Amaç: Bu çalışma, koroner arter bypass grefti (CABG) ameliyatı sonrası iyileşme süreciyle ilgili hasta bilgilendirmesinde önde gelen yapay zekâ (YZ) sohbet robotlarının kalite, okunabilirlik ve genel performanslarını değerlendirmeyi amaçlamaktadır.
Yöntem: CABG sonrası iyileşme sürecine ilişkin standartlaştırılmış bir tıbbi komut, GPT-4o, GPT 4.1, Grok-4, Claude Opus-4, DeepSeek R1, Gemini Pro, Microsoft Copilot, Llama 4, Mistral Large 2 ve Perplexity Sonar olmak üzere on popüler YZ sohbet robotuna girildi. Yanıtların kalitesi geçerliliği kanıtlanmış iki ölçüm sistemiyle değerlendirildi: modifiye Ensuring Quality Information for Patients (mEQIP) ve Quality Analysis of Medical Artificial Intelligence (QAMAI). Okunabilirlik seviyeleri ise sekiz standart formülü birleştiren Average Reading Level Consensus (ARLC) hesaplayıcısıyla ölçüldü.
Bulgular: Test edilen sohbet robotları arasında, Perplexity Sonar en yüksek mEQIP puanını (%91,7) ve en yüksek QAMAI puanına (30 üzerinden 29) sahipti. En düşük puanlar ise Gemini Pro'ya ait olup, %72,2 mEQIP ve 25/30 QAMAI olarak saptandı. Tüm platformlarda ortalama mEQIP skoru %80,43, ortalama QAMAI skoru ise 27/30 olarak belirlendi ve bu da genelde ortalama olarak yüksek kaliteli yanıtlar verildiğini gösterdi. Okunabilirlik analizine göre, DeepSeek R1 anlaşılması en kolay içeriği üretirken (ARLC: 9,92; 15–16 yaş seviyesi), Llama 4 en karmaşık çıktıyı sundu (ARLC: 14,69; 23+ yaş seviyesi). Tüm sohbet robotlarının ortalama ARLC skoru 11,9 olup, bu düzey üniversite seviyesine karşılık gelmektedir ve hasta eğitimi materyalleri için önerilen 6–8. sınıf seviyesinin oldukça üzerindedir.
Sonuç: YZ sohbet robotları, CABG sonrası hasta bilgilendirmesinde umut verici bir potansiyele sahiptir ve içerik kalitelerinin değerlendirmelerinde sıklıkla yüksek puanlar almışlardır. Ancak okunabilirlik, içerik bütünlüğü ve kaynak şeffaflığı açısından tutarsızlıklar mevcuttur. YZ tarafından üretilen sağlık bilgilerinin giderek daha karmaşık hale gelmesine rağmen, yüksek okuma seviyeleri ve düzensiz atıf uygulamaları, genel hasta kitlesi için erişilebilirliği sınırlayabilir. Gelecekteki sohbet robotları sürümlerinin, hasta merkezli tasarımı, tıbbi kılavuzlara uyumu ve içerik sadeleştirmeyi önceliklendirmesi önerilmektedir.
insan verisi kullanılmadığından etik kurul onayına gerek duyulmamıştır.
Aims: This study aims to evaluate the performance of existing Artificial Intelligence (AI) driven Chatbots regarding patient information after coronary artery bypass (CABG) surgery.
Methods: On July 1, 2025, a standardized medical prompt concerning the recovery process after CABG was submitted to ten prominent AI Chatbots: GPT-4o, GPT 4.1, Grok-4, Claude Opus-4, DeepSeek R1, Gemini Pro, Microsoft Copilot, Llama 4, Mistral Large 2, and Perplexity Sonar. Each response was assessed using two validated scoring systems; the modified Ensuring Quality Information for Patients (mEQIP) and the newly developed Quality Analysis of Medical Artificial Intelligence (QAMAI). Readability was evaluated using the average reading level consensus (ARLC) calculator, which aggregates eight standard readability formulas.
Results: Among the tested Chatbots, Perplexity Sonar achieved the highest mEQIP score (91.7%) and the highest QAMAI score (29/30), while Gemini Pro received the lowest scores in both evaluations (72.2% mEQIP, 25/30 QAMAI). The average mEQIP score across all platforms was 80.43%, and the mean QAMAI score was 27/30, indicating generally high-quality responses. Readability assessment revealed that DeepSeek R1 provided the most comprehensible content (ARLC: 9.92, equivalent to a reading age of 15-16 years), while Llama 4 produced the most complex output (ARLC: 14.69, age 23+). The average ARLC across all Chatbots was 11.9, which corresponds to a college-level reading difficulty and exceeds the recommended sixth to eighth-grade readability level for patient education materials.
Conclusion: AI Chatbots show promising capabilities in delivering post-CABG patient information, often achieving high scores in quality assessments. However, inconsistencies remain in readability, completeness, and source transparency. Despite the increasing sophistication of AI-generated health information, the elevated reading levels and inconsistent citation practices may hinder accessibility for general patient populations. To enhance their role in patient education, future Chatbot iterations should prioritize user-centered design, medical guideline compliance, and content simplification.
Ethical Statement: No ethical approval was needed because this is not a human study, but only online information was used.
Primary Language | English |
---|---|
Subjects | Computing Applications in Health, Surgical Diseases Nursing |
Journal Section | Original Article |
Authors | |
Publication Date | September 16, 2025 |
Submission Date | July 28, 2025 |
Acceptance Date | August 25, 2025 |
Published in Issue | Year 2025 Volume: 8 Issue: 5 |
Interuniversity Board (UAK) Equivalency: Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS].
The Directories (indexes) and Platforms we are included in are at the bottom of the page.
Note: Our journal is not WOS indexed and therefore is not classified as Q.
You can download Council of Higher Education (CoHG) [Yüksek Öğretim Kurumu (YÖK)] Criteria) decisions about predatory/questionable journals and the author's clarification text and journal charge policy from your browser. https://dergipark.org.tr/tr/journal/2316/file/4905/show
The indexes of the journal are ULAKBİM TR Dizin, Index Copernicus, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, EuroPub, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, etc.
The platforms of the journal are Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons, etc.
Our Journal using the DergiPark system indexed are;
Ulakbim TR Dizin, Index Copernicus, ICI World of Journals, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, OpenAIRE, MIAR, EuroPub, WorldCat (OCLC), DOAJ, Türkiye Citation Index, Türk Medline Index, InfoBase Index
Our Journal using the DergiPark system platforms are;
Journal articles are evaluated as "Double-Blind Peer Review".
Our journal has adopted the Open Access Policy and articles in JHSM are Open Access and fully comply with Open Access instructions. All articles in the system can be accessed and read without a journal user. https//dergipark.org.tr/tr/pub/jhsm/page/9535
Journal charge policy https://dergipark.org.tr/tr/pub/jhsm/page/10912
Our journal has been indexed in DOAJ as of May 18, 2020.
Our journal has been indexed in TR-Dizin as of March 12, 2021.
Articles published in the Journal of Health Sciences and Medicine have open access and are licensed under the Creative Commons CC BY-NC-ND 4.0 International License.