Research Article
BibTex RIS Cite

Oxidative stress in the cerebellum of pinealectomized rats and its correlation with GFAP expression

Year 2025, Volume: 8 Issue: 2, 338 - 344, 21.03.2025
https://doi.org/10.32322/jhsm.1624240

Abstract

Aims: This study aims to investigate the results of the lack of melatonin in the cerebellar tissue of pinealectomized Wistar albino rats using immunohistochemistry and biochemistry.
Methods: Control, pinealectomy, and sham pinealectomy groups were designed for the experiment (n=8). Pinealectomy and sham pinealectomy surgery were employed. At the end of 30 days, cerebellum tissue was used for histopathological, glial fibrillary acidic protein (GFAP) immunostaining, and biochemical (oxidative stress markers) analyses. Purkinje cell counts and cerebellar layer thickness in the cerebellum were also measured within the scope of histometrical analyses.
Results: The study revealed that melatonin deficiency (pinealectomy) adversely impacts the overall histological structure of the cerebellum, leading to heightened immunoreactivity to GFAP antibody, elevated malondialdehyde levels, and reduced glutathione and superoxide dismutase levels in comparison to control and sham pinealectomy groups (p<0.05). This study has, for the first time, elucidated the amounts of oxidants and antioxidants, GFAP immunoreactivity, Purkinje cell counts, and cerebellar layers thicknesses in the cerebellum of a pinealectomized rat model. This study is the inaugural investigation to elucidate the association between melatonin and the cerebellum, a topic hitherto overlooked in the literature, thereby establishing a significant foundation.
Conclusion: Lack of melatonin can be a reason for neurodegeneration and oxidative stress in the cerebellum. Pinealectomy surgery was found to be a reason for the elevation of oxidative stress, deterioration of the histological architecture, and increase of GFAP expression in the cerebellar tissue of the Wistar albino rats.

Ethical Statement

Approval from the Karabük University Faculty of Medicine Experimental Animals Local Ethics Committee for Animal Experiments was secured for the study (decision number 2024/12/32) and conducted following its requirements.

References

  • Trujillo-Rangel WÁ, Acuña-Vaca S, Padilla-Ponce DJ, et al. Modulation of the circadian rhythm and oxidative stress as molecular targets to improve vascular dementia: a pharmacological perspective. Int J Mol Sci. 2024;25(8):4401. doi:10.3390/ijms25084401
  • Inouye ST, Shibata S. Neurochemical organization of circadian rhythm in the suprachiasmatic nucleus. Neurosci Res. 1994;20(2):109-130. doi: 10.1016/0168-0102(94)90029-9
  • Nair A. Anticancer properties of melatonin and its role as an adjuvant in cancer treatment. Indian J Cancer. 2022;59(2):288-294. doi:10.4103/ijc.IJC_1197_20
  • Budkowska M, Cecerska-Heryć E, Marcinowska Z, Siennicka A, Dołęgowska B. The influence of circadian rhythm on the activity of oxidative stress enzymes. Int J Mol Sci. 2022;23(22):14275. doi:10.3390/ijms232214275
  • Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull. 1993;49(3):481-493. doi:10.1093/oxfordjournals.bmb.a072625
  • Gaweł S, Wardas M, Niedworok E, Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek. 2004;57(9-10):453-455.
  • Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007; 35(Pt 5):1147-1150. doi:10.1042/BST0351147
  • Aydin M, Dirik Y, Demir C, Tolunay HE, Demir H. Can we reduce oxidative stress with liver transplantation? J Med Biochem. 2021;40(4): 351-357. doi:10.5937/jomb0-29983
  • Kerman M, Cirak B, Ozguner MF, et al. Does melatonin protect or treat brain damage from traumatic oxidative stress? Exp Brain Res. 2005; 163(3):406-410. doi:10.1007/s00221-005-2338-2
  • Nishida S. Metabolic effects of melatonin on oxidative stress and diabetes mellitus. Endocrine. 2005;27(2):131-136. doi:10.1385/endo:27:2:131
  • Shagirtha K, Muthumani M, Prabu SM. Melatonin abrogates cadmium induced oxidative stress related neurotoxicity in rats. Eur Rev Med Pharmacol Sci. 2011;15(9):1039-1050.
  • Skaper SD, Floreani M, Ceccon M, Facci L, Giusti P. Excitotoxicity, oxidative stress, and the neuroprotective potential of melatonin. Ann NY Acad Sci. 1999;890:107-118. doi:10.1111/j.1749-6632.1999.tb07985.x
  • Ates O, Cayli S, Gurses I, et al. Effect of pinealectomy and melatonin replacement on morphological and biochemical recovery after traumatic brain injury. Int J Dev Neurosci. 2006;24(6):357-363. doi:10.1016/j.ijdevneu. 2006.08.003
  • Fatemi SH, Laurence JA, Araghi-Niknam M, et al. Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schizophr Res. 2004;69(2-3):317-323. doi:10.1016/j.schres.2003.08.014
  • Ruzza P, Vitale RM, Hussain R, et al. Interactions of GFAP with ceftriaxone and phenytoin: SRCD and molecular docking and dynamic simulation. Biochim Biophys Acta. 2016;1860(10):2239-2248. doi:10.1016/ j.bbagen.2016.04.021
  • Ozcelikay-Akyildiz G, Karadurmus L, Cetinkaya A, et al. The evaluation of clinical applications for the detection of the alzheimer’s disease biomarker GFAP. Crit Rev Anal Chem. 2024:1-12. doi:10.1080/10408347.2024.2393874
  • Wagemann E, Schmidt-Kastner R, Block F, Sontag KH. Altered pattern of immunohistochemical staining for glial fibrillary acidic protein (GFAP) in the forebrain and cerebellum of the mutant spastic rat. J Chem Neuroanat. 1995;8(3):151-163. doi:10.1016/0891-0618(94)00042-r
  • Baydas G, Reiter RJ, Nedzvetskii VS, Nerush PA, Kirichenko SV. Altered glial fibrillary acidic protein content and its degradation in the hippocampus, cortex and cerebellum of rats exposed to constant light: reversal by melatonin. J Pineal Res. 2002;33(3):134-139. doi:10.1034/j. 1600-079x.2002.02110.x
  • Fauteck JD, Lerchl A, Bergmann M, et al. The adult human cerebellum is a target of the neuroendocrine system involved in the circadian timing. Neurosci Lett. 1994;179(1-2):60-64. doi:10.1016/0304-3940(94)90935-0
  • Demir M, Altinoz E, Elbe H, et al. Effects of pinealectomy and crocin treatment on rats with isoproterenol-induced myocardial infarction. Drug Chem Toxicol. 2022;45(6):2576-2585. doi:10.1080/01480545.2021.1977025
  • Levi F, Schibler U. Circadian rhythms: mechanisms and therapeutic implications. Ann Rev Pharmacol Toxicol. 2007;47:593-628. doi:10.1146/annurev.pharmtox.47.120505.105208
  • Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol. 2018;175(16): 3190-3199. doi:10.1111/bph.14116
  • Khullar A. The role of melatonin in the circadian rhythm sleep-wake cycle: a review of endogenous and exogenous melatonin. Psychiatric Times. 2012;29(7):26-32.
  • Hardeland R. Melatonin metabolism in the central nervous system. Curr Neuropharmacol. 2010;8(3):168-181. doi:10.2174/157015910792246244
  • Nian J, Lan W, Wang Z, Zhang X, Yao H, Zhang F. Exploring the metabolic implications of blue light exposure during daytime in rats. Ecotoxicol Environ Saf. 2024;278:116436. doi:10.1016/j.ecoenv.2024.116436
  • McElroy CL, Wang B, Zhang H, Jin K. Cerebellum and aging: update and challenges. Aging Dis. 2024;15(6):2345-2360. doi:10.14336/AD.2024. 0220
  • Castro-Pascual IC, Ferramola ML, Altamirano FG, et al. Circadian organization of clock factors, antioxidant defenses, and cognitive genes expression, is lost in the cerebellum of aged rats. Possible targets of therapeutic strategies for the treatment of age-related cerebellar disorders. Brain Res. 2024;1845:149195. doi:10.1016/j.brainres.2024.149195
  • Cho JH, Bhutani S, Kim CH, Irwin MR. Anti-inflammatory effects of melatonin: a systematic review and meta-analysis of clinical trials. Brain Behav Immun. 2021;93:245-253. doi:10.1016/j.bbi.2021.01.034
  • Abdelhameed NG, Ahmed YH, Yasin NAE, Mahmoud MY, El-Sakhawy MA. Effects of aluminum oxide nanoparticles in the cerebrum, hippocampus, and cerebellum of male wistar rats and potential ameliorative role of melatonin. ACS Chem Neurosci. 2023;14(3):359-369. doi:10.1021/acschemneuro.2c00406
  • Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res. 2018;65(1): e12514. doi:10.1111/jpi.12514
  • Kaptanoglu E, Palaoglu S, Demirpence E, Akbiyik F, Solaroglu I, Kilinc A. Different responsiveness of central nervous system tissues to oxidative conditions and to the antioxidant effect of melatonin. J Pineal Res. 2003;34(1):32-35. doi:10.1034/j.1600-079x.2003.02934.x
  • Essawy AE, Mohamed AI, Ali RG, Ali AM, Abdou HM. Analysis of melatonin-modulating effects against tartrazine-induced neurotoxicity in male rats: biochemical, pathological and immunohistochemical markers. Neurochem Res. 2023;48(1):131-141. doi:10.1007/s11064-022-03723-9
  • McClean C, Davison GW. Circadian clocks, redox homeostasis, and exercise: time to connect the dots? Antioxidants (Basel). 2022;11(2):256. doi:10.3390/antiox11020256
  • Kisaoglu A, Borekci B, Yapca OE, Bilen H, Suleyman H. Tissue damage and oxidant/antioxidant balance. Eurasian J Med. 2013;45(1):47-49. doi: 10.5152/eajm.2013.08
  • Ramos-Martínez E, Almeida-Aguirre EKP, Ramos-Martínez I, et al. Neuroprotection mediated by prolactin against streptozotocin injury in brain rat areas. Brain Res. 2024;1842:149104. doi:10.1016/j.brainres.2024. 149104
  • Kılıçoğlu M, Düz U, Arslan G, Ayyıldız M, Ağar E, Kılıç N. The effects of leptin and cannabinoid CB1 receptor agonist/antagonist in cerebral tissues of epileptic rats. Rev Assoc Med Bras (1992). 2024;70(5):e20231333. doi:10.1590/1806-9282.20231333
  • Su J, Song Y, Zhu Z, et al. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther. 2024;9(1):196. doi:10. 1038/s41392-024-01888-z
  • Aulinas A. Physiology of the pineal gland and melatonin. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, et al, editors. Endotext (Internet). South Dartmouth (MA): MDText.com, Inc.; 2000.
  • Cho JH, Tae HJ, Kim IS, et al. Melatonin alleviates asphyxial cardiac arrest-induced cerebellar Purkinje cell death by attenuation of oxidative stress. Exp Neurol. 2019;320:112983. doi:10.1016/j.expneurol.2019.112983
  • Rasband MN. Glial contributions to neural function and disease. Mol Cell Proteomics. 2016;15(2):355-361. doi:10.1074/mcp.R115.053744
  • Carrier M, Dolhan K, Bobotis BC, Desjardins M, Tremblay MÈ. The implication of a diversity of non-neuronal cells in disorders affecting brain networks. Front Cell Neurosci. 2022;16:1015556. doi:10.3389/fncel. 2022.1015556
  • Verkhratsky A, Nedergaard M. Physiology of astroglia. Physiol Rev. 2018;98(1):239-389. doi:10.1152/physrev.00042.2016
  • Potokar M, Morita M, Wiche G, Jorgačevski J. The diversity of intermediate filaments in astrocytes. Cells. 2020;9(7):1604. doi:10.3390/cells9071604
  • Jurga AM, Paleczna M, Kadluczka J, Kuter KZ. Beyond the GFAP-astrocyte protein markers in the brain. Biomolecules. 2021;11(9):1361. doi:10.3390/biom11091361
  • Korzhevskiĭ D, Otellin V, Grigor’ev I. Glial fibrillary acidic protein in astrocytes of the human neocortex. Morfologiia (Saint Petersburg, Russia). 2004;126(5):7-10.
  • Brenner M, Messing A. Regulation of GFAP expression. ASN Neuro. 2021;13:1759091420981206. doi:10.1177/1759091420981206
  • Morgan TE, Rozovsky I, Goldsmith SK, Stone DJ, Yoshida T, Finch CE. Increased transcription of the astrocyte gene GFAP during middle-age is attenuated by food restriction: implications for the role of oxidative stress. Free Radic Biol Med. 1997;23(3):524-528. doi:10.1016/s0891-5849 (97)00120-2
  • Benítez-King G. Melatonin as a cytoskeletal modulator: implications for cell physiology and disease. J Pineal Res. 2006;40(1):1-9. doi:10.1111/j. 1600-079X.2005.00282.x
  • Tsutsui K, Haraguchi S. Biosynthesis and biological action of pineal allopregnanolone. Front Cell Neurosci. 2014;8:118. doi:10.3389/fncel. 2014.00118
  • Haraguchi S, Hara S, Ubuka T, Mita M, Tsutsui K. Possible role of pineal allopregnanolone in Purkinje cell survival. Proc Natl Acad Sci USA. 2012;109(51):21110-21115. doi:10.1073/pnas.1210804109

Pinealektomize sıçanların serebellumundaki oksidatif stres ve GFAP ekspresyonu ile korelasyonu

Year 2025, Volume: 8 Issue: 2, 338 - 344, 21.03.2025
https://doi.org/10.32322/jhsm.1624240

Abstract

Amaçlar: Bu çalışmanın amacı, Wistar albino sıçanlarının serebellar dokusunda melatonin eksikliğinin (Pinealektomi) sonuçlarını immünohistokimya ve biyokimya kullanarak araştırmaktır.
Gereçler ve Yöntemler: Deney için kontrol, pinealektomi ve sham pinealektomi grupları tasarlandı (n=8). Pinealektomi ve sham pinealektomi ameliyatı yapıldı. 30 günün sonunda, serebellum dokusu histopatolojik, Glial Fibriller Asidik Protein immünoboyama ve biyokimyasal (oksidatif stres belirteçleri) analizler için kullanıldı. Ayrıca, serebellumdaki Purkinje hücre sayıları ve serebellar tabaka kalınlığı histometrik analizler kapsamında ölçüldü.
Sonuçlar: Çalışma, melatonin eksikliğinin (pinealektomi) serebellumun genel histolojik yapısını olumsuz yönde etkileyerek Glial Fibriller Asidik Protein antikoruna karşı artan immünoreaktiviteye, yüksek malondialdehit seviyelerine ve kontrol ve sahte pinealektomi gruplarına kıyasla azalmış glutatyon ve süperoksit dismutaz seviyelerine yol açtığını ortaya koydu (P˂ 0,05). Bu çalışma, ilk kez, pinealektomize edilmiş bir sıçan modelinin serebellumundaki oksidan ve antioksidan miktarlarını, GFAP immünoreaktivitesini, Purkinje hücre sayılarını ve serebellar tabaka kalınlığını açıklığa kavuşturdu. Bu çalışma, literatürde bugüne kadar göz ardı edilmiş bir konu olan melatonin ve serebellum arasındaki ilişkiyi açıklamak için yapılan ilk araştırmadır ve böylece önemli bir temel oluşturmuştur.
Sonuç: Melatonin eksikliği, serebellumda nörodejenerasyon ve oksidatif stresin bir nedenidir.

References

  • Trujillo-Rangel WÁ, Acuña-Vaca S, Padilla-Ponce DJ, et al. Modulation of the circadian rhythm and oxidative stress as molecular targets to improve vascular dementia: a pharmacological perspective. Int J Mol Sci. 2024;25(8):4401. doi:10.3390/ijms25084401
  • Inouye ST, Shibata S. Neurochemical organization of circadian rhythm in the suprachiasmatic nucleus. Neurosci Res. 1994;20(2):109-130. doi: 10.1016/0168-0102(94)90029-9
  • Nair A. Anticancer properties of melatonin and its role as an adjuvant in cancer treatment. Indian J Cancer. 2022;59(2):288-294. doi:10.4103/ijc.IJC_1197_20
  • Budkowska M, Cecerska-Heryć E, Marcinowska Z, Siennicka A, Dołęgowska B. The influence of circadian rhythm on the activity of oxidative stress enzymes. Int J Mol Sci. 2022;23(22):14275. doi:10.3390/ijms232214275
  • Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull. 1993;49(3):481-493. doi:10.1093/oxfordjournals.bmb.a072625
  • Gaweł S, Wardas M, Niedworok E, Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek. 2004;57(9-10):453-455.
  • Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007; 35(Pt 5):1147-1150. doi:10.1042/BST0351147
  • Aydin M, Dirik Y, Demir C, Tolunay HE, Demir H. Can we reduce oxidative stress with liver transplantation? J Med Biochem. 2021;40(4): 351-357. doi:10.5937/jomb0-29983
  • Kerman M, Cirak B, Ozguner MF, et al. Does melatonin protect or treat brain damage from traumatic oxidative stress? Exp Brain Res. 2005; 163(3):406-410. doi:10.1007/s00221-005-2338-2
  • Nishida S. Metabolic effects of melatonin on oxidative stress and diabetes mellitus. Endocrine. 2005;27(2):131-136. doi:10.1385/endo:27:2:131
  • Shagirtha K, Muthumani M, Prabu SM. Melatonin abrogates cadmium induced oxidative stress related neurotoxicity in rats. Eur Rev Med Pharmacol Sci. 2011;15(9):1039-1050.
  • Skaper SD, Floreani M, Ceccon M, Facci L, Giusti P. Excitotoxicity, oxidative stress, and the neuroprotective potential of melatonin. Ann NY Acad Sci. 1999;890:107-118. doi:10.1111/j.1749-6632.1999.tb07985.x
  • Ates O, Cayli S, Gurses I, et al. Effect of pinealectomy and melatonin replacement on morphological and biochemical recovery after traumatic brain injury. Int J Dev Neurosci. 2006;24(6):357-363. doi:10.1016/j.ijdevneu. 2006.08.003
  • Fatemi SH, Laurence JA, Araghi-Niknam M, et al. Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schizophr Res. 2004;69(2-3):317-323. doi:10.1016/j.schres.2003.08.014
  • Ruzza P, Vitale RM, Hussain R, et al. Interactions of GFAP with ceftriaxone and phenytoin: SRCD and molecular docking and dynamic simulation. Biochim Biophys Acta. 2016;1860(10):2239-2248. doi:10.1016/ j.bbagen.2016.04.021
  • Ozcelikay-Akyildiz G, Karadurmus L, Cetinkaya A, et al. The evaluation of clinical applications for the detection of the alzheimer’s disease biomarker GFAP. Crit Rev Anal Chem. 2024:1-12. doi:10.1080/10408347.2024.2393874
  • Wagemann E, Schmidt-Kastner R, Block F, Sontag KH. Altered pattern of immunohistochemical staining for glial fibrillary acidic protein (GFAP) in the forebrain and cerebellum of the mutant spastic rat. J Chem Neuroanat. 1995;8(3):151-163. doi:10.1016/0891-0618(94)00042-r
  • Baydas G, Reiter RJ, Nedzvetskii VS, Nerush PA, Kirichenko SV. Altered glial fibrillary acidic protein content and its degradation in the hippocampus, cortex and cerebellum of rats exposed to constant light: reversal by melatonin. J Pineal Res. 2002;33(3):134-139. doi:10.1034/j. 1600-079x.2002.02110.x
  • Fauteck JD, Lerchl A, Bergmann M, et al. The adult human cerebellum is a target of the neuroendocrine system involved in the circadian timing. Neurosci Lett. 1994;179(1-2):60-64. doi:10.1016/0304-3940(94)90935-0
  • Demir M, Altinoz E, Elbe H, et al. Effects of pinealectomy and crocin treatment on rats with isoproterenol-induced myocardial infarction. Drug Chem Toxicol. 2022;45(6):2576-2585. doi:10.1080/01480545.2021.1977025
  • Levi F, Schibler U. Circadian rhythms: mechanisms and therapeutic implications. Ann Rev Pharmacol Toxicol. 2007;47:593-628. doi:10.1146/annurev.pharmtox.47.120505.105208
  • Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol. 2018;175(16): 3190-3199. doi:10.1111/bph.14116
  • Khullar A. The role of melatonin in the circadian rhythm sleep-wake cycle: a review of endogenous and exogenous melatonin. Psychiatric Times. 2012;29(7):26-32.
  • Hardeland R. Melatonin metabolism in the central nervous system. Curr Neuropharmacol. 2010;8(3):168-181. doi:10.2174/157015910792246244
  • Nian J, Lan W, Wang Z, Zhang X, Yao H, Zhang F. Exploring the metabolic implications of blue light exposure during daytime in rats. Ecotoxicol Environ Saf. 2024;278:116436. doi:10.1016/j.ecoenv.2024.116436
  • McElroy CL, Wang B, Zhang H, Jin K. Cerebellum and aging: update and challenges. Aging Dis. 2024;15(6):2345-2360. doi:10.14336/AD.2024. 0220
  • Castro-Pascual IC, Ferramola ML, Altamirano FG, et al. Circadian organization of clock factors, antioxidant defenses, and cognitive genes expression, is lost in the cerebellum of aged rats. Possible targets of therapeutic strategies for the treatment of age-related cerebellar disorders. Brain Res. 2024;1845:149195. doi:10.1016/j.brainres.2024.149195
  • Cho JH, Bhutani S, Kim CH, Irwin MR. Anti-inflammatory effects of melatonin: a systematic review and meta-analysis of clinical trials. Brain Behav Immun. 2021;93:245-253. doi:10.1016/j.bbi.2021.01.034
  • Abdelhameed NG, Ahmed YH, Yasin NAE, Mahmoud MY, El-Sakhawy MA. Effects of aluminum oxide nanoparticles in the cerebrum, hippocampus, and cerebellum of male wistar rats and potential ameliorative role of melatonin. ACS Chem Neurosci. 2023;14(3):359-369. doi:10.1021/acschemneuro.2c00406
  • Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res. 2018;65(1): e12514. doi:10.1111/jpi.12514
  • Kaptanoglu E, Palaoglu S, Demirpence E, Akbiyik F, Solaroglu I, Kilinc A. Different responsiveness of central nervous system tissues to oxidative conditions and to the antioxidant effect of melatonin. J Pineal Res. 2003;34(1):32-35. doi:10.1034/j.1600-079x.2003.02934.x
  • Essawy AE, Mohamed AI, Ali RG, Ali AM, Abdou HM. Analysis of melatonin-modulating effects against tartrazine-induced neurotoxicity in male rats: biochemical, pathological and immunohistochemical markers. Neurochem Res. 2023;48(1):131-141. doi:10.1007/s11064-022-03723-9
  • McClean C, Davison GW. Circadian clocks, redox homeostasis, and exercise: time to connect the dots? Antioxidants (Basel). 2022;11(2):256. doi:10.3390/antiox11020256
  • Kisaoglu A, Borekci B, Yapca OE, Bilen H, Suleyman H. Tissue damage and oxidant/antioxidant balance. Eurasian J Med. 2013;45(1):47-49. doi: 10.5152/eajm.2013.08
  • Ramos-Martínez E, Almeida-Aguirre EKP, Ramos-Martínez I, et al. Neuroprotection mediated by prolactin against streptozotocin injury in brain rat areas. Brain Res. 2024;1842:149104. doi:10.1016/j.brainres.2024. 149104
  • Kılıçoğlu M, Düz U, Arslan G, Ayyıldız M, Ağar E, Kılıç N. The effects of leptin and cannabinoid CB1 receptor agonist/antagonist in cerebral tissues of epileptic rats. Rev Assoc Med Bras (1992). 2024;70(5):e20231333. doi:10.1590/1806-9282.20231333
  • Su J, Song Y, Zhu Z, et al. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther. 2024;9(1):196. doi:10. 1038/s41392-024-01888-z
  • Aulinas A. Physiology of the pineal gland and melatonin. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, et al, editors. Endotext (Internet). South Dartmouth (MA): MDText.com, Inc.; 2000.
  • Cho JH, Tae HJ, Kim IS, et al. Melatonin alleviates asphyxial cardiac arrest-induced cerebellar Purkinje cell death by attenuation of oxidative stress. Exp Neurol. 2019;320:112983. doi:10.1016/j.expneurol.2019.112983
  • Rasband MN. Glial contributions to neural function and disease. Mol Cell Proteomics. 2016;15(2):355-361. doi:10.1074/mcp.R115.053744
  • Carrier M, Dolhan K, Bobotis BC, Desjardins M, Tremblay MÈ. The implication of a diversity of non-neuronal cells in disorders affecting brain networks. Front Cell Neurosci. 2022;16:1015556. doi:10.3389/fncel. 2022.1015556
  • Verkhratsky A, Nedergaard M. Physiology of astroglia. Physiol Rev. 2018;98(1):239-389. doi:10.1152/physrev.00042.2016
  • Potokar M, Morita M, Wiche G, Jorgačevski J. The diversity of intermediate filaments in astrocytes. Cells. 2020;9(7):1604. doi:10.3390/cells9071604
  • Jurga AM, Paleczna M, Kadluczka J, Kuter KZ. Beyond the GFAP-astrocyte protein markers in the brain. Biomolecules. 2021;11(9):1361. doi:10.3390/biom11091361
  • Korzhevskiĭ D, Otellin V, Grigor’ev I. Glial fibrillary acidic protein in astrocytes of the human neocortex. Morfologiia (Saint Petersburg, Russia). 2004;126(5):7-10.
  • Brenner M, Messing A. Regulation of GFAP expression. ASN Neuro. 2021;13:1759091420981206. doi:10.1177/1759091420981206
  • Morgan TE, Rozovsky I, Goldsmith SK, Stone DJ, Yoshida T, Finch CE. Increased transcription of the astrocyte gene GFAP during middle-age is attenuated by food restriction: implications for the role of oxidative stress. Free Radic Biol Med. 1997;23(3):524-528. doi:10.1016/s0891-5849 (97)00120-2
  • Benítez-King G. Melatonin as a cytoskeletal modulator: implications for cell physiology and disease. J Pineal Res. 2006;40(1):1-9. doi:10.1111/j. 1600-079X.2005.00282.x
  • Tsutsui K, Haraguchi S. Biosynthesis and biological action of pineal allopregnanolone. Front Cell Neurosci. 2014;8:118. doi:10.3389/fncel. 2014.00118
  • Haraguchi S, Hara S, Ubuka T, Mita M, Tsutsui K. Possible role of pineal allopregnanolone in Purkinje cell survival. Proc Natl Acad Sci USA. 2012;109(51):21110-21115. doi:10.1073/pnas.1210804109
There are 50 citations in total.

Details

Primary Language English
Subjects Central Nervous System
Journal Section Original Article
Authors

Feyza Başak 0000-0002-9335-1103

Mehmet Demir 0000-0001-6990-3337

Tansu Kuşat 0000-0001-7237-1562

Sarab Hayder Weli Weli 0000-0001-8733-6583

Publication Date March 21, 2025
Submission Date January 21, 2025
Acceptance Date March 8, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

AMA Başak F, Demir M, Kuşat T, Weli SHW. Oxidative stress in the cerebellum of pinealectomized rats and its correlation with GFAP expression. J Health Sci Med / JHSM. March 2025;8(2):338-344. doi:10.32322/jhsm.1624240

Interuniversity Board (UAK) Equivalency: Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS].

The Directories (indexes) and Platforms we are included in are at the bottom of the page.

Note: Our journal is not WOS indexed and therefore is not classified as Q.

You can download Council of Higher Education (CoHG) [Yüksek Öğretim Kurumu (YÖK)] Criteria) decisions about predatory/questionable journals and the author's clarification text and journal charge policy from your browser. https://dergipark.org.tr/tr/journal/2316/file/4905/show







The indexes of the journal are ULAKBİM TR Dizin, Index Copernicus, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, EuroPub, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, etc.

       images?q=tbn:ANd9GcRB9r6zRLDl0Pz7om2DQkiTQXqDtuq64Eb1Qg&usqp=CAU

500px-WorldCat_logo.svg.png

atifdizini.png

logo_world_of_journals_no_margin.png

images?q=tbn%3AANd9GcTNpvUjQ4Ffc6uQBqMQrqYMR53c7bRqD9rohCINkko0Y1a_hPSn&usqp=CAU

doaj.png  

images?q=tbn:ANd9GcSpOQFsFv3RdX0lIQJC3SwkFIA-CceHin_ujli_JrqBy3A32A_Tx_oMoIZn96EcrpLwTQg&usqp=CAU

ici2.png

asos-index.png

drji.png





The platforms of the journal are Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons, etc.

COPE-logo-300x199.jpgimages?q=tbn:ANd9GcQR6_qdgvxMP9owgnYzJ1M6CS_XzR_d7orTjA&usqp=CAU

icmje_1_orig.png

cc.logo.large.png

ncbi.pngimages?q=tbn:ANd9GcRBcJw8ia8S9TI4Fun5vj3HPzEcEKIvF_jtnw&usqp=CAU

ORCID_logo.png

1*mvsP194Golg0Dmo2rjJ-oQ.jpeg


Our Journal using the DergiPark system indexed are;

Ulakbim TR Dizin,  Index Copernicus, ICI World of JournalsDirectory of Research Journals Indexing (DRJI), General Impact FactorASOS Index, OpenAIRE, MIAR,  EuroPub, WorldCat (OCLC)DOAJ,  Türkiye Citation Index, Türk Medline Index, InfoBase Index


Our Journal using the DergiPark system platforms are;

Google, Google Scholar, CrossRef (DOI), ResearchBib, ICJME, COPE, NCBI, ORCID, Creative Commons, Open Access, and etc.


Journal articles are evaluated as "Double-Blind Peer Review". 

Our journal has adopted the Open Access Policy and articles in JHSM are Open Access and fully comply with Open Access instructions. All articles in the system can be accessed and read without a journal user.  https//dergipark.org.tr/tr/pub/jhsm/page/9535

Journal charge policy   https://dergipark.org.tr/tr/pub/jhsm/page/10912


Editor List for 2022

Assoc. Prof. Alpaslan TANOĞLU (MD)  

Prof. Aydın ÇİFCİ (MD)

Prof. İbrahim Celalaettin HAZNEDAROĞLU (MD)

Prof. Murat KEKİLLİ (MD)

Prof. Yavuz BEYAZIT (MD) 

Prof. Ekrem ÜNAL (MD)

Prof. Ahmet EKEN (MD)

Assoc. Prof. Ercan YUVANÇ (MD)

Assoc. Prof. Bekir UÇAN (MD) 

Assoc. Prof. Mehmet Sinan DAL (MD)


Our journal has been indexed in DOAJ as of May 18, 2020.

Our journal has been indexed in TR-Dizin as of March 12, 2021.


17873

Articles published in the Journal of Health Sciences and Medicine have open access and are licensed under the Creative Commons CC BY-NC-ND 4.0 International License.