Aim: Fundus images are very important to diagnose some ophthalmologic disorders. Hence, fundus images have become a very important data source for machine-learning society. Our primary goal is to propose a new automated disorder classification model for diabetic retinopathy (DR) using the strength of deep learning. In this model, our proposed model suggests a treatment technique using fundus images.
Material and Method: In this research, a new dataset was acquired and this dataset contains 1365 Fundus Fluorescein Angiography images with five classes. To detect these disorders automatically, we proposed a transfer learning-based feature engineering model. This feature engineering model uses pretrained MobileNetv2 and nested patch division to extract deep and exemplar features. The neighborhood component analysis (NCA) feature selection function has been applied to choose the top features. k nearest neighbors (kNN) classification function has been used to get results and we used 10-fold cross-validation (CV) to validate the results.
Results: The proposed MobileNetv2 and nested patch-based image classification model attained 87.40% classification accuracy on the collected dataset.
Conclusions: The calculated 87.40% classification accuracy for five classes has been demonstrated high classification accuracy of the proposed deep feature engineering model
Diabetic retinopathy fundus image processing biomedical image classification artificial intelligence
Primary Language | English |
---|---|
Subjects | Health Care Administration |
Journal Section | Original Article |
Authors | |
Publication Date | October 25, 2022 |
Published in Issue | Year 2022 Volume: 5 Issue: 6 |
Interuniversity Board (UAK) Equivalency: Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS].
The Directories (indexes) and Platforms we are included in are at the bottom of the page.
Note: Our journal is not WOS indexed and therefore is not classified as Q.
You can download Council of Higher Education (CoHG) [Yüksek Öğretim Kurumu (YÖK)] Criteria) decisions about predatory/questionable journals and the author's clarification text and journal charge policy from your browser. https://dergipark.org.tr/tr/journal/2316/file/4905/show
The indexes of the journal are ULAKBİM TR Dizin, Index Copernicus, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, EuroPub, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, etc.
The platforms of the journal are Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons, etc.
Our Journal using the DergiPark system indexed are;
Ulakbim TR Dizin, Index Copernicus, ICI World of Journals, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, OpenAIRE, MIAR, EuroPub, WorldCat (OCLC), DOAJ, Türkiye Citation Index, Türk Medline Index, InfoBase Index
Our Journal using the DergiPark system platforms are;
Journal articles are evaluated as "Double-Blind Peer Review".
Our journal has adopted the Open Access Policy and articles in JHSM are Open Access and fully comply with Open Access instructions. All articles in the system can be accessed and read without a journal user. https//dergipark.org.tr/tr/pub/jhsm/page/9535
Journal charge policy https://dergipark.org.tr/tr/pub/jhsm/page/10912
Editor List for 2022
Assoc. Prof. Alpaslan TANOĞLU (MD)
Prof. Aydın ÇİFCİ (MD)
Prof. İbrahim Celalaettin HAZNEDAROĞLU (MD)
Prof. Murat KEKİLLİ (MD)
Prof. Yavuz BEYAZIT (MD)
Prof. Ekrem ÜNAL (MD)
Prof. Ahmet EKEN (MD)
Assoc. Prof. Ercan YUVANÇ (MD)
Assoc. Prof. Bekir UÇAN (MD)
Assoc. Prof. Mehmet Sinan DAL (MD)
Our journal has been indexed in DOAJ as of May 18, 2020.
Our journal has been indexed in TR-Dizin as of March 12, 2021.
Articles published in the Journal of Health Sciences and Medicine have open access and are licensed under the Creative Commons CC BY-NC-ND 4.0 International License.