 9(7), 791. [CrossRef]
-
37. Miger, J., Holmqvist, A., Sun, X.F., Albertsson, M. (2014). Low-dose capecitabine (Xeloda) for treatment for gastrointestinal cancer. Medical Oncology (Northwood, London, England), 31(3), 870. [CrossRef]
-
38. Xu, D., Chen, X., Li, X., Mao, Z., Tang, W., Zhang, W., Ding, L., Tang, J. (2019). Addition of capecitabine in breast cancer first-line chemotherapy improves survival of breast cancer patients. Journal of Cancer, 10(2), 418-429. [CrossRef]
-
39. Blum, J.L. (2001). The role of capecitabine, an oral, enzymatically activated fluoropyrimidine, in the treatment of metastatic breast cancer. The Oncologist, 6(1), 56-64. [CrossRef]
-
40. Hanahan, D., Weinberg, R.A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646-674. [CrossRef]
-
41. Novikov, N.M., Zolotaryova, S.Y., Gautreau, A.M., Denisov, E.V. (2021). Mutational drivers of cancer cell migration and invasion. British Journal of Cancer, 124(1), 102-114. [CrossRef]
-
42. Urra, H., Dufey, E., Avril, T., Chevet, E., Hetz, C. (2016). Endoplasmic reticulum stress and the hallmarks of cancer. Trends in Cancer, 2(5), 252-262. [CrossRef]
-
43. Cubillos-Ruiz, J.R., Bettigole, S.E., Glimcher, L.H. (2017). Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell, 168(4), 692-706. [CrossRef]
-
44. Logue, S.E., McGrath, E.P., Cleary, P., Greene, S., Mnich, K., Almanza, A., Chevet, E., Dwyer, R.M., Oommen, A., Legembre, P., Godey, F., Madden, E.C., Leuzzi, B., Obacz, J., Zeng, Q., Patterson, J.B., Jäger, R., Gorman, A.M., Samali, A. (2018). Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nature Communications, 9(1), 3267. [CrossRef]
-
45. Sun, H., Lin, D.C., Guo, X., Masouleh, B.K., Gery, S., Cao, Q., Alkan, S., Ikezoe, T., Akiba, C., Paquette, R., Chien, W., Müller-Tidow, C., Jing, Y., Agelopoulos, K., Müschen, M., Koeffler, H.P. (2016). Inhibition of IRE1α-driven pro-survival pathways is a promising therapeutic application in acute myeloid leukemia. Oncotarget, 7(14), 18736-18749. [CrossRef]
-
46. Jiang, D., Lynch, C., Medeiros, B.C., Liedtke, M., Bam, R., Tam, A.B., Yang, Z., Alagappan, M., Abidi, P., Le, Q.T., Giaccia, A.J., Denko, N.C., Niwa, M., Koong, A.C. (2016). Identification of doxorubicin as an inhibitor of the IRE1α-XBP1 axis of the unfolded protein response. Scientific Reports, 6, 33353. [CrossRef]
-
47. Harnoss, J.M., Le Thomas, A., Shemorry, A., Marsters, S.A., Lawrence, D.A., Lu, M., Chen, Y.C.A., Qing, J., Totpal, K., Kan, D., Segal, E., Merchant, M., Reichelt, M., Wallweber, H.A., Wang, W., Clark, K., Kaufman, S., Beresini, M.H., Laing, S.T., Sandoval, W., Lorenzo, M., Wu, J., Ly, J., Bruyn, T.D., Heidersbach, A., Haley, B., Gogineni, A.,Weimer, R.M., Lee, D., Braun, M.G., Rudolph, J., VanWyngarden, M.J., Sherbenou, D.W., Gomez-Bougie, P., Amiot, M., Acosta-Alvear, D.,Walter, P., Ashkenazi, A. (2019). Disruption of IRE1α through its kinase domain attenuates multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 116(33), 16420-16429. [CrossRef]
-
48. Jin, Y., Saatcioglu, F. (2020). Targeting the unfolded protein response in hormone-regulated cancers. Trends in Cancer, 6(2), 160-171. [CrossRef]
-
49. Pelizzari-Raymundo, D., Doultsinos, D., Pineau, R., Sauzay, C., Koutsandreas, T., Langlais, T., Carlesso, A., Gkotsi, E., Negroni, L., Avril, T., Chatziioannou, A., Chevet, E., Eriksson, L.A., Guillory, X. (2023). A novel IRE1 kinase inhibitor for adjuvant glioblastoma treatment. iScience, 26(5), 106687. [CrossRef]
-
50. Lucas, D., Sarkar, T., Niemeyer, C.Y., Harnoss, J.C., Schneider, M., Strowitzki, M.J., Harnoss, J.M. (2025). IRE1 is a promising therapeutic target in pancreatic cancer. American Journal of Physiology-Cell Physiology, 328(3), 806-824. [CrossRef]