Aims: Every year, a significant number of individuals lose their lives due to cancer or undergo challenging treatments. Indeed, the development of an effective cancer prediction method holds great importance in the field of healthcare.
Methods: Machine learning methods have played a significant role in advancing cancer prediction models. In this context, this study focuses on exploring the potential of two machine learning methods: Artificial neural network (ANN) and adaptive-network-based fuzzy inference system (ANFIS) for cancer prediction. In this study, two different types of cancer, ovarian cancer and lung cancer, are taken into consideration. For the prediction of ovarian cancer, three specific biomarkers, namely human epididymis protein 4 (HE4), carbohydrate antigen 125 (CA-125), and carcinoembryonic antigen (CEA), are used to develop a prediction model. For the prediction of lung cancer, six different variables are utilized in the development of both the ANN and ANFIS methods.
Results: The findings demonstrated that the proposed methods had an accuracy rate of at least 93.9% in predicting ovarian cancer. With an accuracy rate of at least 89%, the proposed methods predicted lung cancer. Also, the proposed ANN method outperforms the ANFIS method in terms of predictive accuracy for both ovarian cancer and lung cancer.
Conclusion: This study suggests that the ANN method provides more reliable and accurate predictions for these specific cancer types based on the chosen variables or biomarkers. This study highlights the potential of machine learning methods, particularly ANN, in improving cancer prediction models and aiding in the early detection and effective management of ovarian and lung cancers.
Primary Language | English |
---|---|
Subjects | Decision Support and Group Support Systems |
Journal Section | Original Article |
Authors | |
Early Pub Date | January 15, 2024 |
Publication Date | January 15, 2024 |
Published in Issue | Year 2024 |
Üniversitelerarası Kurul (ÜAK) Eşdeğerliği: Ulakbim TR Dizin'de olan dergilerde yayımlanan makale [10 PUAN] ve 1a, b, c hariç uluslararası indekslerde (1d) olan dergilerde yayımlanan makale [5 PUAN]
Dahil olduğumuz İndeksler (Dizinler) ve Platformlar sayfanın en altındadır.
Not: Dergimiz WOS indeksli değildir ve bu nedenle Q olarak sınıflandırılmamıştır.
Yüksek Öğretim Kurumu (YÖK) kriterlerine göre yağmacı/şüpheli dergiler hakkındaki kararları ile yazar aydınlatma metni ve dergi ücretlendirme politikasını tarayıcınızdan indirebilirsiniz. https://dergipark.org.tr/tr/journal/2316/file/4905/show
Dergi Dizin ve Platformları
Dizinler; ULAKBİM TR Dizin, Index Copernicus, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, EuroPub, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, vs.
Platformlar; Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons vs.