Research Article
BibTex RIS Cite

Kolorektal kanserli hastalarda metastatik karaciğer lezyonlarının geç faz FDG-PET/BT görüntülemesinin değerlendirilmesi

Year 2020, Volume: 3 Issue: 2, 137 - 143, 19.03.2020
https://doi.org/10.32322/jhsm.686957

Abstract

Amaç: Amacımız, karaciğer metastazı olan kolorektal karsinom hastalarında F18-FDG-PET / BT ile geç faz görüntülemenin rolünü araştırmaktır.
Gereç ve Yöntem: Karaciğer metastazı olan kolorektal karsinomlu hastalarda çift fazlı FDG-PET / BT taraması retrospektif olarak incelendi. FDG enjeksiyonundan sonra 92-253 dakika (ortalama 158.53 ± 35.7 dakika) geç faz görüntüleme alındı. 37 hastada altmış sekiz metastatik lezyon saptandı. Ortalama lezyon SUVmax ve lezyon-tümör olmayan karaciğer doku oranı hesaplandı ve rutin FDG-PET görüntüleme sonuçları geç faz görüntüleme sonuçları ile karşılaştırıldı.
Bulgular: Metastatik lezyon boyutları 9-230 mm idi (ortalama 3.71 ± 3.7 cm). Rutin ve geç evre görüntüleme için metastaz ve tümörsüz karaciğer SUVmax değerleri SUVmax olarak; 7,19 ± 3,8, 10,3 ± 5,4; Sırasıyla 2.98 ± 0.7, 2.41 ± 0.6. Geç evre görüntülemede metastatik karaciğer lezyonları, SUVmax değerleri artmış (p0.01) ve tümör olmayan karaciğer SUVmax değerleri azalmıştır (p0.01). Rutin görüntülemeye kıyasla geç faz lezyonunda tümörsüz karaciğer dokusuna artmıştı (p = 0.001). Lezyon retansiyon indeksi % 45.74 ± 31.8 ve tümör olmayan karaciğer indeksi% 18.63 ± 10.4 azaldı.
Sonuç: Bulgularımıza göre, normal karaciğer FDG alımının zamanla azaldığını ve geç faz görüntülemenin, tümörün normal doku oranını belirginleştirdiği ve metastatik karaciğer lezyonlarının normal karaciğerden daha kolay ayırt edilmesini sağladığını göstermektedir.

References

  • Referans 1 Abbruzzese JL, Abbruzzese MC, Lenzi R, Hess KR, Raber MN. Analysis of a diagnostic strategy for patients with suspected tumors of unknown origin. J Clin Oncol 1995;13:2094–103.
  • Referans 2 Griscom JT, Wolf PS. Cancer, Liver Metastasis. StatPearls Publishing, 2020.
  • Referans 3 Rigo P, Paulus P, Kaschten BJ, et al. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med Mol Imaging 1996;23:1641–74.
  • Referans 4 Floriani I, Torri V, Rulli E, et al. Performance of imaging modalities in diagnosis of liver metastases from colorectal cancer: A systematic review and meta-analysis. J Magn Reson Imaging 2010;31:19–31.
  • Referans 5 Boellaard R, Delgado-Bolton R, Oyen WJG, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 2015;42:328–54.
  • Referans 6 Kit Wong K, A. Frey K, D. Ensminger W, M. Avram A. 18F-FDG PET/CT Demonstrates Efficacy and Limitations of Hepatic Arterial Infusion Chemotherapy for Treating Colorectal Liver Metastases. Curr Radiopharm 2010;doi: DOI : 10.2174/1874471011003040286.
  • Referans 7 Soydal C, Kucuk ON, Gecim EI, Bilgic S, Elhan AH. The prognostic value of quantitative parameters of 18F-FDG PET/CT in the evaluation of response to internal radiation therapy with yttrium-90 in patients with liver metastases of colorectal cancer. Nucl Med Commun 2013;34:501–6.
  • Referans 8 Warburg O. On the origin of cancer cells. Science 1956;123:309–14.
  • Referans 9 Flier JS, Mueckler MM, Usher P, Lodish HF. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science (80- ) 1987;235:1492–5.
  • Referans 10 Monakhov NK, Neistadt EL, Shavlovskil MM, Shvartsman AL, Neǐfakh SA. Physicochemical properties and isoenzyme composition of hexokinase from normal and malignant human tissues. J Natl Cancer Inst 1978;61:27–34.
  • Referans 11 Torizuka T, Tamaki N, Inokuma T, et al. Value of fluorine-18-FDG-PET to monitor hepatocellular carcinoma after interventional therapy. J Nucl Med 1994;35:1965–9.
  • Referans 12 Kim CK, Gupta NC, Chandramouli B, Alavi A. Standardized uptake values of FDG: Body surface area correction is preferable to body weight correction. J Nucl Med 1994;35:164–7.
  • Referans 13 Hübner KF, Buonocore E, Gould HR, et al. Differentiating benign from malignant lung lesions using “quantitative” parameters of FDG PET images. Clin Nucl Med 1996;21:941–9.
  • Referans 14 Delbeke D, Martin WH, Sandler MP, Chapman WC, Wright JK, Pinson CW. Evaluation of benign vs malignant hepatic lesions with positron emission tomography. Arch Surg 1998;133:510–5; discussion 515-6.
  • Referans 15 Conrad GR, Sinha P. Narrow time-window dual-point f-fdg pet for the diagnosis of thoracic malignancy. Nucl Med Commun 2003;24:1129–37.
  • Referans 16 Shiomi S, Sasaki N, Kawashima D, et al. Combined hepatocellular carcinoma and cholangiocarcinoma with high F-18 fluorodeoxyglucose positron emission tomographic uptake. Clin Nucl Med 1999;24:370–1.
  • Referans 17 Lyshchik A, Higashi T, Nakamoto Y, et al. Dual-phase 18F-fluoro-2-deoxy-D-glucose positron emission tomography as a prognostic parameter in patients with pancreatic cancer. Eur J Nucl Med Mol Imaging 2005;32:389–97.
  • Referans 18 Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: High accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992;33:1972–80.
  • Referans 19 Fröhlich A, Diederichs CG, Staib L, Vogel J, Beger HG, Reske SN. Detection of liver metastases from pancreatic cancer using FDG PET. J Nucl Med 1999;40:250–5.
  • Referans 20 Bakheet SM, Powe J. Benign causes of 18-FDG uptake on whole body imaging. Semin Nucl Med 1998;28:352–8.
  • Referans 21 Zhuang H, Pourdehnad M, Lambright ES, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 2001;42:1412–7.
  • Referans 22 Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: Useful parameter or oversimplification? J Nucl Med 1994;35:1308–12.
  • Referans 23 Di Chiro G. Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors a powerful diagnostic and prognostic tool. Invest Radiol 1987;22:360–71.
  • Referans 24 Döbert N, Hamscho N, Menzel C, Neuss L, Kovács AF, Grünwald F. Limitations of dual time point FDG-PET imaging in the evaluation of focal abdominal lesions. Nuklearmedizin 2004;43:143–9.
  • Referans 25 Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 1995;36:1301–6.
  • Referans 26 Sugiyama M, Sakahara H, Torizuka T, et al. 18F-FDG PET in the detection of extrahepatic metastases from hepatocellular carcinoma. J Gastroenterol 2004;39:961–8.
  • Referans 27 Chen S, Feng D. Noninvasive quantification of the differential portal and arterial contribution to the liver blood supply front PET measurements using the 11C-acetate kinetic model. IEEE Trans Biomed Eng 2004;51:1579–85.
  • Referans 28 Ho CL, Yu SCH, Yeung DWC. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 2003;44:213–21.
  • Referans 29 Magini G, Farsad M, Frigerio M, et al. C-11 acetate does not enhance usefulness of F-18 FDG PET/CT in differentiating between focal nodular hyperplasia and hepatic adenoma. Clin Nucl Med 2009;34:659–65.
  • Referans 30 Wiering B, Vogel W V., Ruers TJM, Oyen WJG. Controversies in the management of colorectal liver metastases: Role of PET and PET/CT. Dig. Surg., vol. 25, 2009:413–20.
  • Referans 31 Kubota K, Itoh M, Ozaki K, et al. Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med 2001;28:696–703.
  • Referans 32 Yen TC, Ng KK, Ma SY, et al. Value of dual-phase 2-fluoro-2-deoxy-D-glucose positron emission tomography in cervical cancer. J Clin Oncol 2003;21:3651–8.
  • Referans 33 Hustinx R, Smith RJ, Benard F, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: A potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 1999;26:1345–8.
  • Referans 34 Trojan J, Schroeder O, Raedle J, et al. Fluorine-18 Fdg Positron Emission Tomography for Imaging of Hepatocellular Carcinoma. Am J Gastroenterol 1999;94:3314–9.
  • Referans 35 Vitola J V., Delbeke D, Sandler MP, et al. Positron emission tomography to stage suspected metastatic colorectal carcinoma to the liver. Am. J. Surg., vol. 171, Elsevier Inc., 1996:21–6.
  • Referans 36 Bida GT, Satyamurthy N, Barrio JR. The synthesis of 2-[F-18]fluoro-2-deoxy-D-glucose using glycals: a reexamination. J Nucl Med 1984;25:1327–34.
  • Referans 37 Okazumi S, Isono K, Enomoto K, et al. Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment. J Nucl Med 1992;33:333–9.
  • Referans 38 Arena V, Skanjeti A, Casoni R, Douroukas A, Pelosi E. FDG-PET nella identificazione di lesioni epatiche: Miglioramento della sensibilità con acquisizione tardiva. Radiol Medica 2008;113:875–86.
  • Referans 39 Koyama K, Okamura T, Kawabe J, et al. The usefulness of 18F-FDG PET images obtained 2 hours after intravenous injection in liver tumor. Ann Nucl Med 2002;16:169–76.
  • Referans 40 Nakamoto Y, Higashi T, Sakahara H, et al. Delayed (18)F-fluoro-2-deoxy-D-glucose positron emission tomography scan for differentiation between malignant and benign lesions in the pancreas. Cancer 2000;89:2547–54.

The value of late phase imaging with FDG-PET/CT in liver metastases of colorectal carcinoma

Year 2020, Volume: 3 Issue: 2, 137 - 143, 19.03.2020
https://doi.org/10.32322/jhsm.686957

Abstract

Aim: Our aim was investigated the role of late phase imaging with F18-FDG-PET/CT in colorectal carcinoma patients with liver metastases.
Method: Dual phase FDG-PET/CT scan was retrospectively evaluated in colorectal carcinoma patients with liver metastases. Late phase imaging was acquired 92-253 minutes (mean 158.53±35.7 minutes) after the FDG injection. Sixty-eight metastatic lesions were determined in 37 patients. Mean lesion SUVmax and lesion-to non-tumorous liver tissue ratio were calculated and results of routine FDG-PET imaging were compared with late phase imaging.
Results: Metastatic lesion sizes were 9 to230 mm (mean 3.71±3.7 cm). SUVmax values of the metastasis and non-tumorous liver SUVmax for routine and late-phase imaging were as follows; 7.19±3.8, 10.3±5.4; 2.98±0.7, 2.41±0.6 respectively. Metastatic liver lesions, SUVmax values were increased (p 0.01) and non-tumorous liver SUV max values were decreased (p 0.01) in late phase imaging. Compared to routine imaging, in late phase lesion to non-tumorous liver tissue was increased (p 0.001). Lesion retention index was 45.74± 31.8% and the non-tumorous liver index was decreased 18.63 ± 10.4%.
Conclusion: The results of this study indicates that normal liver FDG uptake decreases in time and late phase imaging improves the tumor to normal tissue ratio and enable differentiation of metastatic liver lesions from normal liver.

References

  • Referans 1 Abbruzzese JL, Abbruzzese MC, Lenzi R, Hess KR, Raber MN. Analysis of a diagnostic strategy for patients with suspected tumors of unknown origin. J Clin Oncol 1995;13:2094–103.
  • Referans 2 Griscom JT, Wolf PS. Cancer, Liver Metastasis. StatPearls Publishing, 2020.
  • Referans 3 Rigo P, Paulus P, Kaschten BJ, et al. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med Mol Imaging 1996;23:1641–74.
  • Referans 4 Floriani I, Torri V, Rulli E, et al. Performance of imaging modalities in diagnosis of liver metastases from colorectal cancer: A systematic review and meta-analysis. J Magn Reson Imaging 2010;31:19–31.
  • Referans 5 Boellaard R, Delgado-Bolton R, Oyen WJG, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 2015;42:328–54.
  • Referans 6 Kit Wong K, A. Frey K, D. Ensminger W, M. Avram A. 18F-FDG PET/CT Demonstrates Efficacy and Limitations of Hepatic Arterial Infusion Chemotherapy for Treating Colorectal Liver Metastases. Curr Radiopharm 2010;doi: DOI : 10.2174/1874471011003040286.
  • Referans 7 Soydal C, Kucuk ON, Gecim EI, Bilgic S, Elhan AH. The prognostic value of quantitative parameters of 18F-FDG PET/CT in the evaluation of response to internal radiation therapy with yttrium-90 in patients with liver metastases of colorectal cancer. Nucl Med Commun 2013;34:501–6.
  • Referans 8 Warburg O. On the origin of cancer cells. Science 1956;123:309–14.
  • Referans 9 Flier JS, Mueckler MM, Usher P, Lodish HF. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science (80- ) 1987;235:1492–5.
  • Referans 10 Monakhov NK, Neistadt EL, Shavlovskil MM, Shvartsman AL, Neǐfakh SA. Physicochemical properties and isoenzyme composition of hexokinase from normal and malignant human tissues. J Natl Cancer Inst 1978;61:27–34.
  • Referans 11 Torizuka T, Tamaki N, Inokuma T, et al. Value of fluorine-18-FDG-PET to monitor hepatocellular carcinoma after interventional therapy. J Nucl Med 1994;35:1965–9.
  • Referans 12 Kim CK, Gupta NC, Chandramouli B, Alavi A. Standardized uptake values of FDG: Body surface area correction is preferable to body weight correction. J Nucl Med 1994;35:164–7.
  • Referans 13 Hübner KF, Buonocore E, Gould HR, et al. Differentiating benign from malignant lung lesions using “quantitative” parameters of FDG PET images. Clin Nucl Med 1996;21:941–9.
  • Referans 14 Delbeke D, Martin WH, Sandler MP, Chapman WC, Wright JK, Pinson CW. Evaluation of benign vs malignant hepatic lesions with positron emission tomography. Arch Surg 1998;133:510–5; discussion 515-6.
  • Referans 15 Conrad GR, Sinha P. Narrow time-window dual-point f-fdg pet for the diagnosis of thoracic malignancy. Nucl Med Commun 2003;24:1129–37.
  • Referans 16 Shiomi S, Sasaki N, Kawashima D, et al. Combined hepatocellular carcinoma and cholangiocarcinoma with high F-18 fluorodeoxyglucose positron emission tomographic uptake. Clin Nucl Med 1999;24:370–1.
  • Referans 17 Lyshchik A, Higashi T, Nakamoto Y, et al. Dual-phase 18F-fluoro-2-deoxy-D-glucose positron emission tomography as a prognostic parameter in patients with pancreatic cancer. Eur J Nucl Med Mol Imaging 2005;32:389–97.
  • Referans 18 Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: High accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992;33:1972–80.
  • Referans 19 Fröhlich A, Diederichs CG, Staib L, Vogel J, Beger HG, Reske SN. Detection of liver metastases from pancreatic cancer using FDG PET. J Nucl Med 1999;40:250–5.
  • Referans 20 Bakheet SM, Powe J. Benign causes of 18-FDG uptake on whole body imaging. Semin Nucl Med 1998;28:352–8.
  • Referans 21 Zhuang H, Pourdehnad M, Lambright ES, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 2001;42:1412–7.
  • Referans 22 Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: Useful parameter or oversimplification? J Nucl Med 1994;35:1308–12.
  • Referans 23 Di Chiro G. Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors a powerful diagnostic and prognostic tool. Invest Radiol 1987;22:360–71.
  • Referans 24 Döbert N, Hamscho N, Menzel C, Neuss L, Kovács AF, Grünwald F. Limitations of dual time point FDG-PET imaging in the evaluation of focal abdominal lesions. Nuklearmedizin 2004;43:143–9.
  • Referans 25 Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 1995;36:1301–6.
  • Referans 26 Sugiyama M, Sakahara H, Torizuka T, et al. 18F-FDG PET in the detection of extrahepatic metastases from hepatocellular carcinoma. J Gastroenterol 2004;39:961–8.
  • Referans 27 Chen S, Feng D. Noninvasive quantification of the differential portal and arterial contribution to the liver blood supply front PET measurements using the 11C-acetate kinetic model. IEEE Trans Biomed Eng 2004;51:1579–85.
  • Referans 28 Ho CL, Yu SCH, Yeung DWC. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 2003;44:213–21.
  • Referans 29 Magini G, Farsad M, Frigerio M, et al. C-11 acetate does not enhance usefulness of F-18 FDG PET/CT in differentiating between focal nodular hyperplasia and hepatic adenoma. Clin Nucl Med 2009;34:659–65.
  • Referans 30 Wiering B, Vogel W V., Ruers TJM, Oyen WJG. Controversies in the management of colorectal liver metastases: Role of PET and PET/CT. Dig. Surg., vol. 25, 2009:413–20.
  • Referans 31 Kubota K, Itoh M, Ozaki K, et al. Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med 2001;28:696–703.
  • Referans 32 Yen TC, Ng KK, Ma SY, et al. Value of dual-phase 2-fluoro-2-deoxy-D-glucose positron emission tomography in cervical cancer. J Clin Oncol 2003;21:3651–8.
  • Referans 33 Hustinx R, Smith RJ, Benard F, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: A potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 1999;26:1345–8.
  • Referans 34 Trojan J, Schroeder O, Raedle J, et al. Fluorine-18 Fdg Positron Emission Tomography for Imaging of Hepatocellular Carcinoma. Am J Gastroenterol 1999;94:3314–9.
  • Referans 35 Vitola J V., Delbeke D, Sandler MP, et al. Positron emission tomography to stage suspected metastatic colorectal carcinoma to the liver. Am. J. Surg., vol. 171, Elsevier Inc., 1996:21–6.
  • Referans 36 Bida GT, Satyamurthy N, Barrio JR. The synthesis of 2-[F-18]fluoro-2-deoxy-D-glucose using glycals: a reexamination. J Nucl Med 1984;25:1327–34.
  • Referans 37 Okazumi S, Isono K, Enomoto K, et al. Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment. J Nucl Med 1992;33:333–9.
  • Referans 38 Arena V, Skanjeti A, Casoni R, Douroukas A, Pelosi E. FDG-PET nella identificazione di lesioni epatiche: Miglioramento della sensibilità con acquisizione tardiva. Radiol Medica 2008;113:875–86.
  • Referans 39 Koyama K, Okamura T, Kawabe J, et al. The usefulness of 18F-FDG PET images obtained 2 hours after intravenous injection in liver tumor. Ann Nucl Med 2002;16:169–76.
  • Referans 40 Nakamoto Y, Higashi T, Sakahara H, et al. Delayed (18)F-fluoro-2-deoxy-D-glucose positron emission tomography scan for differentiation between malignant and benign lesions in the pancreas. Cancer 2000;89:2547–54.
There are 40 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Article
Authors

Aylin Akbulut

Burcu Esen This is me 0000-0001-6623-1600

Nahide Gökçora This is me 0000-0002-7225-7273

Neşe İlgin This is me 0000-0001-9022-3053

Mehmet Kitapçı This is me 0000-0002-5420-7790

Publication Date March 19, 2020
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

AMA Akbulut A, Esen B, Gökçora N, İlgin N, Kitapçı M. The value of late phase imaging with FDG-PET/CT in liver metastases of colorectal carcinoma. J Health Sci Med / JHSM. March 2020;3(2):137-143. doi:10.32322/jhsm.686957

Interuniversity Board (UAK) Equivalency: Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS].

The Directories (indexes) and Platforms we are included in are at the bottom of the page.

Note: Our journal is not WOS indexed and therefore is not classified as Q.

You can download Council of Higher Education (CoHG) [Yüksek Öğretim Kurumu (YÖK)] Criteria) decisions about predatory/questionable journals and the author's clarification text and journal charge policy from your browser. https://dergipark.org.tr/tr/journal/2316/file/4905/show







The indexes of the journal are ULAKBİM TR Dizin, Index Copernicus, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, EuroPub, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, etc.

       images?q=tbn:ANd9GcRB9r6zRLDl0Pz7om2DQkiTQXqDtuq64Eb1Qg&usqp=CAU

500px-WorldCat_logo.svg.png

atifdizini.png

logo_world_of_journals_no_margin.png

images?q=tbn%3AANd9GcTNpvUjQ4Ffc6uQBqMQrqYMR53c7bRqD9rohCINkko0Y1a_hPSn&usqp=CAU

doaj.png  

images?q=tbn:ANd9GcSpOQFsFv3RdX0lIQJC3SwkFIA-CceHin_ujli_JrqBy3A32A_Tx_oMoIZn96EcrpLwTQg&usqp=CAU

ici2.png

asos-index.png

drji.png





The platforms of the journal are Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons, etc.

COPE-logo-300x199.jpgimages?q=tbn:ANd9GcQR6_qdgvxMP9owgnYzJ1M6CS_XzR_d7orTjA&usqp=CAU

icmje_1_orig.png

cc.logo.large.png

ncbi.pngimages?q=tbn:ANd9GcRBcJw8ia8S9TI4Fun5vj3HPzEcEKIvF_jtnw&usqp=CAU

ORCID_logo.png

1*mvsP194Golg0Dmo2rjJ-oQ.jpeg


Our Journal using the DergiPark system indexed are;

Ulakbim TR Dizin,  Index Copernicus, ICI World of JournalsDirectory of Research Journals Indexing (DRJI), General Impact FactorASOS Index, OpenAIRE, MIAR,  EuroPub, WorldCat (OCLC)DOAJ,  Türkiye Citation Index, Türk Medline Index, InfoBase Index


Our Journal using the DergiPark system platforms are;

Google, Google Scholar, CrossRef (DOI), ResearchBib, ICJME, COPE, NCBI, ORCID, Creative Commons, Open Access, and etc.


Journal articles are evaluated as "Double-Blind Peer Review". 

Our journal has adopted the Open Access Policy and articles in JHSM are Open Access and fully comply with Open Access instructions. All articles in the system can be accessed and read without a journal user.  https//dergipark.org.tr/tr/pub/jhsm/page/9535

Journal charge policy   https://dergipark.org.tr/tr/pub/jhsm/page/10912


Editor List for 2022

Assoc. Prof. Alpaslan TANOĞLU (MD)  

Prof. Aydın ÇİFCİ (MD)

Prof. İbrahim Celalaettin HAZNEDAROĞLU (MD)

Prof. Murat KEKİLLİ (MD)

Prof. Yavuz BEYAZIT (MD) 

Prof. Ekrem ÜNAL (MD)

Prof. Ahmet EKEN (MD)

Assoc. Prof. Ercan YUVANÇ (MD)

Assoc. Prof. Bekir UÇAN (MD) 

Assoc. Prof. Mehmet Sinan DAL (MD)


Our journal has been indexed in DOAJ as of May 18, 2020.

Our journal has been indexed in TR-Dizin as of March 12, 2021.


17873

Articles published in the Journal of Health Sciences and Medicine have open access and are licensed under the Creative Commons CC BY-NC-ND 4.0 International License.