Research Article
BibTex RIS Cite

Comparison of the in vitro Demodex folliculorum killing activity of azelaic acid and permethrin

Year 2022, , 558 - 563, 15.03.2022
https://doi.org/10.32322/jhsm.1061271

Abstract

Aim: Demodex parasites have been linked to dermatological disorders, especially rosacea, without a proven mechanism. Moreover, some anti-Demodex agents demonstrate a dual therapeutic effect related to a direct effect on the skin disorder along with a decreased number of Demodex mites. Despite being considered a first-line treatment approach for rosacea, azelaic acid's efficacy against Demodex mites has not been investigated. In the current study, mites were continuously observed after exposure to the test agents to evaluate the potential anti-Demodex efficacy of azelaic acid. The efficacy of azelaic acid was compared to that of a positive control agent (permethrin).
Material and Method: The wastes of diagnostic standardized skin surface biopsy samples of rosacea patients were collected for the trial. To four active treatment groups were administered 10% azelaic acid, 20% azelaic acid, 30% azelaic acid, and 5% permethrin. In addition, there was a control group, and 20 Demodex mites were included in each of the five groups. The authors conducted the real-time observation of the study groups through a digital microscope. The survival times of the mites were recorded and compared between the groups.
Results: The mean survival time was 12.2±1.5 minutes in the 5% permethrin group. The mean survival times in the 10%, 20%, and 30% azelaic acid groups were 15.8±1.6, 14±1.5, and 12±1.2 minutes, respectively. The differences between the four active treatment groups did not reach statistical significance (p>0.05).
Discussion: The present study’s results revealed that all three concentrations of azelaic acid had anti-Demodex efficacy comparable to that of 5% permethrin.

Supporting Institution

None

Project Number

None

Thanks

The authors would like to thank Jeomed Company (Turkey) for providing the study solutions.

References

  • Elston CA, Elston DM. Demodex mites. Clin Dermatol 2014; 32: 739-43.
  • Lacey N, Raghallaigh SN, Powell FC. Demodex mites-commensals, parasites or mutualistic organisms? Dermatology 2011; 222: 128.
  • Chen W, Plewig G. Human demodicosis: revisit and a proposed classification. Brit J Dermatol 2014; 170: 1219-25.
  • Czepita D, Kuźna-Grygiel W, Kosik-Bogacka D. Investigations on the occurrence as well as the role of Demodex follicuforum and Demodex brevis in the pathogenesis of blepharitis. Klinika Oczna 2005; 107: 80-2.
  • Ivy SP, Mackall CL, Gore L, Gress RE, Hartley AH. Demodicidosis in childhood acute lymphoblastic leukemia: an opportunistic infection occurring with immunosuppression. J Pediatr 1995; 127: 751-4.
  • Aktaş Karabay E, Aksu Çerman A. Demodex folliculorum infestations in common facial dermatoses: acne vulgaris, rosacea, seborrheic dermatitis. An Bras Dermatol 2020; 95: 187-93.
  • Chang Y-S, Huang Y-C. Role of Demodex mite infestation in rosacea: A systematic review and meta-analysis. J Am Acad Dermatol 2017; 77: 441-7.e6.
  • Forton FMN. The pathogenic role of Demodex mites in rosacea: a potential therapeutic target already in erythematotelangiectatic rosacea? Dermatol and Ther 2020: 1-25.
  • Jacob S, VanDaele MA, Brown JN. Treatment of Demodex-associated inflammatory skin conditions: a systematic review. Dermatol Ther 2019; 32: e13103.
  • Kligman AM, Christensen MS. Demodex folliculorum: requirements for understanding its role in human skin disease. J Invest Dermatol 2011; 131: 8.
  • Lacey N, Russell-Hallinan A, Zouboulis CC, Powell FC. Demodex mites modulate sebocyte immune reaction: possible role in the pathogenesis of rosacea. Brit J Dermatol. 2018; 179: 420-30.
  • Aşkın Ü, Seçkin D. Comparison of the two techniques for measurement of the density of Demodex folliculorum: standardized skin surface biopsy and direct microscopic examination. Brit J Dermatol 2010; 162: 1124-6.
  • Aytekin S, Göktay F, Yaşar Ş, Gizlenti S. Tips and tricks on Demodex density examination by standardized skin surface biopsy. J Eur Acad Dermatol Venereol 2016; 30: e126-e8.
  • Forton F, Seys B. Density of Demodex folliculorum in rosacea: a case-control study using standardized skin-surface biopsy. Brit J Dermatol 1993; 128: 650-9.
  • Marks R, Dawber RPR. Skin surface biopsy: an improved technique for the examination of the horny layer. Brit J Dermatol 1971; 84: 117-23.
  • Du J, Gao R, Zhao J. The Effect of Volatile Oil from Chinese Mugwort Leaf on Human Demodecid Mites In Vitro. Acta Parasitol 2021; 66: 615-22.
  • Gao YY, Di Pascuale MA, Li W, et al. In vitro and in vivo killing of ocular Demodex by tea tree oil. Brit J Ophthalmol 2005; 89: 1468-73.
  • Jixin L, Chaopin L, Yanhon S, et al. The effect of the volatile oil of Manchurian Wildginger on the killing of Demodex in vitro. J Trop Dis Parasitol 2014; 12: 21.
  • Lam NSK, Long XX, Li X, Yang L, Griffin RC, Doery JCG. Comparison of the efficacy of tea tree (Melaleuca alternifolia) oil with other current pharmacological management in human demodicosis: a systematic review. Parasitol 2020; 147: 1587-613.
  • Liu JX, Sun YH, Li CP. Volatile oils of Chinese crude medicines exhibit antiparasitic activity against human Demodex with no adverse effects in vivo. Exp Therap Med 2015; 9: 1304-8.
  • Oseka MK, Sedzikowska A. Effect of essential oils on the survival rate of Demodex spp. Invest phthalmol Vis Sci 2014; 55: 6252-.
  • Song B, Liu J, Liu T. Effect of galangal essential oil on killing human Demodex in vitro. J Path Biol 2010; 5: 155-60.
  • Yurekli A, Botsali A. The comparative in vitro killing activity of tea tree oil versus permethrin on Demodex folliculorum of rosacea patients. J Cosmet Dermatol 2022; doi: 10.1111/jocd.14701.
  • Persi A, Rebora A. Metronidazole and Demodex folliculorum. Acta Derm Venereol 1981; 61: 182-3.
  • Abokwidir M, Fleischer AB. An emerging treatment: topical ivermectin for papulopustular rosacea. J Dermatol Treat 2015; 26: 379-80.
  • Schulte BC, Wu W, Rosen T. Azelaic acid: evidence-based update on mechanism of action and clinical application. J Drugs Dermatol 2015; 14: 964-8.
  • Searle T, Ali FR, Al-Niaimi F. The versatility of azelaic acid in dermatology. J Dermatol Treat 2020: 1-11.
  • Gollnick H, Layton A. Azelaic acid 15% gel in the treatment of rosacea. Exp Opin Pharmacother. 2008; 9: 2699-706.
Year 2022, , 558 - 563, 15.03.2022
https://doi.org/10.32322/jhsm.1061271

Abstract

Project Number

None

References

  • Elston CA, Elston DM. Demodex mites. Clin Dermatol 2014; 32: 739-43.
  • Lacey N, Raghallaigh SN, Powell FC. Demodex mites-commensals, parasites or mutualistic organisms? Dermatology 2011; 222: 128.
  • Chen W, Plewig G. Human demodicosis: revisit and a proposed classification. Brit J Dermatol 2014; 170: 1219-25.
  • Czepita D, Kuźna-Grygiel W, Kosik-Bogacka D. Investigations on the occurrence as well as the role of Demodex follicuforum and Demodex brevis in the pathogenesis of blepharitis. Klinika Oczna 2005; 107: 80-2.
  • Ivy SP, Mackall CL, Gore L, Gress RE, Hartley AH. Demodicidosis in childhood acute lymphoblastic leukemia: an opportunistic infection occurring with immunosuppression. J Pediatr 1995; 127: 751-4.
  • Aktaş Karabay E, Aksu Çerman A. Demodex folliculorum infestations in common facial dermatoses: acne vulgaris, rosacea, seborrheic dermatitis. An Bras Dermatol 2020; 95: 187-93.
  • Chang Y-S, Huang Y-C. Role of Demodex mite infestation in rosacea: A systematic review and meta-analysis. J Am Acad Dermatol 2017; 77: 441-7.e6.
  • Forton FMN. The pathogenic role of Demodex mites in rosacea: a potential therapeutic target already in erythematotelangiectatic rosacea? Dermatol and Ther 2020: 1-25.
  • Jacob S, VanDaele MA, Brown JN. Treatment of Demodex-associated inflammatory skin conditions: a systematic review. Dermatol Ther 2019; 32: e13103.
  • Kligman AM, Christensen MS. Demodex folliculorum: requirements for understanding its role in human skin disease. J Invest Dermatol 2011; 131: 8.
  • Lacey N, Russell-Hallinan A, Zouboulis CC, Powell FC. Demodex mites modulate sebocyte immune reaction: possible role in the pathogenesis of rosacea. Brit J Dermatol. 2018; 179: 420-30.
  • Aşkın Ü, Seçkin D. Comparison of the two techniques for measurement of the density of Demodex folliculorum: standardized skin surface biopsy and direct microscopic examination. Brit J Dermatol 2010; 162: 1124-6.
  • Aytekin S, Göktay F, Yaşar Ş, Gizlenti S. Tips and tricks on Demodex density examination by standardized skin surface biopsy. J Eur Acad Dermatol Venereol 2016; 30: e126-e8.
  • Forton F, Seys B. Density of Demodex folliculorum in rosacea: a case-control study using standardized skin-surface biopsy. Brit J Dermatol 1993; 128: 650-9.
  • Marks R, Dawber RPR. Skin surface biopsy: an improved technique for the examination of the horny layer. Brit J Dermatol 1971; 84: 117-23.
  • Du J, Gao R, Zhao J. The Effect of Volatile Oil from Chinese Mugwort Leaf on Human Demodecid Mites In Vitro. Acta Parasitol 2021; 66: 615-22.
  • Gao YY, Di Pascuale MA, Li W, et al. In vitro and in vivo killing of ocular Demodex by tea tree oil. Brit J Ophthalmol 2005; 89: 1468-73.
  • Jixin L, Chaopin L, Yanhon S, et al. The effect of the volatile oil of Manchurian Wildginger on the killing of Demodex in vitro. J Trop Dis Parasitol 2014; 12: 21.
  • Lam NSK, Long XX, Li X, Yang L, Griffin RC, Doery JCG. Comparison of the efficacy of tea tree (Melaleuca alternifolia) oil with other current pharmacological management in human demodicosis: a systematic review. Parasitol 2020; 147: 1587-613.
  • Liu JX, Sun YH, Li CP. Volatile oils of Chinese crude medicines exhibit antiparasitic activity against human Demodex with no adverse effects in vivo. Exp Therap Med 2015; 9: 1304-8.
  • Oseka MK, Sedzikowska A. Effect of essential oils on the survival rate of Demodex spp. Invest phthalmol Vis Sci 2014; 55: 6252-.
  • Song B, Liu J, Liu T. Effect of galangal essential oil on killing human Demodex in vitro. J Path Biol 2010; 5: 155-60.
  • Yurekli A, Botsali A. The comparative in vitro killing activity of tea tree oil versus permethrin on Demodex folliculorum of rosacea patients. J Cosmet Dermatol 2022; doi: 10.1111/jocd.14701.
  • Persi A, Rebora A. Metronidazole and Demodex folliculorum. Acta Derm Venereol 1981; 61: 182-3.
  • Abokwidir M, Fleischer AB. An emerging treatment: topical ivermectin for papulopustular rosacea. J Dermatol Treat 2015; 26: 379-80.
  • Schulte BC, Wu W, Rosen T. Azelaic acid: evidence-based update on mechanism of action and clinical application. J Drugs Dermatol 2015; 14: 964-8.
  • Searle T, Ali FR, Al-Niaimi F. The versatility of azelaic acid in dermatology. J Dermatol Treat 2020: 1-11.
  • Gollnick H, Layton A. Azelaic acid 15% gel in the treatment of rosacea. Exp Opin Pharmacother. 2008; 9: 2699-706.
There are 28 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Article
Authors

Ayşenur Botsali 0000-0001-9431-2125

Aslan Yürekli 0000-0003-2812-2133

Project Number None
Publication Date March 15, 2022
Published in Issue Year 2022

Cite

AMA Botsali A, Yürekli A. Comparison of the in vitro Demodex folliculorum killing activity of azelaic acid and permethrin. J Health Sci Med /JHSM /jhsm. March 2022;5(2):558-563. doi:10.32322/jhsm.1061271

Üniversitelerarası Kurul (ÜAK) Eşdeğerliği:  Ulakbim TR Dizin'de olan dergilerde yayımlanan makale [10 PUAN] ve 1a, b, c hariç  uluslararası indekslerde (1d) olan dergilerde yayımlanan makale [5 PUAN]

Dahil olduğumuz İndeksler (Dizinler) ve Platformlar sayfanın en altındadır.

Not:
Dergimiz WOS indeksli değildir ve bu nedenle Q olarak sınıflandırılmamıştır.

Yüksek Öğretim Kurumu (YÖK) kriterlerine göre yağmacı/şüpheli dergiler hakkındaki kararları ile yazar aydınlatma metni ve dergi ücretlendirme politikasını tarayıcınızdan indirebilirsiniz. https://dergipark.org.tr/tr/journal/2316/file/4905/show 


Dergi Dizin ve Platformları

Dizinler; ULAKBİM TR Dizin, Index Copernicus, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, EuroPub, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, vs.

Platformlar; Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons vs.