Research Article
BibTex RIS Cite

Cilt Kanserinde Sirkadiyen ile İlişkili Gen Mutasyonu ve Ekspresyon Paternlerinin Belirlenmesi

Year 2022, Volume: 4 Issue: 3, 140 - 152, 21.10.2022

Abstract

Amaç: Birçok periferal organın sirkadiyen ritim tarafından modüle edilen endojen ritimleri vardır; deri de bu periferik organlardan biridir. Ritimdeki düzensizlikler hücresel yolları yeniden programlayabilir ve hücre çoğalmasına, apoptoza direnç, metastaz, bağışıklık sistemi hücrelerinin yok edilmesi ve anjiyogenezin artmasına neden olabilir. Bu çalışmanın amacı, SKCM örneklerinde çekirdek sirkadiyen ritim genlerinin mutasyonel ve m-RNA profilini kapsamlı bir şekilde araştırmaktır.
Method: Bu çalışmada; SKCM (n:462) hastalarının genom dizileri ve gen ekspresyon profilleri TCGA veri tabanından indirildikten sonra hedef genlerin mutasyon sıklığı ve mutasyon paternleri detaylı olarak belirlendi. SKCM için tespit ettiğimiz mutasyonların onkojenik özelliklerini tahmin etmek için PolyPhen-2 ve SNAP biyoinformatik araçları kullanıldı. Eş zamanlı olarak, sirkadiyen ritim genlerindeki mutasyonların fonksiyonel etkilerini değerlendirmek için m-RNA ekspresyon profilleri belirlendi. Son olarak, mutasyona uğramış proteinlerin hücresel süreçlerdeki fonksiyonel ilişkilerini daha iyi anlamak için STRING ağ analizi yapıldı.
Bulgular: 10 gende bulunan 173 mutasyondan 152 missense (yanlış anlamlı) mutasyon, 13 nonsense (anlamsız) mutasyon, 6 splice bölge mutasyonu ve 2 füzyon gen mutasyonu vardı ve bunların 62'si patojenik özelliklere sahipti. BMAL1, CRY2, PER1, PER2 ve PER3'ün m-RNA ekspresyon seviyeleri, SKCM doku örneklerinde downregüle olurken, TIMELESS sağlıklı gruba kıyasla upregüle olduğu görüldü (p<0.01). Prognostik bir belirteç olarak kabul edilen m-RNA ekspresyonunun genel sağkalıma etkisi, azalan ARNTL (p=0.00038) seviyesi ve artan TIMELESS (p=0.00033) seviyesi için anlamlı bulundu.
Sonuç: Bu moleküler bakış açısının belirlenmesi, hedefe yönelik ilaç tedavileri ve kişiselleştirilmiş tıp geliştirmede faydalı olabilir.

References

  • Referans1 Gutierrez D, Arbesman J. Circadian Dysrhythmias, Physiological Aberrations, and the Link to Skin Cancer. Int J Mol Sci 2016;17(5):621.
  • Referans2 Lyons AB, Moy L, Moy R, Tung R. Circadian Rhythm and the Skin: A Review of the Literature. J Clin Aesthet Dermatol 2019;12(9):42-45
  • Referans3 Mazzoccoli G, Laukkanen MO, Vinciguerra M, Colangelo T, Colantuoni V. A Timeless Link Between Circadian Patterns and Disease. Trends Mol Med 2016;22(1):68-81.
  • Referans4 Plikus MV, Andersen B. Skin as a window to body-clock time. Proc Natl Acad Sci U S A 2018 ;115(48):12095-12097.
  • Referans 5 Gaddameedhi S, Selby CP, Kaufmann WK, Smart RC, Sancar A. Control of skin cancer by the circadian rhythm. Proc Natl Acad Sci U S A 2011;108(46):18790-5.
  • Referans 6 Kolinjivadi AM, Chong ST, Ngeow J. Molecular connections between circadian rhythm and genome maintenance pathways. Endocr Relat Cancer 2021;28(2):R55-R66.
  • Referans7 Allada R, Bass J. Circadian Mechanisms in Medicine. N Engl J Med 2021;384(6):550-561.
  • Referans8 Sulli G, Lam MTY, Panda S. Interplay between Circadian Clock and Cancer: New Frontiers for Cancer Treatment. Trends Cancer 2019;5(8):475-494.
  • Referans 9 Oztas O, Selby CP, Sancar A, Adebali O. Genome-wide excision repair in Arabidopsis is coupled to transcription and reflects circadian gene expression patterns. Nat Commun 2018;9(1):1503.
  • Referans10 Dakup P, Gaddameedhi S. Impact of the Circadian Clock on UV-Induced DNA Damage Response and Photocarcinogenesis. Photochem Photobiol 2017 ;93(1):296-303.
  • Referans 11 Cerami E, Gao J, Dogrusoz U.The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012;2(5):401-4.
  • Referans12 Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013;Chapter 7:Unit7.20.
  • Referans13 Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res 2001;11(5):863-74.
  • Referans14 Tate JG, Bamford S, Jubb HC. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 2019 ;47(1):941-47.
  • Referans15 Tang Z, Li C, Kang B. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017;45(1):98-102
  • Referans 16 Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47(1):607-13
  • Referans 17 Masuda S, Narasimamurthy R, Yoshitane H, Kim JK, Fukada Y, Virshup DM. Mutation of a PER2 phosphodegron perturbs the circadian phosphoswitch. Proc Natl Acad Sci U S A 2020;117(20):10888-10896.
  • Referans 18 Lopez L, Fasano C, Perrella G, Facella P. Cryptochromes and the Circadian Clock: The Story of a Very Complex Relationship in a Spinning World. Genes (Basel) 2021;12(5):672.
  • Referans 19 Fribourgh JL, Srivastava A, Sandate CR, Michael AK, Hsu PL, Rakers C, et al. Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing. Elife 2020;9:e55275.
  • Referans20 Peng LU, Bai G, Pang Y. Roles of NPAS2 in circadian rhythm and disease. Acta Biochim Biophys Sin (Shanghai) 2021;53(10):1257-1265.
  • Referans21 Xing X, Gu F, Hua L, Cui X, Li D, Wu Z, Zhang R. TIMELESS Promotes Tumor Progression by Enhancing Macrophages Recruitment in Ovarian Cancer. Front Oncol 2021;11:732058.
  • Referans22 Zhou L, Bryant CD, Loudon A, Palmer AA, Vitaterna MH, Turek FW. The circadian clock gene Csnk1e regulates rapid eye movement sleep amount, and nonrapid eye movement sleep architecture in mice. Sleep 2014;37(4):785-93.
  • Referans23 Pazienza V, Piepoli A, Panza A, Valvano MR, Benegiamo G, Vinciguerra M, Andriulli A, Mazzoccoli G. SIRT1 and the clock gene machinery in colorectal cancer. Cancer Invest 2012;30(2):98-105.
  • Referans24 Jones ML, Baris Y, Taylor MRG, Yeeles JTP. Structure of a human replisome shows the organisation and interactions of a DNA replication machine. EMBO J 2021;40(23):e108819.
  • Referans25 Shi G, Xing L, Liu Z, Qu Z, Wu X, Dong Z, et al. Dual roles of FBXL3 in the mammalian circadian feedback loops are important for period determination and robustness of the clock. Proc Natl Acad Sci U S A 2013;110(12):4750-5.
  • Referans26 Köhler C, Koalick D, Fabricius A, Parplys AC, Borgmann K, Pospiech H, Grosse F. Cdc45 is limiting for replication initiation in humans. Cell Cycle 2016;15(7):974-85.
  • Referans27 Lubov JE, Cvammen W, Kemp MG. The Impact of the Circadian Clock on Skin Physiology and Cancer Development. Int J Mol Sci 2021;22(11):6112.
  • Referans28 Rana S, Shahid A, Ullah H, Mahmood S. Lack of association of the NPAS2 gene Ala394Thr polymorphism (rs2305160:G>A) with risk of chronic lymphocytic leukemia. Asian Pac J Cancer Prev 2014;15(17):7169-74.
  • Referans29 Benna C, Helfrich-Förster C, Rajendran S, Monticelli H, Pilati P, Nitti D, et al.Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis. Oncotarget2017;8(14):23978-23995.
  • Referans30 Jim HS, Lin HY, Tyrer JP, Lawrenson K, Dennis J, Chornokur G, et al. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC). J Genet Genome Res 2015;2(2):017.
  • Referans31 Xue T, Song C, Wang Q, Wang Y, Chen G. Investigations of the CLOCK and BMAL1 Proteins Binding to DNA: A Molecular Dynamics Simulation Study. PLoS One 2016;11(5):e0155105.
  • Referans32 Garg A, Orru R, Ye W, Distler U, Chojnacki JE, Köhn M, et al. Structural and mechanistic insights into the interaction of the circadian transcription factor BMAL1 with the KIX domain of the CREB-binding protein. J Biol Chem 2019;294(45):16604-16619. Referans33 Jiang W, Zhao S, Jiang X, Zhang E, Hu G, Hu B, et al. The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Lett 2016;371(2):314-25.
  • Referans34 Chan AB, Parico GCG, Fribourgh JL, Ibrahim LH, Bollong MJ, Partch CL, et al. CRY2 missense mutations suppress P53 and enhance cell growth. Proc Natl Acad Sci U S A 2021;118(27):e2101416118.
  • Referans35 Parico GCG, Perez I, Fribourgh JL, Hernandez BN, Lee HW, Partch CL. The human CRY1 tail controls circadian timing by regulating its association with CLOCK:BMAL1. Proc Natl Acad Sci U S A 2020;117(45):27971-27979.
  • Referans36 Schmalen I, Reischl S, Wallach T, Klemz R, Grudziecki A, Prabu JR, et al. Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 2014;157(5):1203-15.
  • Referans37 Li HX. The role of circadian clock genes in tumors. Onco Targets Ther 2019;12:3645-3660.
  • Referans38 Philpott JM, Narasimamurthy R, Ricci CG, Freeberg AM, Hunt SR, Yee LE, et al.Casein kinase 1 dynamics underlie substrate selectivity and the PER2 circadian phosphoswitch. Elife 2020 ;9:e52343.
  • Referans39 Xiang R, Cui Y, Wang Y, Xie T, Yang X, Wang Z, et al. Circadian clock gene Per2 downregulation in non‑small cell lung cancer is associated with tumour progression and metastasis. Oncol Rep 2018;40(5):3040-3048.
  • Referans40 Qiu MJ, Liu LP, Jin S, Fang XF, He XX, Xiong ZF, et al. Research on circadian clock genes in common abdominal malignant tumors. Chronobiol Int 2019;36(7):906-918.
  • Referans41 Hu ML, Yeh KT, Lin PM, Hsu CM, Hsiao HH, Liu YC, et al. Deregulated expression of circadian clock genes in gastric cancer. BMC Gastroenterol 2014;14:67.
  • Referans42 Schittek B, Sinnberg T. Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol Cancer 2014;13:231.
  • Referans43 Ren Z, Ma S, Cheng X, Guo Y, Liu Z. Expression and clinical significance of TIMELESS in glioma. Int J Clin Exp Pathol 2021;14(9):938-955.
  • Referans44 Leman AR, Noguchi C, Lee CY, Noguchi E. Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion. J Cell Sci 2010;123(Pt 5):660-70.

Identification of circadian-related gene mutation and expression patterns in skin cancer

Year 2022, Volume: 4 Issue: 3, 140 - 152, 21.10.2022

Abstract

Aim: Many peripheral organs have endogenous rhythms that are modulated by circadian rhythm; the skin is one of these peripheral organs. Irregularities in rhythm can reprogram cellular pathways and lead to cell proliferation, resistance to apoptosis, metastasis, elimination of immune system cells, and increased angiogenesis. The aim of this study was to comprehensively investigate the mutational and m-RNA profile of core circadian rhythm genes in SKCM samples.
Methods: The genome sequences and gene expression profiles of SKCM (n:462) patients were downloaded from the TCGA database. Mutation frequency and mutation patterns of target genes were determined in detail. PolyPhen-2 and SNAP tools were used to estimate the oncogenic properties of the mutations we detected for SKCM. Simultaneously, m-RNA expression profiles were determined to asses the functional effects of mutations in circadian rhythm genes. Finally, STRING network analysis was performed to better understand the functional relationships of mutated proteins in cellular processes.
Results: There were 152 missense mutations, 13 nonsense mutations, 6 splice region mutations and, 2 fusion gene mutations among the 173 mutations found in 10 genes, and 62 of them had pathogenic properties. The m-RNA expression levels of BMAL1, CRY2, PER1, PER2, and PER3 were down-regulated in SKCM tissue samples, while TIMELESS was up-regulated compared to the the healthy group (p<0.01). The effect of m-RNA expression, considered a prognostic marker, on overall survival was found to be significant for decreased ARNTL (p=0.00038) level and increased TIMELESS (p=0.00033) level.
Conclusion: Determining this molecular perspective may be useful in developing targeted drug therapies and personalized medicine.

References

  • Referans1 Gutierrez D, Arbesman J. Circadian Dysrhythmias, Physiological Aberrations, and the Link to Skin Cancer. Int J Mol Sci 2016;17(5):621.
  • Referans2 Lyons AB, Moy L, Moy R, Tung R. Circadian Rhythm and the Skin: A Review of the Literature. J Clin Aesthet Dermatol 2019;12(9):42-45
  • Referans3 Mazzoccoli G, Laukkanen MO, Vinciguerra M, Colangelo T, Colantuoni V. A Timeless Link Between Circadian Patterns and Disease. Trends Mol Med 2016;22(1):68-81.
  • Referans4 Plikus MV, Andersen B. Skin as a window to body-clock time. Proc Natl Acad Sci U S A 2018 ;115(48):12095-12097.
  • Referans 5 Gaddameedhi S, Selby CP, Kaufmann WK, Smart RC, Sancar A. Control of skin cancer by the circadian rhythm. Proc Natl Acad Sci U S A 2011;108(46):18790-5.
  • Referans 6 Kolinjivadi AM, Chong ST, Ngeow J. Molecular connections between circadian rhythm and genome maintenance pathways. Endocr Relat Cancer 2021;28(2):R55-R66.
  • Referans7 Allada R, Bass J. Circadian Mechanisms in Medicine. N Engl J Med 2021;384(6):550-561.
  • Referans8 Sulli G, Lam MTY, Panda S. Interplay between Circadian Clock and Cancer: New Frontiers for Cancer Treatment. Trends Cancer 2019;5(8):475-494.
  • Referans 9 Oztas O, Selby CP, Sancar A, Adebali O. Genome-wide excision repair in Arabidopsis is coupled to transcription and reflects circadian gene expression patterns. Nat Commun 2018;9(1):1503.
  • Referans10 Dakup P, Gaddameedhi S. Impact of the Circadian Clock on UV-Induced DNA Damage Response and Photocarcinogenesis. Photochem Photobiol 2017 ;93(1):296-303.
  • Referans 11 Cerami E, Gao J, Dogrusoz U.The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012;2(5):401-4.
  • Referans12 Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013;Chapter 7:Unit7.20.
  • Referans13 Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res 2001;11(5):863-74.
  • Referans14 Tate JG, Bamford S, Jubb HC. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 2019 ;47(1):941-47.
  • Referans15 Tang Z, Li C, Kang B. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017;45(1):98-102
  • Referans 16 Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47(1):607-13
  • Referans 17 Masuda S, Narasimamurthy R, Yoshitane H, Kim JK, Fukada Y, Virshup DM. Mutation of a PER2 phosphodegron perturbs the circadian phosphoswitch. Proc Natl Acad Sci U S A 2020;117(20):10888-10896.
  • Referans 18 Lopez L, Fasano C, Perrella G, Facella P. Cryptochromes and the Circadian Clock: The Story of a Very Complex Relationship in a Spinning World. Genes (Basel) 2021;12(5):672.
  • Referans 19 Fribourgh JL, Srivastava A, Sandate CR, Michael AK, Hsu PL, Rakers C, et al. Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing. Elife 2020;9:e55275.
  • Referans20 Peng LU, Bai G, Pang Y. Roles of NPAS2 in circadian rhythm and disease. Acta Biochim Biophys Sin (Shanghai) 2021;53(10):1257-1265.
  • Referans21 Xing X, Gu F, Hua L, Cui X, Li D, Wu Z, Zhang R. TIMELESS Promotes Tumor Progression by Enhancing Macrophages Recruitment in Ovarian Cancer. Front Oncol 2021;11:732058.
  • Referans22 Zhou L, Bryant CD, Loudon A, Palmer AA, Vitaterna MH, Turek FW. The circadian clock gene Csnk1e regulates rapid eye movement sleep amount, and nonrapid eye movement sleep architecture in mice. Sleep 2014;37(4):785-93.
  • Referans23 Pazienza V, Piepoli A, Panza A, Valvano MR, Benegiamo G, Vinciguerra M, Andriulli A, Mazzoccoli G. SIRT1 and the clock gene machinery in colorectal cancer. Cancer Invest 2012;30(2):98-105.
  • Referans24 Jones ML, Baris Y, Taylor MRG, Yeeles JTP. Structure of a human replisome shows the organisation and interactions of a DNA replication machine. EMBO J 2021;40(23):e108819.
  • Referans25 Shi G, Xing L, Liu Z, Qu Z, Wu X, Dong Z, et al. Dual roles of FBXL3 in the mammalian circadian feedback loops are important for period determination and robustness of the clock. Proc Natl Acad Sci U S A 2013;110(12):4750-5.
  • Referans26 Köhler C, Koalick D, Fabricius A, Parplys AC, Borgmann K, Pospiech H, Grosse F. Cdc45 is limiting for replication initiation in humans. Cell Cycle 2016;15(7):974-85.
  • Referans27 Lubov JE, Cvammen W, Kemp MG. The Impact of the Circadian Clock on Skin Physiology and Cancer Development. Int J Mol Sci 2021;22(11):6112.
  • Referans28 Rana S, Shahid A, Ullah H, Mahmood S. Lack of association of the NPAS2 gene Ala394Thr polymorphism (rs2305160:G>A) with risk of chronic lymphocytic leukemia. Asian Pac J Cancer Prev 2014;15(17):7169-74.
  • Referans29 Benna C, Helfrich-Förster C, Rajendran S, Monticelli H, Pilati P, Nitti D, et al.Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis. Oncotarget2017;8(14):23978-23995.
  • Referans30 Jim HS, Lin HY, Tyrer JP, Lawrenson K, Dennis J, Chornokur G, et al. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC). J Genet Genome Res 2015;2(2):017.
  • Referans31 Xue T, Song C, Wang Q, Wang Y, Chen G. Investigations of the CLOCK and BMAL1 Proteins Binding to DNA: A Molecular Dynamics Simulation Study. PLoS One 2016;11(5):e0155105.
  • Referans32 Garg A, Orru R, Ye W, Distler U, Chojnacki JE, Köhn M, et al. Structural and mechanistic insights into the interaction of the circadian transcription factor BMAL1 with the KIX domain of the CREB-binding protein. J Biol Chem 2019;294(45):16604-16619. Referans33 Jiang W, Zhao S, Jiang X, Zhang E, Hu G, Hu B, et al. The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Lett 2016;371(2):314-25.
  • Referans34 Chan AB, Parico GCG, Fribourgh JL, Ibrahim LH, Bollong MJ, Partch CL, et al. CRY2 missense mutations suppress P53 and enhance cell growth. Proc Natl Acad Sci U S A 2021;118(27):e2101416118.
  • Referans35 Parico GCG, Perez I, Fribourgh JL, Hernandez BN, Lee HW, Partch CL. The human CRY1 tail controls circadian timing by regulating its association with CLOCK:BMAL1. Proc Natl Acad Sci U S A 2020;117(45):27971-27979.
  • Referans36 Schmalen I, Reischl S, Wallach T, Klemz R, Grudziecki A, Prabu JR, et al. Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 2014;157(5):1203-15.
  • Referans37 Li HX. The role of circadian clock genes in tumors. Onco Targets Ther 2019;12:3645-3660.
  • Referans38 Philpott JM, Narasimamurthy R, Ricci CG, Freeberg AM, Hunt SR, Yee LE, et al.Casein kinase 1 dynamics underlie substrate selectivity and the PER2 circadian phosphoswitch. Elife 2020 ;9:e52343.
  • Referans39 Xiang R, Cui Y, Wang Y, Xie T, Yang X, Wang Z, et al. Circadian clock gene Per2 downregulation in non‑small cell lung cancer is associated with tumour progression and metastasis. Oncol Rep 2018;40(5):3040-3048.
  • Referans40 Qiu MJ, Liu LP, Jin S, Fang XF, He XX, Xiong ZF, et al. Research on circadian clock genes in common abdominal malignant tumors. Chronobiol Int 2019;36(7):906-918.
  • Referans41 Hu ML, Yeh KT, Lin PM, Hsu CM, Hsiao HH, Liu YC, et al. Deregulated expression of circadian clock genes in gastric cancer. BMC Gastroenterol 2014;14:67.
  • Referans42 Schittek B, Sinnberg T. Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol Cancer 2014;13:231.
  • Referans43 Ren Z, Ma S, Cheng X, Guo Y, Liu Z. Expression and clinical significance of TIMELESS in glioma. Int J Clin Exp Pathol 2021;14(9):938-955.
  • Referans44 Leman AR, Noguchi C, Lee CY, Noguchi E. Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion. J Cell Sci 2010;123(Pt 5):660-70.
There are 43 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Articles
Authors

Dilara Fatma Akın 0000-0002-0903-0017

Didem Özkan 0000-0003-4210-5073

Publication Date October 21, 2022
Submission Date September 14, 2022
Published in Issue Year 2022 Volume: 4 Issue: 3

Cite

APA Akın, D. F., & Özkan, D. (2022). Identification of circadian-related gene mutation and expression patterns in skin cancer. Sağlık Profesyonelleri Araştırma Dergisi, 4(3), 140-152. https://doi.org/10.57224/jhpr.1175054
AMA Akın DF, Özkan D. Identification of circadian-related gene mutation and expression patterns in skin cancer. Sağlık Pro Arş Dergisi. October 2022;4(3):140-152. doi:10.57224/jhpr.1175054
Chicago Akın, Dilara Fatma, and Didem Özkan. “Identification of Circadian-Related Gene Mutation and Expression Patterns in Skin Cancer”. Sağlık Profesyonelleri Araştırma Dergisi 4, no. 3 (October 2022): 140-52. https://doi.org/10.57224/jhpr.1175054.
EndNote Akın DF, Özkan D (October 1, 2022) Identification of circadian-related gene mutation and expression patterns in skin cancer. Sağlık Profesyonelleri Araştırma Dergisi 4 3 140–152.
IEEE D. F. Akın and D. Özkan, “Identification of circadian-related gene mutation and expression patterns in skin cancer”, Sağlık Pro Arş Dergisi, vol. 4, no. 3, pp. 140–152, 2022, doi: 10.57224/jhpr.1175054.
ISNAD Akın, Dilara Fatma - Özkan, Didem. “Identification of Circadian-Related Gene Mutation and Expression Patterns in Skin Cancer”. Sağlık Profesyonelleri Araştırma Dergisi 4/3 (October 2022), 140-152. https://doi.org/10.57224/jhpr.1175054.
JAMA Akın DF, Özkan D. Identification of circadian-related gene mutation and expression patterns in skin cancer. Sağlık Pro Arş Dergisi. 2022;4:140–152.
MLA Akın, Dilara Fatma and Didem Özkan. “Identification of Circadian-Related Gene Mutation and Expression Patterns in Skin Cancer”. Sağlık Profesyonelleri Araştırma Dergisi, vol. 4, no. 3, 2022, pp. 140-52, doi:10.57224/jhpr.1175054.
Vancouver Akın DF, Özkan D. Identification of circadian-related gene mutation and expression patterns in skin cancer. Sağlık Pro Arş Dergisi. 2022;4(3):140-52.

SAĞLIK PROFESYONELLERİ ARAŞTIRMA DERGİSİ / JOURNAL OF HEALTH PROFESSIONALS RESEARCH /J HEALTH PRO RES