Research Article
BibTex RIS Cite

Bisiklet Paylaşım Sistemi İstasyonlarının Sınıflandırılmasında Hiyerarşik Kümeleme Algoritmasının Uygulanması

Year 2024, Volume: 6 Issue: 2, 131 - 142
https://doi.org/10.60093/jiciviltech.1565857

Abstract

Bu çalışmada, İzmir'de faaliyet gösteren bisiklet paylaşım sistemi istasyonları, zamansal kullanım sıklığına göre hiyerarşik kümeleme algoritması ile sınıflandırılmıştır. Araştırma, ulaşım ve eğlence amaçlı yolculuklar arasında bir ayrım yaparak sistemin operasyonel dinamikleri hakkında değerli bilgiler sunmaktadır. Bulgular, Konak İskele İstasyonu'nun ulaşım amaçlı yolculuklar için sürekli olarak ayrı bir küme oluşturduğunu ve bu istasyonun merkezi konumu ile toplu taşıma merkezlerine yakınlığının ona önemli bir rol kazandırdığını vurgulamaktadır. Eğlence amaçlı yolculuklar incelendiğinde, yapılan analiz hafta içi üç ayrı küme ortaya koymuştur. Konak İskele İstasyonu'nun özellikle öğleden sonra ve akşam geç saatlerde yoğun bir şekilde kullanıldığı sonucuna varılmıştır. Öte yandan, hafta sonu yolculukları için istasyonlar iki ayrı küme halinde toplanmıştır. Bu sonuçlar, bisiklet paylaşım sistemleri için özel yönetim stratejilerinin önemini ön plana çıkarmakta ve ulaşım odaklı yolculukların daha stratejik istasyon yerleşimlerinden ve toplu taşımaya daha iyi bağlantılardan faydalanabileceğini göstermektedir.

Supporting Institution

İzmir Katip Çelebi Üniversitesi

Project Number

2023-ARC-MÜMF-0002

Thanks

Bu araştırma, İzmir Katip Çelebi Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından 2023-ARC-MÜMF-0002 numaralı proje ile desteklenmiştir. Yazarlar ayrıca bisiklet paylaşım sistemi yolculuk verilerini paylaştıkları için İzmir Büyükşehir Belediyesi'ne teşekkürlerini sunarlar.

References

  • Beck, B., Winters, M., Nelson, T., Pettit, C., Leao, S. Z., Saberi, M., ... & Stevenson, M. (2023). Developing urban biking typologies: Quantifying the complex interactions of bicycle ridership, bicycle network and built environment characteristics. Environment and Planning B: Urban Analytics and City Science, 50(1), 7-23.
  • Bullock, C., Brereton, F., Bailey, S. (2017). The economic contribution of public bike-share to the sustainability and efficient functioning of cities. Sustainable Cities and Society 28, 76–87. https://doi.org/10.1016/j.scs.2016.08.024.
  • Chen, W., Chen, X., Chen, J., Cheng, L. (2022). What factors influence ridership of station-based bike sharing and free-floating bike sharing at rail transit stations? International Journal of Sustainable Transportation, 16(4), 357-373. https://doi.org/10.1080/15568318.2021.1872121.
  • Du, Y., Deng, F., Liao, F. (2019). A model framework for discovering the spatio-temporal usage patterns of public free-floating bike-sharing system. Transportation Research Part C: Emerging Technologies, 103, 39-55. https://doi.org/10.1016/j.trc.2019.04.006
  • Fishman, E. (2016). Bikeshare: a review of recent literature. Transp. Rev. 36, 92–113. https://doi.org/10.1080/01441647.2015.1033036.
  • Guzel, D., Altintasi, O., Korkut, S.O. (2025). Assessment of weather-driven travel behavior on a small-scale docked bike-sharing system usage. Travel Behaviour and Society. 38 https://doi.org/10.1016/j.tbs.2024.100927.
  • Li, W., Chen, S., Dong, J., & Wu, J. (2021). Exploring the spatial variations of transfer distances between dockless bike-sharing systems and metros. J Transp Geogr., 92, 103032.
  • Liu, H. C., Lin, J. J. (2019). Associations of built environments with spatiotemporal patterns of public bicycle use. Journal of Transport Geography, 74, 299-312. https://doi.org/10.1016/j.jtrangeo.2018.12.010.
  • Ma, X., Cao, R., Jin, Y. (2019). Spatiotemporal clustering analysis of bicycle sharing system with data mining approach. Information (Switzerland), 10(5). https://doi.org/10.3390/info10050163.
  • Müllner, D. (2011). Modern hierarchical, agglomerative clustering algorithms. arXiv preprint arXiv:1109.2378.
  • Pekdemir, M. İ., Altintasi O., & Özen, M. (2021). Bisiklet Paylaşım Sistemi Kullanıcıların Mevsimsel Farklılıklarının İncelenmesi: Bisim İzmir Örneği. 2nd International Conference on Intelligent Transportation Systems, BANU-ITSC’21 October 22-24, 2021 Bandırma, Turkey.
  • Pekdemir, M.I., Altintasi, O., Ozen, M. (2024). Assessing the impact of public transportation, bicycle infrastructure, and land use parameters on a small-scale bikesharing system: a case study of Izmir, Türkiye. Sustain. Cities Soc. 101. https://doi. org/10.1016/j.scs.2023.105085.
  • Saplıoğlu, M., & Aydın, M. M. (2018). Choosing safe and suitable bicycle routes to integrate cycling and public transport systems. Journal of Transport & Health, 10, 236-252.
  • Saplioglu, M., & Günay, E. Y. (2016). Investigating the effective parameters of safe bicycle route by using a survey study. Sigma, 7(1), 89-96.
  • Shalizi, C. (2009). Distances between clustering, hierarchical clustering. Retrieved November 20, 2024, from https://www.stat.cmu.edu/~cshalizi/350/lectures/08/lecture-08.pdf
  • Yemişçioğlu, Ş., Çivici, T., & Yıldız, Y. (2024). Analiz araçları yardımıyla sürdürülebilir bisiklet yolları seçimi üzerine bir çalışma. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(4), 2011-2022.
  • Zhou, X. (2015). Understanding spatiotemporal patterns of biking behavior by analyzing massive bike sharing data in Chicago PLoS ONE, 10(10). https://doi.org/10.1371/journal.pone.0137922.
  • Zhu, Y., Diao, M. (2020). Understanding the spatiotemporal patterns of public bicycle usage: A case study of Hangzhou, China. International Journal of Sustainable Transportation, 14(3), 163-176. https://doi.org/10.1080/15568318.2018.1538400

Application of Hierarchical Clustering Algorithm to Classify Docked Bike-Sharing System Stations

Year 2024, Volume: 6 Issue: 2, 131 - 142
https://doi.org/10.60093/jiciviltech.1565857

Abstract

This study applied the hierarchical clustering algorithm to categorize bike-sharing system stations operating in İzmir, Türkiye, based on their temporal usage patterns. By distinguishing between transportation- and leisure-oriented trips, the research provides insights into the operational dynamics of the system. The findings highlighted spatial and temporal distinctions, with Konak İskele Station consistently emerging as a separate cluster for transportation-oriented trips, indicating its crucial role due to its central location and proximity to public transportation hubs. In the case of leisure-oriented trips, the analysis revealed three clusters on weekdays, with Konak İskele Station maintaining its prominence, particularly in the afternoon and late evening hours. However, weekend trips were characterized by the identification of two main clusters. These results emphasize the importance of tailored management strategies for bike-sharing systems, suggesting that transportation-oriented trips may benefit from more strategic station placements and enhanced connectivity to public transit.

Supporting Institution

Izmir Katip Celebi University

Project Number

2023-ARC-MÜMF-0002

Thanks

This research has been supported by the National Research Project of Izmir Katip Celebi University, grant number of 2023-ARC-MÜMF-0002. The authors also express their thanks to Izmir Metropolitan Municipality for sharing bike-sharing trip data.

References

  • Beck, B., Winters, M., Nelson, T., Pettit, C., Leao, S. Z., Saberi, M., ... & Stevenson, M. (2023). Developing urban biking typologies: Quantifying the complex interactions of bicycle ridership, bicycle network and built environment characteristics. Environment and Planning B: Urban Analytics and City Science, 50(1), 7-23.
  • Bullock, C., Brereton, F., Bailey, S. (2017). The economic contribution of public bike-share to the sustainability and efficient functioning of cities. Sustainable Cities and Society 28, 76–87. https://doi.org/10.1016/j.scs.2016.08.024.
  • Chen, W., Chen, X., Chen, J., Cheng, L. (2022). What factors influence ridership of station-based bike sharing and free-floating bike sharing at rail transit stations? International Journal of Sustainable Transportation, 16(4), 357-373. https://doi.org/10.1080/15568318.2021.1872121.
  • Du, Y., Deng, F., Liao, F. (2019). A model framework for discovering the spatio-temporal usage patterns of public free-floating bike-sharing system. Transportation Research Part C: Emerging Technologies, 103, 39-55. https://doi.org/10.1016/j.trc.2019.04.006
  • Fishman, E. (2016). Bikeshare: a review of recent literature. Transp. Rev. 36, 92–113. https://doi.org/10.1080/01441647.2015.1033036.
  • Guzel, D., Altintasi, O., Korkut, S.O. (2025). Assessment of weather-driven travel behavior on a small-scale docked bike-sharing system usage. Travel Behaviour and Society. 38 https://doi.org/10.1016/j.tbs.2024.100927.
  • Li, W., Chen, S., Dong, J., & Wu, J. (2021). Exploring the spatial variations of transfer distances between dockless bike-sharing systems and metros. J Transp Geogr., 92, 103032.
  • Liu, H. C., Lin, J. J. (2019). Associations of built environments with spatiotemporal patterns of public bicycle use. Journal of Transport Geography, 74, 299-312. https://doi.org/10.1016/j.jtrangeo.2018.12.010.
  • Ma, X., Cao, R., Jin, Y. (2019). Spatiotemporal clustering analysis of bicycle sharing system with data mining approach. Information (Switzerland), 10(5). https://doi.org/10.3390/info10050163.
  • Müllner, D. (2011). Modern hierarchical, agglomerative clustering algorithms. arXiv preprint arXiv:1109.2378.
  • Pekdemir, M. İ., Altintasi O., & Özen, M. (2021). Bisiklet Paylaşım Sistemi Kullanıcıların Mevsimsel Farklılıklarının İncelenmesi: Bisim İzmir Örneği. 2nd International Conference on Intelligent Transportation Systems, BANU-ITSC’21 October 22-24, 2021 Bandırma, Turkey.
  • Pekdemir, M.I., Altintasi, O., Ozen, M. (2024). Assessing the impact of public transportation, bicycle infrastructure, and land use parameters on a small-scale bikesharing system: a case study of Izmir, Türkiye. Sustain. Cities Soc. 101. https://doi. org/10.1016/j.scs.2023.105085.
  • Saplıoğlu, M., & Aydın, M. M. (2018). Choosing safe and suitable bicycle routes to integrate cycling and public transport systems. Journal of Transport & Health, 10, 236-252.
  • Saplioglu, M., & Günay, E. Y. (2016). Investigating the effective parameters of safe bicycle route by using a survey study. Sigma, 7(1), 89-96.
  • Shalizi, C. (2009). Distances between clustering, hierarchical clustering. Retrieved November 20, 2024, from https://www.stat.cmu.edu/~cshalizi/350/lectures/08/lecture-08.pdf
  • Yemişçioğlu, Ş., Çivici, T., & Yıldız, Y. (2024). Analiz araçları yardımıyla sürdürülebilir bisiklet yolları seçimi üzerine bir çalışma. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(4), 2011-2022.
  • Zhou, X. (2015). Understanding spatiotemporal patterns of biking behavior by analyzing massive bike sharing data in Chicago PLoS ONE, 10(10). https://doi.org/10.1371/journal.pone.0137922.
  • Zhu, Y., Diao, M. (2020). Understanding the spatiotemporal patterns of public bicycle usage: A case study of Hangzhou, China. International Journal of Sustainable Transportation, 14(3), 163-176. https://doi.org/10.1080/15568318.2018.1538400
There are 18 citations in total.

Details

Primary Language English
Subjects Transportation and Traffic
Journal Section Research Articles
Authors

Oruç Altıntaşı 0000-0002-4217-1890

Dila Güzel 0009-0000-1506-1787

Sıla Övgü Korkut Uysal 0000-0003-4784-2013

Project Number 2023-ARC-MÜMF-0002
Early Pub Date December 31, 2024
Publication Date
Submission Date October 12, 2024
Acceptance Date November 20, 2024
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

APA Altıntaşı, O., Güzel, D., & Korkut Uysal, S. Ö. (2024). Application of Hierarchical Clustering Algorithm to Classify Docked Bike-Sharing System Stations. Journal of Innovations in Civil Engineering and Technology, 6(2), 131-142. https://doi.org/10.60093/jiciviltech.1565857