Research Article
BibTex RIS Cite

Exploring Turkish equivalents of terms for musculoskeletal radiology: insights for a standardized terminology

Year 2025, Volume: 8 Issue: 2, 275 - 285, 21.03.2025
https://doi.org/10.32322/jhsm.1612372

Abstract

Aims: This study aimed to provide an analysis of Turkish equivalents of English terms for musculoskeletal radiology.
Methods: The present study focuses on a global endorsement of English terms in musculoskeletal radiology, and explores how their Turkish equivalents are used in reference books (Turkish translation of the books, Diagnostic Imaging: Musculoskeletal: Trauma and Diagnostic Imaging: Musculoskeletal: Non-Traumatic Disease). Furthermore, the study attempts to provide a picture of how AI-based tools (i.e. neural machine translation tools such as DeepL, Google Translate and an AI Chatbot, ChatGPT) vary in the translation of these terms.
Results: The study found that the most common translation strategies for musculoskeletal radiology terms were borrowing and literal translation, with several combined strategies used for complex terms. AI-based tools like DeepL, Google Translate, and ChatGPT showed a high similarity to human translations, but differences were observed in word choice, strategy use, and orthographic variations. These differences, though minor, highlight the challenges of achieving consistency and accuracy in AI-generated medical translations.
Conclusion: The present study provides a list of Turkish equivalents for musculoskeletal terminology in English, and presents an analysis of translations by radiology specialists and AI-based tools. Careful evaluation of AI translations is essential to ensure accuracy and consistency in the translation of medical terminology, particularly in subspecialities such as musculoskeletal radiology.

Ethical Statement

I/we declare that the study with the above information is among the studies that do not require ethics committee permission.

References

  • Gunn AJ, Tuttle MC, Flores EJ, et al. Differing interpretations of report terminology between primary care physicians and radiologists. J Am Coll Radiol. 2016;13(12 Part A):1525-1529.e1. doi:10.1016/j.jacr.2016.07.016
  • Yang S, Wu X, Ge S, Zhou SK, Xiao L. Knowledge matters: chest radiology report generation with general and specific knowledge. Med Image Anal. 2022;80:102510. doi:10.1016/j.media.2022.102510
  • Khorasani R, Bates DW, Teeger S, Rothschild JM, Adams DF, Seltzer SE. Is terminology used effectively to convey diagnostic certainty in radiology reports? Acad Radiol. 2003;10(6):685-688. doi:10.1016/S1076-6332(03)80089-2
  • RadLex radiology lexicon. Accessed December 22, 2024. https://www.rsna.org/practice-tools/data-tools-and-standards/radlex-radiology-lexicon
  • Rubin DL. Creating and curating a terminology for radiology: ontology modeling and analysis. J Digit Imaging. 2008;21(4):355-362. doi:10.1007/s10278-007-9073-0
  • Reiner BI, Knight N, Siegel EL. Radiology reporting, past, present, and future: the radiologist’s perspective. J Am Coll Radiol. 2007;4(5):313-319. doi:10.1016/j.jacr.2007.01.015
  • Hochhegger B, Marchiori E, Rodrigues R, et al. Consensus statement on thoracic radiology terminology in Portuguese used in Brazil and in Portugal. J Bras Pneumol. 2021;47:e20200595. doi:10.36416/1806-3756/e20200595
  • Chernyak V, Tang A, Do RKG, et al. Liver imaging: it is time to adopt standardized terminology. Eur Radiol. 2022;32(9):6291-6301. doi:10. 1007/s00330-022-08769-5
  • Palmer W, Bancroft L, Bonar F, et al. Glossary of terms for musculoskeletal radiology. Skeletal Radiol. 2020;49(Suppl 1):1-33. doi: 10.1007/s00256-020-03465-1
  • Geijer M, Inci F, Solidakis N, Szaro P, Al-Amiry B. The development of musculoskeletal radiology for 100 years as presented in the pages of acta radiologica. Acta Radiol Stockh Swed 1987. 2021;62(11):1460-1472. doi: 10.1177/02841851211050866
  • Alaia EF, Chhabra A, Simpfendorfer CS, et al. MRI nomenclature for musculoskeletal infection. Skeletal Radiol. 2021;50(12):2319-2347. doi: 10.1007/s00256-021-03807-7
  • Grelsamer, RP, Patterson, DC, Hyman, AD. Ambiguous Nomenclature in Musculoskeletal Magnetic Resonance Imaging - ProQuest. Accessed December 27, 2024. https://www.proquest.com/openview/f81c88071a24f1798b6ac44112eecc4b/1?cbl=1646346&pq-origsite=gscholar
  • Fischbach H. Some anatomical and physiological aspects of medical translation: lexical equivalence, ubiquitous references and universality of subject minimize misunderstanding and maximize transfer of meaning. Meta J Trad Meta Transl J. 1986;31(1):16-21. doi:10.7202/002743ar
  • Kitanovska-Kimovska S, Neškovska S. Translation of medical terminology: strategies for translating COVID-19 terms from English into Macedonian. J Contempor Philol. 2022;5(1):39-57. doi:10.37834/JCP2251039kk
  • Pilegaard M. Translation of medical research articles. In: Trosborg A, ed. Text Typology and Translation. Benjamins Translation Library. John Benjamins Publishing Company; 1997:159. doi:10.1075/btl.26.13pil
  • Montalt V, González-Davies M. Medical Translation Step by Step: Learning by Drafting. Routledge; 2014. doi:10.4324/9781315760377
  • Vinay JP. Comparative Stylistics of French and English. John Benjamins Publishing Company Accessed December 29, 2024. https://benjamins.com/catalog/btl.11
  • Xiaoli W. Analysis of English translation strategies for mongolian medical terminology from a cultural perspective. MEDS Clin Med. 2023;4(6):21-25. doi:10.23977/medsc.2023.040603
  • Hirschmann A, Cyriac J, Stieltjes B, Kober T, Richiardi J, Omoumi P. Artificial intelligence in musculoskeletal imaging: review of current literature, challenges, and trends. Semin Musculoskelet Radiol. 2019; 23(3):304-311. doi:10.1055/s-0039-1684024
  • Chea P, Mandell JC. Current applications and future directions of deep learning in musculoskeletal radiology. Skeletal Radiol. 2020;49(2):183-197. doi:10.1007/s00256-019-03284-z
  • Horiuchi D, Tatekawa H, Oura T, et al. ChatGPT’s diagnostic performance based on textual vs. visual information compared to radiologists’ diagnostic performance in musculoskeletal radiology. Eur Radiol. 2025;35(1):506-516. doi:10.1007/s00330-024-10902-5
  • Gorelik N, Gyftopoulos S. Applications of artificial intelligence in musculoskeletal imaging: from the request to the report. Can Assoc Radiol J. 2021;72(1):45-59. doi:10.1177/0846537120947148
  • Hendrix N, Hendrix W, van Dijke K, et al. Musculoskeletal radiologist-level performance by using deep learning for detection of scaphoid fractures on conventional multi-view radiographs of hand and wrist. Eur Radiol. 2023;33(3):1575-1588. doi:10.1007/s00330-022-09205-4
  • Sacoransky E, Kwan BYM, Soboleski D. ChatGPT and assistive AI in structured radiology reporting: a systematic review. Curr Probl Diagn Radiol. 2024;53(6):728-737. doi:10.1067/j.cpradiol.2024.07.007
  • Mese I, Taslicay CA, Sivrioglu AK. Improving radiology workflow using ChatGPT and artificial intelligence. Clin Imag. 2023;103:109993. doi:10. 1016/j.clinimag.2023.109993
  • Aksoy N, Sharoff S, Baser S, Ravikumar N, Frangi AF. Beyond images: an integrative multi-modal approach to chest x-Ray report generation. Front Radiol. 2024;4:1339612. doi:10.3389/fradi.2024.1339612
  • Başer Z, Aral M. Perspectives of translation students on artificial intelligence-based translation tools. Kırıkkale Uni J Soc Sci. 2024;14(3): 39-55.
  • Yaman İ. DeepL Translate ve Google Translate sistemlerinin İngilizce-Türkçe ve Türkçe-İngilizce çeviri performanslarının karşılaştırılması. Söylem Filoloji Derg. 2023;(Çeviribilim Özel Sayısı):29-41. doi:10.29110/soylemdergi.1187172
  • Lee TK. Artificial intelligence and posthumanist translation: ChatGPT versus the translator. Appl Linguist Rev. 2024;15(6):2351-2372. doi:10. 1515/applirev-2023-0122
  • Ariza A, Ángeles M. The English of the health sciences: a note on foreign borrowings. O inglês da ciência da saúde: notas sobre empréstimos lexicais. Published online 2012. Accessed January 2, 2025. http://rua.ua. es/dspace/handle/10045/35748

Kas iskelet radyolojisi terimlerinin Türkçe karşılıklarının araştırılması: standartlaştırılmış bir terminoloji için öngörüler

Year 2025, Volume: 8 Issue: 2, 275 - 285, 21.03.2025
https://doi.org/10.32322/jhsm.1612372

Abstract

Amaç: Bu çalışmanın amacı kas-iskelet sistemi radyolojisinde kullanılan İngilizce terimlerin Türkçe karşılıklarının analizini yapmaktır.

Yöntemler: Bu çalışma, kas-iskelet radyolojisi alanındaki İngilizce terimlerin genel bir onayına odaklanmakta ve bunların Türkçe karşılıklarının referans kitaplarda nasıl kullanıldığını araştırmaktadır (Diagnostic Imaging: Musculoskeletal: Travma ve Tanısal Görüntüleme: Musculoskeletal: Travma Dışı Hastalıklar). Çalışma ayrıca, yapay zeka tabanlı araçların (yani DeepL, Google Translate gibi nöral makine çevirisi araçları ve bir yapay zeka sohbet robotu olan ChatGPT) bu terimlerin çevirisinde nasıl farklılık gösterdiğine dair bir resim sunmaya çalışmaktadır.

Bulgular: Çalışma, kas-iskelet radyolojisi terimleri için en yaygın çeviri stratejilerinin ödünç alma ve birebir çeviri olduğunu ve karmaşık terimler için birkaç birleşik stratejinin kullanıldığını ortaya koymuştur. DeepL, Google Translate ve ChatGPT gibi yapay zeka tabanlı araçlar insan çevirilerine yüksek oranda benzerlik gösterse de kelime seçimi, strateji kullanımı ve imla varyasyonlarında farklılıklar gözlemlenmiştir. Bu farklılıklar, küçük olsa da, YZ tarafından üretilen tıbbi çevirilerde tutarlılık ve doğruluk elde etmenin zorluklarını vurgulamaktadır.

Sonuç: Bu çalışma, İngilizce kas-iskelet sistemi terminolojisinin Türkçe karşılıklarının bir listesini sunmakta ve radyoloji uzmanları ve YZ tabanlı araçlar tarafından yapılan çevirilerin bir analizini sunmaktadır. YZ çevirilerinin dikkatli bir şekilde değerlendirilmesi, özellikle kas-iskelet radyolojisi gibi alt uzmanlık alanlarında tıbbi terminolojinin çevirisinde doğruluk ve tutarlılığı sağlamak için gereklidir.

Ethical Statement

Yukarıda bilgileri yer alan çalışmanın, etik kurul izni gerektirmeyen çalışmalar arasında yer aldığını beyan ederim/ederiz.

References

  • Gunn AJ, Tuttle MC, Flores EJ, et al. Differing interpretations of report terminology between primary care physicians and radiologists. J Am Coll Radiol. 2016;13(12 Part A):1525-1529.e1. doi:10.1016/j.jacr.2016.07.016
  • Yang S, Wu X, Ge S, Zhou SK, Xiao L. Knowledge matters: chest radiology report generation with general and specific knowledge. Med Image Anal. 2022;80:102510. doi:10.1016/j.media.2022.102510
  • Khorasani R, Bates DW, Teeger S, Rothschild JM, Adams DF, Seltzer SE. Is terminology used effectively to convey diagnostic certainty in radiology reports? Acad Radiol. 2003;10(6):685-688. doi:10.1016/S1076-6332(03)80089-2
  • RadLex radiology lexicon. Accessed December 22, 2024. https://www.rsna.org/practice-tools/data-tools-and-standards/radlex-radiology-lexicon
  • Rubin DL. Creating and curating a terminology for radiology: ontology modeling and analysis. J Digit Imaging. 2008;21(4):355-362. doi:10.1007/s10278-007-9073-0
  • Reiner BI, Knight N, Siegel EL. Radiology reporting, past, present, and future: the radiologist’s perspective. J Am Coll Radiol. 2007;4(5):313-319. doi:10.1016/j.jacr.2007.01.015
  • Hochhegger B, Marchiori E, Rodrigues R, et al. Consensus statement on thoracic radiology terminology in Portuguese used in Brazil and in Portugal. J Bras Pneumol. 2021;47:e20200595. doi:10.36416/1806-3756/e20200595
  • Chernyak V, Tang A, Do RKG, et al. Liver imaging: it is time to adopt standardized terminology. Eur Radiol. 2022;32(9):6291-6301. doi:10. 1007/s00330-022-08769-5
  • Palmer W, Bancroft L, Bonar F, et al. Glossary of terms for musculoskeletal radiology. Skeletal Radiol. 2020;49(Suppl 1):1-33. doi: 10.1007/s00256-020-03465-1
  • Geijer M, Inci F, Solidakis N, Szaro P, Al-Amiry B. The development of musculoskeletal radiology for 100 years as presented in the pages of acta radiologica. Acta Radiol Stockh Swed 1987. 2021;62(11):1460-1472. doi: 10.1177/02841851211050866
  • Alaia EF, Chhabra A, Simpfendorfer CS, et al. MRI nomenclature for musculoskeletal infection. Skeletal Radiol. 2021;50(12):2319-2347. doi: 10.1007/s00256-021-03807-7
  • Grelsamer, RP, Patterson, DC, Hyman, AD. Ambiguous Nomenclature in Musculoskeletal Magnetic Resonance Imaging - ProQuest. Accessed December 27, 2024. https://www.proquest.com/openview/f81c88071a24f1798b6ac44112eecc4b/1?cbl=1646346&pq-origsite=gscholar
  • Fischbach H. Some anatomical and physiological aspects of medical translation: lexical equivalence, ubiquitous references and universality of subject minimize misunderstanding and maximize transfer of meaning. Meta J Trad Meta Transl J. 1986;31(1):16-21. doi:10.7202/002743ar
  • Kitanovska-Kimovska S, Neškovska S. Translation of medical terminology: strategies for translating COVID-19 terms from English into Macedonian. J Contempor Philol. 2022;5(1):39-57. doi:10.37834/JCP2251039kk
  • Pilegaard M. Translation of medical research articles. In: Trosborg A, ed. Text Typology and Translation. Benjamins Translation Library. John Benjamins Publishing Company; 1997:159. doi:10.1075/btl.26.13pil
  • Montalt V, González-Davies M. Medical Translation Step by Step: Learning by Drafting. Routledge; 2014. doi:10.4324/9781315760377
  • Vinay JP. Comparative Stylistics of French and English. John Benjamins Publishing Company Accessed December 29, 2024. https://benjamins.com/catalog/btl.11
  • Xiaoli W. Analysis of English translation strategies for mongolian medical terminology from a cultural perspective. MEDS Clin Med. 2023;4(6):21-25. doi:10.23977/medsc.2023.040603
  • Hirschmann A, Cyriac J, Stieltjes B, Kober T, Richiardi J, Omoumi P. Artificial intelligence in musculoskeletal imaging: review of current literature, challenges, and trends. Semin Musculoskelet Radiol. 2019; 23(3):304-311. doi:10.1055/s-0039-1684024
  • Chea P, Mandell JC. Current applications and future directions of deep learning in musculoskeletal radiology. Skeletal Radiol. 2020;49(2):183-197. doi:10.1007/s00256-019-03284-z
  • Horiuchi D, Tatekawa H, Oura T, et al. ChatGPT’s diagnostic performance based on textual vs. visual information compared to radiologists’ diagnostic performance in musculoskeletal radiology. Eur Radiol. 2025;35(1):506-516. doi:10.1007/s00330-024-10902-5
  • Gorelik N, Gyftopoulos S. Applications of artificial intelligence in musculoskeletal imaging: from the request to the report. Can Assoc Radiol J. 2021;72(1):45-59. doi:10.1177/0846537120947148
  • Hendrix N, Hendrix W, van Dijke K, et al. Musculoskeletal radiologist-level performance by using deep learning for detection of scaphoid fractures on conventional multi-view radiographs of hand and wrist. Eur Radiol. 2023;33(3):1575-1588. doi:10.1007/s00330-022-09205-4
  • Sacoransky E, Kwan BYM, Soboleski D. ChatGPT and assistive AI in structured radiology reporting: a systematic review. Curr Probl Diagn Radiol. 2024;53(6):728-737. doi:10.1067/j.cpradiol.2024.07.007
  • Mese I, Taslicay CA, Sivrioglu AK. Improving radiology workflow using ChatGPT and artificial intelligence. Clin Imag. 2023;103:109993. doi:10. 1016/j.clinimag.2023.109993
  • Aksoy N, Sharoff S, Baser S, Ravikumar N, Frangi AF. Beyond images: an integrative multi-modal approach to chest x-Ray report generation. Front Radiol. 2024;4:1339612. doi:10.3389/fradi.2024.1339612
  • Başer Z, Aral M. Perspectives of translation students on artificial intelligence-based translation tools. Kırıkkale Uni J Soc Sci. 2024;14(3): 39-55.
  • Yaman İ. DeepL Translate ve Google Translate sistemlerinin İngilizce-Türkçe ve Türkçe-İngilizce çeviri performanslarının karşılaştırılması. Söylem Filoloji Derg. 2023;(Çeviribilim Özel Sayısı):29-41. doi:10.29110/soylemdergi.1187172
  • Lee TK. Artificial intelligence and posthumanist translation: ChatGPT versus the translator. Appl Linguist Rev. 2024;15(6):2351-2372. doi:10. 1515/applirev-2023-0122
  • Ariza A, Ángeles M. The English of the health sciences: a note on foreign borrowings. O inglês da ciência da saúde: notas sobre empréstimos lexicais. Published online 2012. Accessed January 2, 2025. http://rua.ua. es/dspace/handle/10045/35748
There are 30 citations in total.

Details

Primary Language English
Subjects Radiology and Organ Imaging
Journal Section Original Article
Authors

Zeynep Başer 0000-0003-4391-4075

Publication Date March 21, 2025
Submission Date January 2, 2025
Acceptance Date February 10, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

AMA Başer Z. Exploring Turkish equivalents of terms for musculoskeletal radiology: insights for a standardized terminology. J Health Sci Med / JHSM. March 2025;8(2):275-285. doi:10.32322/jhsm.1612372

Interuniversity Board (UAK) Equivalency: Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS].

The Directories (indexes) and Platforms we are included in are at the bottom of the page.

Note: Our journal is not WOS indexed and therefore is not classified as Q.

You can download Council of Higher Education (CoHG) [Yüksek Öğretim Kurumu (YÖK)] Criteria) decisions about predatory/questionable journals and the author's clarification text and journal charge policy from your browser. https://dergipark.org.tr/tr/journal/2316/file/4905/show







The indexes of the journal are ULAKBİM TR Dizin, Index Copernicus, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, EuroPub, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, etc.

       images?q=tbn:ANd9GcRB9r6zRLDl0Pz7om2DQkiTQXqDtuq64Eb1Qg&usqp=CAU

500px-WorldCat_logo.svg.png

atifdizini.png

logo_world_of_journals_no_margin.png

images?q=tbn%3AANd9GcTNpvUjQ4Ffc6uQBqMQrqYMR53c7bRqD9rohCINkko0Y1a_hPSn&usqp=CAU

doaj.png  

images?q=tbn:ANd9GcSpOQFsFv3RdX0lIQJC3SwkFIA-CceHin_ujli_JrqBy3A32A_Tx_oMoIZn96EcrpLwTQg&usqp=CAU

ici2.png

asos-index.png

drji.png





The platforms of the journal are Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons, etc.

COPE-logo-300x199.jpgimages?q=tbn:ANd9GcQR6_qdgvxMP9owgnYzJ1M6CS_XzR_d7orTjA&usqp=CAU

icmje_1_orig.png

cc.logo.large.png

ncbi.pngimages?q=tbn:ANd9GcRBcJw8ia8S9TI4Fun5vj3HPzEcEKIvF_jtnw&usqp=CAU

ORCID_logo.png

1*mvsP194Golg0Dmo2rjJ-oQ.jpeg


Our Journal using the DergiPark system indexed are;

Ulakbim TR Dizin,  Index Copernicus, ICI World of JournalsDirectory of Research Journals Indexing (DRJI), General Impact FactorASOS Index, OpenAIRE, MIAR,  EuroPub, WorldCat (OCLC)DOAJ,  Türkiye Citation Index, Türk Medline Index, InfoBase Index


Our Journal using the DergiPark system platforms are;

Google, Google Scholar, CrossRef (DOI), ResearchBib, ICJME, COPE, NCBI, ORCID, Creative Commons, Open Access, and etc.


Journal articles are evaluated as "Double-Blind Peer Review". 

Our journal has adopted the Open Access Policy and articles in JHSM are Open Access and fully comply with Open Access instructions. All articles in the system can be accessed and read without a journal user.  https//dergipark.org.tr/tr/pub/jhsm/page/9535

Journal charge policy   https://dergipark.org.tr/tr/pub/jhsm/page/10912


Editor List for 2022

Assoc. Prof. Alpaslan TANOĞLU (MD)  

Prof. Aydın ÇİFCİ (MD)

Prof. İbrahim Celalaettin HAZNEDAROĞLU (MD)

Prof. Murat KEKİLLİ (MD)

Prof. Yavuz BEYAZIT (MD) 

Prof. Ekrem ÜNAL (MD)

Prof. Ahmet EKEN (MD)

Assoc. Prof. Ercan YUVANÇ (MD)

Assoc. Prof. Bekir UÇAN (MD) 

Assoc. Prof. Mehmet Sinan DAL (MD)


Our journal has been indexed in DOAJ as of May 18, 2020.

Our journal has been indexed in TR-Dizin as of March 12, 2021.


17873

Articles published in the Journal of Health Sciences and Medicine have open access and are licensed under the Creative Commons CC BY-NC-ND 4.0 International License.