Research Article
BibTex RIS Cite

Energy Consumption Analyses and Temperature Damping Factor Based on Surface Properties of Exterior Walls of Buildings

Year 2023, Volume: 5 Issue: 2, 49 - 69, 31.12.2023
https://doi.org/10.60093/jiciviltech.1381812

Abstract

In this study, energy, exergy, and anergy analyses related to eight types of coatings and paints consisting of white paint, aluminium, red brick, black paint, black metal coating, concrete, marble and porcelain-tile were made which applied to the external wall of the buildings envelope with the highest surface area. Balikesir province from the second climate zone was accepted for all examinations based on TS 825. Accordingly, energy consumption exergy and anergia were calculated. The degree-day method was used for energy consumption calculations. For degree-day calculations, solar air temperature values were determined. While calculating solar air temperature values, absorbance and emissivity values were found for eight coatings and paints. As a result, when the heating and cooling periods are considered together, depending on the energy consumption, the highest exergy in the north direction is 21.405 kWh/m2, and the lowest exergy is the metal black-coated outer wall using natural gas energy source for the white painted exterior wall surface using a coal energy source. It has been determined as 5.118 kWh/m2 in the south direction for the surface. In addition, temperature dependent decrement factor was determined for the exterior walls of the building due to different paints or coatings.

References

  • Aldaftari, H. A., Okajima, J., Komiya, A., Maruyama, S. (2019). Radiative control through greenhouse covering materials using pigmented coatings, Journal of Quantitative Spectroscopy & Radiative Transfer, 231, 29-36. doi.org/10.1016/j.jqsrt.2019.04.009
  • Algarni, S. (2019). Potential for cooling load reduction in residential buildings using cool roofs in the harsh climate of Saudi Arabia, Energy and Environment, 30, 2, 235–253. doi.org/10.1177/0958305X1878734
  • Al-Naghi, A. A. A., Rahman, M. K., Al-Amoudi, O. S. B., Al-Dulaijan, S. U. (2020). Thermal performance evaluation of walls with aac blocks, insulating plaster, and reflective coating, Journal Energy Engineering, 146, 2. doi.org/10.1061/(ASCE)EY.1943-7897.0000636
  • Alrwashdeh, S. S, Qadourah, J. A., Al-Falahat, A. M. (2022). Investigation of the effect of roof color on the energy use of a selected house in Amman, Jordan, Frontiers in Mechanical Engineering, 8, 97170. doi.org/10.3389/fmech.2022.897170
  • Asan, H. (2000). Investigation of wall’s optimum insulation position from maximum time lag and minimum decrement factor point of view, Energy and Buildings, 32, 197–203. doi.org/10.1016/S0378-7788(00)00044-X
  • Asan, H. (2006). Numerical computation of time lags and decrement factors for different building materials, Building and Environment, 41, 615–620. doi.org/10.1016/j.buildenv.2005.02.020
  • Ascione, F., Bellia, L., Mazzei, P., Minichiello, F. (2010). Solar gain and building envelope: the surface factor, Building Research and Information, 38, 2, 187–205. doi.org/10.1080/09613210903529118
  • Ascione, F., Bianco, N., Mauro, G. M., Napolitano, D. F. (2019). Retrofit of villas on Mediterranean coastlines: Pareto optimization with a view to energy-efficiency and cost-effectiveness, Applied Energy, 254, 113705. https://doi.org/10.1016/j.apenergy.2019.113705
  • Chen, X.; Zhu, S.; Chen, T. (2022). Thermal parameters calibration and energy-saving evaluation of spectral selective absorption film coated glazing system based on heat transfer simulation, Energies, 15, 2780. doi.org/10.3390/en15082780
  • Çengel, Y. A. (2011). Isı ve kütle transferi pratik bir yaklaşım, (1. Cilt), Izmir, Turkey.
  • Dehwah, A. H.A., Krarti, M. (2020). Impact of switchable roof insulation on energy performance of US residential buildings, Building and Environment, 177, 106882. doi.org/10.1016/j.buildenv.2020.106882
  • Evangelisti, L.; Guattari, C.; Asdrubali, F. (2019). On the sky temperature models and their influence on buildings energy performance: A critical review, Energy and Buildings 183, 607–662. doi.org/10.1016/j.enbuild.2018.11.037
  • Fabiani, C., Pisello, A.L., Bou-Zeid, E., Yang, J., Cotana, F. (2019). Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy balance, Applied Energy, 247, 155-170. doi.org/10.1016/j.apenergy.2019.04.020
  • Fabiani, C., Castaldo, V.L., Pisello, A.L. (2020). Thermochromic materials for indoor thermal comfort improvement: Finite difference modeling and validation in a real case-study building, Applied Energy, 262, 114147. doi.org/10.1016/j.apenergy.2019.114147
  • Fathipour, R., Hadidi A. (2017). Analytical solution for the study of time lag and decrement factor for building walls in climate of Iran, Energy, 134, 167-180. doi.org/10.1016/j.energy.2017.06.009
  • Gupta, V., Deb, C. (2022). Energy retrofit analysis for an educational building in Mumbai, Sustainable Futures, 4, 100096. doi.org/10.1016/j.sftr.2022.100096
  • Gong G., Zeng W., Chang S., He J., Li K. (2007). Scheme-selection optimization of cooling and heating sources based on exergy analysis, Applied Thermal Engineering, 27, 942–950. doi.org/10.1016/j.applthermaleng.2006.08.011
  • Hepbaşlı, A., Özcan, H. G., Günerhan, H., Yıldırım, N. (2019). Binaların ekserji bazlı termodinamik analizleri ve değerlendirmeleri, 14. Ulusal Tesisat Mühendisliği Kongresi, 17-20 Nisan, İzmir, Türkiye.
  • Hua, J., Yu, X. (2019). Thermo and light-responsive building envelope: Energy analysis under different climate conditions, Solar Energy, 193, 866-877. doi.org/10.1016/j.solener.2019.10.021
  • Jin, X., Zhang, X., Cao, Y., and Wang G. (2012). Thermal performance evaluation of the wall using heat flux time lag and decrement factor, Energy and Buildings, 47, 369-374. doi.org/10.1016/j.enbuild.2011.12.010
  • Karakaşlı, E. (2012). Değişik iklim bölgelerindeki binaların performansının ekserjetik açıdan değerlendirilmesi, Yayımlanmış Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Makine Eğitimi Anabilim Dalı, Elâzığ, Türkiye.
  • Khabir, S., Vakilinezhad, R.. (2022). Energy and thermal analysis of DSF in the retrofit design of office buildings in hot climates, Architectural Engineering and Design Management, 19, 6, 1-23. doi.org/10.1080/17452007.2022.2147898
  • Kılıçlı A. (2018). Ege üniversitesi bünyesindeki mevcut bir binanın enerji-ekserji analizi ve iyileştirme önerileri, Yayımlanmamış Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Güneş Enerjisi Anabilim Dalı, İzmir, Türkiye.
  • Kon, O. (2018). Binalarda ekonomik optimizasyon kullanılarak dış duvar ve pencerelere bağlı yakıt Tüketimi ve emisyon hesabı, Journal of the Faculty of Engineering and Architecture of Gazi University, 33, 1, 101-113. doi.org/10.17341/gazimmfd.406783
  • Kon, O., Caner, İ. (2022a). Benefiting from solar energy due to different emissivity levels of multiple glasswindows for buildings, Niğde Ömer Halisdemir University (NOHU) Journal of Engineering Sciences, 11, 3, 781 – 796. doi.org/10.28948/ngumuh.1091332
  • Kon, O., Caner, İ. (2022b). The effect of external wall insulation on mold and moisture on the buildings, Buildings, 12, 5, 521. doi.org/10.3390/buildings12050521
  • Kontoleon, K., J., Eumorfopoulou, E., A. (2008). The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region, Renewable Energy, 33, 1652–1664. doi.org/10.1016/j.renene.2007.09.008
  • Liu, H., Wang, F., Lei, S., Ou, J., Li, W. (2021). Large-area fabrication of colorful superhydrophobic coatings with high solar reflectivity, Construction and Building Materials, 304, 124602. doi.org/10.1016/j.conbuildmat.2021.124602
  • Maduru, V. R., Shaik, S., Cuce, E., Afzal, A., Panchal, H., Cuce, P. M. (2022). UV coated acrylics as a substitute for generic glazing in buildings of Indian climatic conditions: Prospective for energy savings, CO2 abatement, and visual acceptability, Energy and Buildings, 268, 112231. doi.org/10.1016/j.enbuild.2022.112231
  • Martínez-García, C., Fonteboa, B. G., Carro-Lopez, D., P´erez-Ordo´nez, J. L., (2021). Assessment of mussel shells building solutions: A real-scale application, Journal of Building Engineering, 44, 102635. doi.org/10.1016/j.jobe.2021.102635
  • Mavromatidis, E., Mankibi, M., E., Mat, P., M. (2012). Santamouris Numerical estimation of time lags and decrement factors for wall complexes including Multilayer Thermal Insulation, in two different climatic zones Lazaros, Applied Energy, 92, 480-491. doi.org/10.1016/j.apenergy.2011.10.007
  • Montes, F. F., Córdoba, P. F., Calvet, J. L. H., Conejero, J. A., Poza-Luján, J. L., (2020). A system to monitor and model the thermal isolation of coating compounds applied to closed spaces, Thermal Science, 24, 3A, 1885-1892. doi.org/10.2298/TSCI190525077M
  • Ozel, M. (2013). Thermal, conomical and environmental analysis of insulated building walls in a cold climate. Energy Conversion and Management, 76, 674-684. doi.org/10.1016/j.enconman.2013.08.013
  • Özel, M., Pıhtılı, K. (2006). Bina dış yüzeylerinin güneş işınımını yutma oranlarının isı akısı açısından araştırılması, Pamukkale Üniversitesi Mühendislik Fakültesi Mühendislik Bilimleri Dergisi, 12, 2, 167-171.
  • Peng, Y., Fan, L., Jin, W., Ye, Y., Huang, Z., Zhai, S., Luo, X., Ma, Y., Tang, J., Zhou, J., Greenburg, L. C., Majumdar, A., Fan, S., Cui, Y. (2022). Coloured low-emissivity films for building envelopes for year-round energy savings, Nature Sustainability, 5, 339–347. doi.org/10.1038/s41893-021-00836-x
  • Qiu, Z., Wang, J., Yu, B., Liao, L., Li, J. (2021). Identification of passive solar design determinants in office building envelopes in hot and humid climates using data mining techniques, Building and Environment, 196, 107566. doi.org/10.1016/j.buildenv.2020.107566
  • Rossi, S., Calovi, M., Dalpiaz, D., Fedel, M. (2020). The Influence of NIR pigments on coil coatings thermal behaviors, Coatings, 10, 514. doi.org/10.3390/coatings10060514
  • Shukuya, M. (2019). Exergetic approach to the understanding of built environment—state-of-the-art review, Japan Architectural Review, 2, 143-152. doi.org/10.1002/2475-8876.12082
  • Somasundaram, S., Raj, Thangavelu, S., Chong, A. (2020). Improving building efficiency using low-e coating based retrofit double glazing with solar films, Applied Thermal Engineering, 171, 115064. https://doi.org/10.1016/j.applthermaleng.2020.115064
  • Türk Standartları Enstitüsü. (2013). TS 825: Binalarda Isı Yalıtım Kuralları, Türk Standardı.
  • Ulaş, A. (2010). Binalarda TS 825 hesap yöntemine göre ısı kaybı, yakıt tüketimi, karbondioksit emisyonu hesabı ve maliyet analizi, , Yayımlanmamış Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü Ankara, Türkiye.
  • Wardi, F. Z., Khabbazi, A., Cherki, A. B., Khaldoun, A. (2020). Thermomechanical study of a sandwich material with ecological additives, Construction and Building Materials, 252, 119093. doi.org/10.1016/j.conbuildmat.2020.119093
  • Xie, N., Li, H., Abdelhady, A., Harvey, J. (2019). Laboratorial investigation on optical and thermal properties of cool pavement nano-coatings for urban heat island mitigation, Building and Environment, 147, 231-240. doi.org/10.1016/j.buildenv.2018.10.017
  • Yıldırım, E. (2015). Bina dış duvar yalıtımının enerji ve ekserji analizi yöntemiyle optimize edilmesi. Yayımlanmış Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü Güneş Enerjisi Anabilim Dalı, İzmir, Türkiye.
  • Yıldırım, M., Oktay, H., Yumrutaş, R. (2018). Bina duvarlarının termofiziksel özellikleri arasındaki ilişkileri ile bu özelliklerin dinamik ısıl karakterlerine etkilerinin araştırılması, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 22, 2, 872-880. doı: 10.19113/sdufbed.07639
  • Yuxuan, Z., Yunyun, Z., Jianrong, Y., Xiaoqiang, Z., (2020). Energy saving performance of thermochromic coatings with different colors for buildings, Energy and Buildings, 215, 109920.
  • Zhang, Y., Zhai, X., (2019). Preparation and testing of thermochromic coatings for buildings, Solar Energy, 191, 540-548. doi.org/10.1016/j.solener.2019.09.042
  • Zhang, Y., Long, E., Li, Y., Li, P. (2017). Solar radiation reflective coating material on building envelopes: Heat transfer analysis and cooling energy saving, Energy Exploration and Exploitation, 35, 6, 748–766. doi.org/10.1177/0144598717716285
  • Zhu, S., Mai, X., (2019). A review of using reflective pavement materials as mitigation tactics to counter the effects of urban heat island, Advanced Composites and Hybrid Materials, 2, 381–388. doi.org/10.1007/s42114-019-00104-9

Binaların Dış Duvarlarının Yüzey Özelliklerine Bağlı Enerji Tüketim Analizleri ve Sıcaklık Sönüm Faktörü

Year 2023, Volume: 5 Issue: 2, 49 - 69, 31.12.2023
https://doi.org/10.60093/jiciviltech.1381812

Abstract

Çalışmada, binaların yapı kabuğunun en yüksek yüzey alanana sahip dış duvarlarına uygulanan; beyaz boya, alüminyum, kırmızı tuğla, siyah boya, metal siyah kaplama, beton, mermer ve porselen-çini den oluşan sekiz çeşit kaplama ve boyalarına bağlı enerji, ekserji ve anerji incelemeleri yapılmıştır. Tüm incelemeler için TS 825’e ikinci iklim bölgesindeki Balıkesir ili kabul edilmiştir. Enerji tüketimi, ekserji miktarı ve Anerji değeri hesaplanmıştır. Enerji tüketimi hesapları için derece gün yöntemi kullanılmıştır. Derece gün hesapları için güneş hava sıcaklık değerleri hesaplanmıştır. Güneş hava sıcaklık değerleri hesaplanırken sekiz çeşit kaplamalar ve boyalar için soğurganlık ve yayıcılık değeri tespit edilmiştir. Sonuç olarak, ekserji miktarı enerji tüketimine bağlı olarak ısıtma ve soğutma dönemi birlikte düşünüldüğünde kömür enerji kaynağı kullanan, beyaz boyalı dış duvar yüzeyi için, kuzey yönünde en yüksek 21.405 kWh/m2 ve en düşük ise doğal gaz enerji kaynağı kullanan metal siyah kaplamalı dış duvar yüzeyi için güney yönünde 5.118 kWh/m2 olarak tespit edilmiştir. Ek olarak bina dış duvarları için farklı boya veya kaplamalara bağlı dış duvar için sıcaklığa bağlı sönüm faktörü tespit edilmiştir.

References

  • Aldaftari, H. A., Okajima, J., Komiya, A., Maruyama, S. (2019). Radiative control through greenhouse covering materials using pigmented coatings, Journal of Quantitative Spectroscopy & Radiative Transfer, 231, 29-36. doi.org/10.1016/j.jqsrt.2019.04.009
  • Algarni, S. (2019). Potential for cooling load reduction in residential buildings using cool roofs in the harsh climate of Saudi Arabia, Energy and Environment, 30, 2, 235–253. doi.org/10.1177/0958305X1878734
  • Al-Naghi, A. A. A., Rahman, M. K., Al-Amoudi, O. S. B., Al-Dulaijan, S. U. (2020). Thermal performance evaluation of walls with aac blocks, insulating plaster, and reflective coating, Journal Energy Engineering, 146, 2. doi.org/10.1061/(ASCE)EY.1943-7897.0000636
  • Alrwashdeh, S. S, Qadourah, J. A., Al-Falahat, A. M. (2022). Investigation of the effect of roof color on the energy use of a selected house in Amman, Jordan, Frontiers in Mechanical Engineering, 8, 97170. doi.org/10.3389/fmech.2022.897170
  • Asan, H. (2000). Investigation of wall’s optimum insulation position from maximum time lag and minimum decrement factor point of view, Energy and Buildings, 32, 197–203. doi.org/10.1016/S0378-7788(00)00044-X
  • Asan, H. (2006). Numerical computation of time lags and decrement factors for different building materials, Building and Environment, 41, 615–620. doi.org/10.1016/j.buildenv.2005.02.020
  • Ascione, F., Bellia, L., Mazzei, P., Minichiello, F. (2010). Solar gain and building envelope: the surface factor, Building Research and Information, 38, 2, 187–205. doi.org/10.1080/09613210903529118
  • Ascione, F., Bianco, N., Mauro, G. M., Napolitano, D. F. (2019). Retrofit of villas on Mediterranean coastlines: Pareto optimization with a view to energy-efficiency and cost-effectiveness, Applied Energy, 254, 113705. https://doi.org/10.1016/j.apenergy.2019.113705
  • Chen, X.; Zhu, S.; Chen, T. (2022). Thermal parameters calibration and energy-saving evaluation of spectral selective absorption film coated glazing system based on heat transfer simulation, Energies, 15, 2780. doi.org/10.3390/en15082780
  • Çengel, Y. A. (2011). Isı ve kütle transferi pratik bir yaklaşım, (1. Cilt), Izmir, Turkey.
  • Dehwah, A. H.A., Krarti, M. (2020). Impact of switchable roof insulation on energy performance of US residential buildings, Building and Environment, 177, 106882. doi.org/10.1016/j.buildenv.2020.106882
  • Evangelisti, L.; Guattari, C.; Asdrubali, F. (2019). On the sky temperature models and their influence on buildings energy performance: A critical review, Energy and Buildings 183, 607–662. doi.org/10.1016/j.enbuild.2018.11.037
  • Fabiani, C., Pisello, A.L., Bou-Zeid, E., Yang, J., Cotana, F. (2019). Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy balance, Applied Energy, 247, 155-170. doi.org/10.1016/j.apenergy.2019.04.020
  • Fabiani, C., Castaldo, V.L., Pisello, A.L. (2020). Thermochromic materials for indoor thermal comfort improvement: Finite difference modeling and validation in a real case-study building, Applied Energy, 262, 114147. doi.org/10.1016/j.apenergy.2019.114147
  • Fathipour, R., Hadidi A. (2017). Analytical solution for the study of time lag and decrement factor for building walls in climate of Iran, Energy, 134, 167-180. doi.org/10.1016/j.energy.2017.06.009
  • Gupta, V., Deb, C. (2022). Energy retrofit analysis for an educational building in Mumbai, Sustainable Futures, 4, 100096. doi.org/10.1016/j.sftr.2022.100096
  • Gong G., Zeng W., Chang S., He J., Li K. (2007). Scheme-selection optimization of cooling and heating sources based on exergy analysis, Applied Thermal Engineering, 27, 942–950. doi.org/10.1016/j.applthermaleng.2006.08.011
  • Hepbaşlı, A., Özcan, H. G., Günerhan, H., Yıldırım, N. (2019). Binaların ekserji bazlı termodinamik analizleri ve değerlendirmeleri, 14. Ulusal Tesisat Mühendisliği Kongresi, 17-20 Nisan, İzmir, Türkiye.
  • Hua, J., Yu, X. (2019). Thermo and light-responsive building envelope: Energy analysis under different climate conditions, Solar Energy, 193, 866-877. doi.org/10.1016/j.solener.2019.10.021
  • Jin, X., Zhang, X., Cao, Y., and Wang G. (2012). Thermal performance evaluation of the wall using heat flux time lag and decrement factor, Energy and Buildings, 47, 369-374. doi.org/10.1016/j.enbuild.2011.12.010
  • Karakaşlı, E. (2012). Değişik iklim bölgelerindeki binaların performansının ekserjetik açıdan değerlendirilmesi, Yayımlanmış Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Makine Eğitimi Anabilim Dalı, Elâzığ, Türkiye.
  • Khabir, S., Vakilinezhad, R.. (2022). Energy and thermal analysis of DSF in the retrofit design of office buildings in hot climates, Architectural Engineering and Design Management, 19, 6, 1-23. doi.org/10.1080/17452007.2022.2147898
  • Kılıçlı A. (2018). Ege üniversitesi bünyesindeki mevcut bir binanın enerji-ekserji analizi ve iyileştirme önerileri, Yayımlanmamış Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Güneş Enerjisi Anabilim Dalı, İzmir, Türkiye.
  • Kon, O. (2018). Binalarda ekonomik optimizasyon kullanılarak dış duvar ve pencerelere bağlı yakıt Tüketimi ve emisyon hesabı, Journal of the Faculty of Engineering and Architecture of Gazi University, 33, 1, 101-113. doi.org/10.17341/gazimmfd.406783
  • Kon, O., Caner, İ. (2022a). Benefiting from solar energy due to different emissivity levels of multiple glasswindows for buildings, Niğde Ömer Halisdemir University (NOHU) Journal of Engineering Sciences, 11, 3, 781 – 796. doi.org/10.28948/ngumuh.1091332
  • Kon, O., Caner, İ. (2022b). The effect of external wall insulation on mold and moisture on the buildings, Buildings, 12, 5, 521. doi.org/10.3390/buildings12050521
  • Kontoleon, K., J., Eumorfopoulou, E., A. (2008). The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region, Renewable Energy, 33, 1652–1664. doi.org/10.1016/j.renene.2007.09.008
  • Liu, H., Wang, F., Lei, S., Ou, J., Li, W. (2021). Large-area fabrication of colorful superhydrophobic coatings with high solar reflectivity, Construction and Building Materials, 304, 124602. doi.org/10.1016/j.conbuildmat.2021.124602
  • Maduru, V. R., Shaik, S., Cuce, E., Afzal, A., Panchal, H., Cuce, P. M. (2022). UV coated acrylics as a substitute for generic glazing in buildings of Indian climatic conditions: Prospective for energy savings, CO2 abatement, and visual acceptability, Energy and Buildings, 268, 112231. doi.org/10.1016/j.enbuild.2022.112231
  • Martínez-García, C., Fonteboa, B. G., Carro-Lopez, D., P´erez-Ordo´nez, J. L., (2021). Assessment of mussel shells building solutions: A real-scale application, Journal of Building Engineering, 44, 102635. doi.org/10.1016/j.jobe.2021.102635
  • Mavromatidis, E., Mankibi, M., E., Mat, P., M. (2012). Santamouris Numerical estimation of time lags and decrement factors for wall complexes including Multilayer Thermal Insulation, in two different climatic zones Lazaros, Applied Energy, 92, 480-491. doi.org/10.1016/j.apenergy.2011.10.007
  • Montes, F. F., Córdoba, P. F., Calvet, J. L. H., Conejero, J. A., Poza-Luján, J. L., (2020). A system to monitor and model the thermal isolation of coating compounds applied to closed spaces, Thermal Science, 24, 3A, 1885-1892. doi.org/10.2298/TSCI190525077M
  • Ozel, M. (2013). Thermal, conomical and environmental analysis of insulated building walls in a cold climate. Energy Conversion and Management, 76, 674-684. doi.org/10.1016/j.enconman.2013.08.013
  • Özel, M., Pıhtılı, K. (2006). Bina dış yüzeylerinin güneş işınımını yutma oranlarının isı akısı açısından araştırılması, Pamukkale Üniversitesi Mühendislik Fakültesi Mühendislik Bilimleri Dergisi, 12, 2, 167-171.
  • Peng, Y., Fan, L., Jin, W., Ye, Y., Huang, Z., Zhai, S., Luo, X., Ma, Y., Tang, J., Zhou, J., Greenburg, L. C., Majumdar, A., Fan, S., Cui, Y. (2022). Coloured low-emissivity films for building envelopes for year-round energy savings, Nature Sustainability, 5, 339–347. doi.org/10.1038/s41893-021-00836-x
  • Qiu, Z., Wang, J., Yu, B., Liao, L., Li, J. (2021). Identification of passive solar design determinants in office building envelopes in hot and humid climates using data mining techniques, Building and Environment, 196, 107566. doi.org/10.1016/j.buildenv.2020.107566
  • Rossi, S., Calovi, M., Dalpiaz, D., Fedel, M. (2020). The Influence of NIR pigments on coil coatings thermal behaviors, Coatings, 10, 514. doi.org/10.3390/coatings10060514
  • Shukuya, M. (2019). Exergetic approach to the understanding of built environment—state-of-the-art review, Japan Architectural Review, 2, 143-152. doi.org/10.1002/2475-8876.12082
  • Somasundaram, S., Raj, Thangavelu, S., Chong, A. (2020). Improving building efficiency using low-e coating based retrofit double glazing with solar films, Applied Thermal Engineering, 171, 115064. https://doi.org/10.1016/j.applthermaleng.2020.115064
  • Türk Standartları Enstitüsü. (2013). TS 825: Binalarda Isı Yalıtım Kuralları, Türk Standardı.
  • Ulaş, A. (2010). Binalarda TS 825 hesap yöntemine göre ısı kaybı, yakıt tüketimi, karbondioksit emisyonu hesabı ve maliyet analizi, , Yayımlanmamış Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü Ankara, Türkiye.
  • Wardi, F. Z., Khabbazi, A., Cherki, A. B., Khaldoun, A. (2020). Thermomechanical study of a sandwich material with ecological additives, Construction and Building Materials, 252, 119093. doi.org/10.1016/j.conbuildmat.2020.119093
  • Xie, N., Li, H., Abdelhady, A., Harvey, J. (2019). Laboratorial investigation on optical and thermal properties of cool pavement nano-coatings for urban heat island mitigation, Building and Environment, 147, 231-240. doi.org/10.1016/j.buildenv.2018.10.017
  • Yıldırım, E. (2015). Bina dış duvar yalıtımının enerji ve ekserji analizi yöntemiyle optimize edilmesi. Yayımlanmış Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü Güneş Enerjisi Anabilim Dalı, İzmir, Türkiye.
  • Yıldırım, M., Oktay, H., Yumrutaş, R. (2018). Bina duvarlarının termofiziksel özellikleri arasındaki ilişkileri ile bu özelliklerin dinamik ısıl karakterlerine etkilerinin araştırılması, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 22, 2, 872-880. doı: 10.19113/sdufbed.07639
  • Yuxuan, Z., Yunyun, Z., Jianrong, Y., Xiaoqiang, Z., (2020). Energy saving performance of thermochromic coatings with different colors for buildings, Energy and Buildings, 215, 109920.
  • Zhang, Y., Zhai, X., (2019). Preparation and testing of thermochromic coatings for buildings, Solar Energy, 191, 540-548. doi.org/10.1016/j.solener.2019.09.042
  • Zhang, Y., Long, E., Li, Y., Li, P. (2017). Solar radiation reflective coating material on building envelopes: Heat transfer analysis and cooling energy saving, Energy Exploration and Exploitation, 35, 6, 748–766. doi.org/10.1177/0144598717716285
  • Zhu, S., Mai, X., (2019). A review of using reflective pavement materials as mitigation tactics to counter the effects of urban heat island, Advanced Composites and Hybrid Materials, 2, 381–388. doi.org/10.1007/s42114-019-00104-9
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Building Technology
Journal Section Research Articles
Authors

Okan Kon 0000-0002-5166-0258

Koray Sandal 0000-0001-9668-4352

Early Pub Date December 31, 2023
Publication Date December 31, 2023
Submission Date October 26, 2023
Acceptance Date December 12, 2023
Published in Issue Year 2023 Volume: 5 Issue: 2

Cite

APA Kon, O., & Sandal, K. (2023). Binaların Dış Duvarlarının Yüzey Özelliklerine Bağlı Enerji Tüketim Analizleri ve Sıcaklık Sönüm Faktörü. Journal of Innovations in Civil Engineering and Technology, 5(2), 49-69. https://doi.org/10.60093/jiciviltech.1381812