Review
BibTex RIS Cite

Biosurgery: utility in chronic wound

Year 2018, , 19 - 21, 05.04.2018
https://doi.org/10.32322/jhsm.396256

Abstract











Biosurgery
or maggot debridement therapy or larval therapy is a complementary –
integrative medicinal method that it has proven utilities especially in chronic
wound care. The method nearly provides every activity desired from a wound
care. Its modes of action can be divided into four major titles; i) Mechanic debridement,
ii) Antimicrobial action, iii) Directing the tissue to wound healing, iv)
Biofilm degradation. Furthermore, many isolated proteins from maggots showing
various activities give a potential for future drugs. For now, whole effect
mechanisms remain unclear and this therapy is not used as a single treatment
method; it is actually a part of multidisciplinary approach to wound care.

References

  • 1. Sherman RA, Hall M, Thomas S. Medicinal maggots: an ancient remedy for some contemporary afflictions. Annu Rev Entomol 2000; 45(1): 55-81.
  • 2. Sherman RA, Wyle FA. Low-cost, low-maintenance rearing of maggots in hospitals, clinics, and schools. Am J Trop Med Hyg 1996; 54(1): 38-41.
  • 3. Stoddard S, Sherman R., Mason B, Pelsang D, Sherman R. Maggot debridement therapy. An alternative treatment for nonhealing ulcers. J Am Podiatr Med Assoc 1995; 85(4): 218-21.
  • 4. Sherman RA, Mumcuoglu KY, Grassberger M, Tantawi TI. Maggot Therapy. In: Grassberger M, Sherman RA, Gileva OS, Kim CMH, Mumcuoglu KY (eds). Biotherapy-history, principles and practice: A practical guide to the diagnosis and treatment of disease using living organisms. Springer Science & Business Media, Amsterdam 2013; pp. 5-29.
  • 5. Fleischmann W, Grassberger M, Sherman RA. Maggot therapy: A handbook of maggot-assisted wound healing. Thieme Publification, London, 2004.
  • 6. Trøstrup H, Bjarnsholt T, Kirketerp-Møller K, Høiby N, Moser C. What Is New in the Understanding of Non Healing Wounds Epidemiology, Pathophysiology, and Therapies. Ulcers 2013; 8: 1-6.
  • 7. Sood A, Granick MS, Tomaselli NL. Wound dressings and comparative effectiveness data. Adv Wound Care 2014; 3(8): 511-529.
  • 8. Nunan R., Harding KG, Martin P. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis Model Mech 2014; 7(11): 1205-1213.
  • 9. Cazander G, Jukema GN, Nibbering PH. Complement activation and inhibition in wound healing. Clin Dev Immunol 2012; 8: 1-14.
  • 10. Kumar V, Abbas AK, Aster JC. Robbins and Cotran pathologic basis of disease, 9th Ed., Elsevier Publification, London, 2015.
  • 11. Nathan C, Ding A. Nonresolving inflammation. Cell 2010; 140(6): 871-882.
  • 12. Van der Plas MJA. Effect of maggot secretions on microbiological, haemotological and immunological processes. Maggot Therapy's Modes of Action. EZ Leiden, Leiden University Publification 2009; pp. 9-35.
  • 13. Pöppel AK, Vogel H, Wiesner J, Vilcinskas A. Antimicrobial peptides expressed in medicinal maggots of the blow fly Lucilia sericata show combinatorial activity against bacteria. Antimicrob Agents Chemother 2015; 59(5): 2508-2514.
  • 14. Mumcuoglu KY. Clinical applications for maggots in wound care. Am J Clin Dermatol 2001; 2(4): 219-227.
  • 15. Pöppel AK, Kahl M, Baumann A, Wiesner J, Gokcen A, Beckert A. A Jonah-like chymotrypsin from the therapeutic maggot Lucilia sericata plays a role in wound debridement and coagulation. Insect biochemistry and molecular biology 2016; 70: 138-147.
  • 16. Andersen AS, Sandvang D, Schnorr KM, Kruse T, Neve S, Joergensen B, et al. A novel approach to the antimicrobial activity of maggot debridement therapy. J Antimicrob Chemother 2010; 65(8): 1646-1654.
  • 17. Barnes KM, Dixon RA, Gennard DE. The antibacterial potency of the medicinal maggot, Lucilia sericata (Meigen): variation in laboratory evaluation. J Microbiol Methods 2010; 82(3): 234-237.
  • 18. Bexfield A, Bond AE, Roberts EC, Dudley E, Nigam Y, Thomas S, et al. The antibacterial activity against MRSA strains and other bacteria of a< 500Da fraction from maggot excretions/secretions of Lucilia sericata (Diptera: Calliphoridae). Microbes Infect 2008; 10(4): 325-333.
  • 19. Bexfield A, Nigam Y, Thomas S, Ratcliffe NA. Detection and partial characterisation of two antibacterial factors from the excretions/secretions of the medicinal maggot Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus (MRSA). Microbes Infect 2004; 6(14): 1297-1304.
  • 20. Huberman L, Gollop N, Mumcuoglu KY, Block C, Galun R. Antibacterial properties of whole body extracts and haemolymph of Lucilia sericata maggots. J Wound Care 2007; 16(3): 123-127.
  • 21. Huberman L, Gollop N, Mumcuoglu KY, Breuer E, Bhusare SR, Shai Y, et al. Antibacterial substances of low molecular weight isolated from the blowfly, Lucilia sericata. Med Vet Entomol 2007; 21(2): 127-131.
  • 22. Valachova I, Majtan T, Takac P, Majtan J. Identification and characterisation of different proteases in Lucilia sericata medicinal maggots involved in maggot debridement therapy. J Appl Biomed 2014; 12(3): 171-177.
  • 23. Valachova I, Takac P, Majtan J. Midgut lysozymes of Lucilia sericata–new antimicrobials involved in maggot debridement therapy. Insect Mol Biol 2014; 23(6): 779-787.
  • 24. Kerridge A, Lappin‐Scott H, Stevens J. Antibacterial properties of larval secretions of the blowfly, Lucilia sericata. Med Vet Entomol 2005; 19(3): 333-337.
  • 25. Chernysh SI, Gordja NA, Simonenko NP. Diapause and immune response: induction of antimicrobial peptides synthesis in the blowfly, Calliphora vicina R.-D. (Diptera: Calliphoridae). J Entomol Sci 2000; 3(1): 139-144.
  • 26. Erdmann G, Khalil S. Isolation and identification of two antibacterial agents produced by a strain of Proteus mirabilis isolated from larvae of the screwworm (Cochliomyia hominivorax) (Diptera: Calliphoridae). J Med Entomol 1986; 23(2): 208-211.
  • 27. Greenberg B. Model for destruction of bacteria in the midgut of blow fly maggots. J Med Entomol 1968; 5(1): 31-38.
  • 28. Robinson W, Baker F. The enzyme urease and the occurrence of ammonia in maggot-infected wounds. J Parasitol 1939; 25(2): 149-155.
  • 29. Pöppel AK, Koch A, Kogel KH, Vogel H, Kollewe C, Wiesner J, et al. Lucimycin, an antifungal peptide from the therapeutic maggot of the common green bottle fly Lucilia sericata. Biol Chem 2014; 395(6): 649-656.
  • 30. Polat E, Cakan H, Aslan M, Sirekbasan S, Kutlubay Z, Ipek T, et al. Detection of anti-leishmanial effect of the Lucilia sericata larval secretions in vitro and in vivo on Leishmania tropica: first work. Exp Parasitol 2012; 132(2): 129-134.
  • 31. Armstrong DG, Salas P, Short B, Martin BR, Kimbriel HR, Nixon BP, et al. Maggot therapy in “lower-extremity hospice” wound care: fewer amputations and more antibiotic-free days. J Am Podiatr Med Assoc 2005; 95(3): 254-257.
  • 32. Dumville JC, Worthy G, Soares MO, Bland JM, Cullum N, Dowson C, et al. VenUS II: a randomised controlled trial of larval therapy in the management of leg ulcers. Health Technology Assessment 2009; 1-220.
  • 33. Sun X, Chen JA, Zhang J, Wang W, Sun J, Wang A. Maggot debridement therapy promotes diabetic foot wound healing by up-regulating endothelial cell activity. Journal of Diabetes and its Complications 2016; 30(2): 318-322.
  • 34. Zhang J, Sun XJ, Chen JA, Hu ZW, Wang L, Gu DM, et al. Increasing the miR-126 expression in the peripheral blood of patients with diabetic foot ulcers treated with maggot debridement therapy. Journal of Diabetes and its Complications 2017; 31(1): 241-244.
  • 35. Cazander G, Van de Veerdonk MC, Vandenbroucke-Grauls CM, Schreurs MW, Jukema GN. Maggot excretions inhibit biofilm formation on biomaterials. Clin Orthop Relat Res 2010; 468(10): 2789-2796.
  • 36. Van Der Plas MJ, Jukema GN, Wai SW, Dogterom-Ballering HC, Lagendijk EL, van Gulpen C, et al. Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. J Antimicrob Chemother 2008; 61(1): 117-122.
  • 37. Mudge E, Price P, Neal W, Harding KG. A randomized controlled trial of larval therapy for the debridement of leg ulcers: Results of a multicenter, randomized, controlled, open, observer blind, parallel group study. Wound Repair Regen 2014; 22(1): 43-51.

Biyocerrahi: kronik yara bakımındaki yeri

Year 2018, , 19 - 21, 05.04.2018
https://doi.org/10.32322/jhsm.396256

Abstract











Biyocerrahi
veya maggot debritman tedavisi veya larval terapi faydası özellikle kronik yara
bakımında kanıtlanmış bir tamamlayıcı tıp uygulamasıdır. Uygulama neredeyse
kronik yara bakımından istenen tüm nitelikleri taşımaktadır. Etki mekanizması
temelde dört bölümde incelenebilir; i) Mekanik debritman, ii) Antimikrobiyal
etki, iii) Yara iyileşmesini uyarma, iv) Biyofilm yıkımı. Maggotlardan izole
edilen çok sayıda protein yeni ilaçların üretilmesinde ciddi potansiyel
taşımaktadır. Şu an için, bu uygulamanın etki mekanizmaları tamamen
aydınlatılamamıştır ve uygulama salt bir tedavi yöntemi olarak
değerlendirilmemekte; aslen, kronik yara bakımına çok disiplinli bir yaklaşımın
parçası olarak sunulmaktadır.

References

  • 1. Sherman RA, Hall M, Thomas S. Medicinal maggots: an ancient remedy for some contemporary afflictions. Annu Rev Entomol 2000; 45(1): 55-81.
  • 2. Sherman RA, Wyle FA. Low-cost, low-maintenance rearing of maggots in hospitals, clinics, and schools. Am J Trop Med Hyg 1996; 54(1): 38-41.
  • 3. Stoddard S, Sherman R., Mason B, Pelsang D, Sherman R. Maggot debridement therapy. An alternative treatment for nonhealing ulcers. J Am Podiatr Med Assoc 1995; 85(4): 218-21.
  • 4. Sherman RA, Mumcuoglu KY, Grassberger M, Tantawi TI. Maggot Therapy. In: Grassberger M, Sherman RA, Gileva OS, Kim CMH, Mumcuoglu KY (eds). Biotherapy-history, principles and practice: A practical guide to the diagnosis and treatment of disease using living organisms. Springer Science & Business Media, Amsterdam 2013; pp. 5-29.
  • 5. Fleischmann W, Grassberger M, Sherman RA. Maggot therapy: A handbook of maggot-assisted wound healing. Thieme Publification, London, 2004.
  • 6. Trøstrup H, Bjarnsholt T, Kirketerp-Møller K, Høiby N, Moser C. What Is New in the Understanding of Non Healing Wounds Epidemiology, Pathophysiology, and Therapies. Ulcers 2013; 8: 1-6.
  • 7. Sood A, Granick MS, Tomaselli NL. Wound dressings and comparative effectiveness data. Adv Wound Care 2014; 3(8): 511-529.
  • 8. Nunan R., Harding KG, Martin P. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis Model Mech 2014; 7(11): 1205-1213.
  • 9. Cazander G, Jukema GN, Nibbering PH. Complement activation and inhibition in wound healing. Clin Dev Immunol 2012; 8: 1-14.
  • 10. Kumar V, Abbas AK, Aster JC. Robbins and Cotran pathologic basis of disease, 9th Ed., Elsevier Publification, London, 2015.
  • 11. Nathan C, Ding A. Nonresolving inflammation. Cell 2010; 140(6): 871-882.
  • 12. Van der Plas MJA. Effect of maggot secretions on microbiological, haemotological and immunological processes. Maggot Therapy's Modes of Action. EZ Leiden, Leiden University Publification 2009; pp. 9-35.
  • 13. Pöppel AK, Vogel H, Wiesner J, Vilcinskas A. Antimicrobial peptides expressed in medicinal maggots of the blow fly Lucilia sericata show combinatorial activity against bacteria. Antimicrob Agents Chemother 2015; 59(5): 2508-2514.
  • 14. Mumcuoglu KY. Clinical applications for maggots in wound care. Am J Clin Dermatol 2001; 2(4): 219-227.
  • 15. Pöppel AK, Kahl M, Baumann A, Wiesner J, Gokcen A, Beckert A. A Jonah-like chymotrypsin from the therapeutic maggot Lucilia sericata plays a role in wound debridement and coagulation. Insect biochemistry and molecular biology 2016; 70: 138-147.
  • 16. Andersen AS, Sandvang D, Schnorr KM, Kruse T, Neve S, Joergensen B, et al. A novel approach to the antimicrobial activity of maggot debridement therapy. J Antimicrob Chemother 2010; 65(8): 1646-1654.
  • 17. Barnes KM, Dixon RA, Gennard DE. The antibacterial potency of the medicinal maggot, Lucilia sericata (Meigen): variation in laboratory evaluation. J Microbiol Methods 2010; 82(3): 234-237.
  • 18. Bexfield A, Bond AE, Roberts EC, Dudley E, Nigam Y, Thomas S, et al. The antibacterial activity against MRSA strains and other bacteria of a< 500Da fraction from maggot excretions/secretions of Lucilia sericata (Diptera: Calliphoridae). Microbes Infect 2008; 10(4): 325-333.
  • 19. Bexfield A, Nigam Y, Thomas S, Ratcliffe NA. Detection and partial characterisation of two antibacterial factors from the excretions/secretions of the medicinal maggot Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus (MRSA). Microbes Infect 2004; 6(14): 1297-1304.
  • 20. Huberman L, Gollop N, Mumcuoglu KY, Block C, Galun R. Antibacterial properties of whole body extracts and haemolymph of Lucilia sericata maggots. J Wound Care 2007; 16(3): 123-127.
  • 21. Huberman L, Gollop N, Mumcuoglu KY, Breuer E, Bhusare SR, Shai Y, et al. Antibacterial substances of low molecular weight isolated from the blowfly, Lucilia sericata. Med Vet Entomol 2007; 21(2): 127-131.
  • 22. Valachova I, Majtan T, Takac P, Majtan J. Identification and characterisation of different proteases in Lucilia sericata medicinal maggots involved in maggot debridement therapy. J Appl Biomed 2014; 12(3): 171-177.
  • 23. Valachova I, Takac P, Majtan J. Midgut lysozymes of Lucilia sericata–new antimicrobials involved in maggot debridement therapy. Insect Mol Biol 2014; 23(6): 779-787.
  • 24. Kerridge A, Lappin‐Scott H, Stevens J. Antibacterial properties of larval secretions of the blowfly, Lucilia sericata. Med Vet Entomol 2005; 19(3): 333-337.
  • 25. Chernysh SI, Gordja NA, Simonenko NP. Diapause and immune response: induction of antimicrobial peptides synthesis in the blowfly, Calliphora vicina R.-D. (Diptera: Calliphoridae). J Entomol Sci 2000; 3(1): 139-144.
  • 26. Erdmann G, Khalil S. Isolation and identification of two antibacterial agents produced by a strain of Proteus mirabilis isolated from larvae of the screwworm (Cochliomyia hominivorax) (Diptera: Calliphoridae). J Med Entomol 1986; 23(2): 208-211.
  • 27. Greenberg B. Model for destruction of bacteria in the midgut of blow fly maggots. J Med Entomol 1968; 5(1): 31-38.
  • 28. Robinson W, Baker F. The enzyme urease and the occurrence of ammonia in maggot-infected wounds. J Parasitol 1939; 25(2): 149-155.
  • 29. Pöppel AK, Koch A, Kogel KH, Vogel H, Kollewe C, Wiesner J, et al. Lucimycin, an antifungal peptide from the therapeutic maggot of the common green bottle fly Lucilia sericata. Biol Chem 2014; 395(6): 649-656.
  • 30. Polat E, Cakan H, Aslan M, Sirekbasan S, Kutlubay Z, Ipek T, et al. Detection of anti-leishmanial effect of the Lucilia sericata larval secretions in vitro and in vivo on Leishmania tropica: first work. Exp Parasitol 2012; 132(2): 129-134.
  • 31. Armstrong DG, Salas P, Short B, Martin BR, Kimbriel HR, Nixon BP, et al. Maggot therapy in “lower-extremity hospice” wound care: fewer amputations and more antibiotic-free days. J Am Podiatr Med Assoc 2005; 95(3): 254-257.
  • 32. Dumville JC, Worthy G, Soares MO, Bland JM, Cullum N, Dowson C, et al. VenUS II: a randomised controlled trial of larval therapy in the management of leg ulcers. Health Technology Assessment 2009; 1-220.
  • 33. Sun X, Chen JA, Zhang J, Wang W, Sun J, Wang A. Maggot debridement therapy promotes diabetic foot wound healing by up-regulating endothelial cell activity. Journal of Diabetes and its Complications 2016; 30(2): 318-322.
  • 34. Zhang J, Sun XJ, Chen JA, Hu ZW, Wang L, Gu DM, et al. Increasing the miR-126 expression in the peripheral blood of patients with diabetic foot ulcers treated with maggot debridement therapy. Journal of Diabetes and its Complications 2017; 31(1): 241-244.
  • 35. Cazander G, Van de Veerdonk MC, Vandenbroucke-Grauls CM, Schreurs MW, Jukema GN. Maggot excretions inhibit biofilm formation on biomaterials. Clin Orthop Relat Res 2010; 468(10): 2789-2796.
  • 36. Van Der Plas MJ, Jukema GN, Wai SW, Dogterom-Ballering HC, Lagendijk EL, van Gulpen C, et al. Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. J Antimicrob Chemother 2008; 61(1): 117-122.
  • 37. Mudge E, Price P, Neal W, Harding KG. A randomized controlled trial of larval therapy for the debridement of leg ulcers: Results of a multicenter, randomized, controlled, open, observer blind, parallel group study. Wound Repair Regen 2014; 22(1): 43-51.
There are 37 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Review
Authors

Ali Korhan Sığ 0000-0003-2907-257X

Publication Date April 5, 2018
Published in Issue Year 2018

Cite

AMA Sığ AK. Biosurgery: utility in chronic wound. J Health Sci Med /JHSM /jhsm. April 2018;1(1):19-21. doi:10.32322/jhsm.396256

Üniversitelerarası Kurul (ÜAK) Eşdeğerliği:  Ulakbim TR Dizin'de olan dergilerde yayımlanan makale [10 PUAN] ve 1a, b, c hariç  uluslararası indekslerde (1d) olan dergilerde yayımlanan makale [5 PUAN]

Dahil olduğumuz İndeksler (Dizinler) ve Platformlar sayfanın en altındadır.

Not:
Dergimiz WOS indeksli değildir ve bu nedenle Q olarak sınıflandırılmamıştır.

Yüksek Öğretim Kurumu (YÖK) kriterlerine göre yağmacı/şüpheli dergiler hakkındaki kararları ile yazar aydınlatma metni ve dergi ücretlendirme politikasını tarayıcınızdan indirebilirsiniz. https://dergipark.org.tr/tr/journal/2316/file/4905/show 


Dergi Dizin ve Platformları

Dizinler; ULAKBİM TR Dizin, Index Copernicus, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, EuroPub, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, vs.

Platformlar; Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons vs.