Theoretical Article
BibTex RIS Cite
Year 2024, Volume: 19 Issue: 1, 1 - 12, 31.03.2024

Abstract

Project Number

-

References

  • Acar RU, Özkul C, (2020) Investigation of heavy metal pollution in roadside soils and road dusts along the Kütahya–Eskişehir highway. Arab J Geosci. 13(5),1–11. https://link.springer.com/article/10.1007/s12517-020-5206-2
  • Akpınar Külekçi A, (2019) Usability of Tulipa sp. in phytoremediation, among improvement techniques using plants, its role in the mitigation of environmental pollution in urban areas, the sample of Erzurum City, Turkey. Int J Ecosyst Ecol Sci. 9(1),141–154.
  • Al-samman AM, Imran M, Bakht M A, Siddique N A, (2020) GC-MS/MS based metabolite profiling and evaluation of antimicrobial properties of emblica officinalis leaves extract. Jordan J. Bio. Sci., 13.
  • Ärup L, (2003) “Hazards of heavy metal contamination” British medical bulletin, 68(1),167-82. https://doi.org/10.1093/bmb/ldg032
  • Athanasopoulo, A, Kollaros G, (2016) Heavy metal contamination of soil due to road traffic. Am J Eng Res. 5(12):354–363. https://www.sciencedirect.com/science/article/pii/S1319610311000846
  • Baba A, Gündüz O, Save D, Gürdal G, Sülün S, Bozcu M, Özcan H, (2009) Madencilik faaliyetlerinin tıbbı jeoloji açısından değerlendirilmesi, 62. Türkiye Jeoloji Kurultayı, 514-515. Ankara.
  • Bizily SP, Rugh C L, Summers AO, Meagher R B, (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proceedings of the National Academy of Sciences of the United States of America, vol. 96, pp. 6808-6813. https://www.pnas.org/doi/abs/10.1073/pnas.96.12.6808
  • Boros-Lajszner E, Wyszkowska J, Kucharski J, (2021) Phytoremediation of soil contaminated with nickel, cadmium, and cobalt. Int J Phytoremediation. 23(3),252–262. https://doi.org/10.1080/15226514.2020.1807907
  • Brooks RP, O’Connell TJ, Wardrop DH, Laura EJ, (1998) Towards a regional index of biological integrity: The example of forested riparian systems. Environmental Monitoring and Assessment. 51,131-143. https://link.springer.com/chapter/10.1007/978-94-011-4976-1_10
  • Capuana M, (2020) A review of the performance of woody and herbaceous ornamental plants for phytoremediation in urban areas. iForest. 13(1),139–15. https://doi.org/10.3832/ifor3242-013
  • Clemens S, (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants, Biochimie, 88, 1707-1719. https://doi.org/10.1016/j.biochi.2006.07.003
  • Çağlarırmak N, Hepçimen AZ, (2010) Ağır metal toprak kirliliğinin gıda zinciri ve insan sağlığına etkisi. Akademik Gıda, 8(2), 31-35. https://dergipark.org.tr/en/pub/akademik-gida/issue/55834/764810
  • Deepika GP, Haritash AK, (2023) Phytoremediation potential of ornamental plants for heavy metal removal from contaminated soil: a critical review. Horticul., Environm., & Biotech., 1-26. https://cdnsciencepub.com/doi/full/10.1139/er-2017-0022
  • Dushenkov D, Kumar P, Motto H, Raskin I, (1995) Rhizoflteration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29,1239–1245. https://pubs.acs.org/doi/pdf/10.1021/es00005a015.
  • Dushenkov D, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting T, Ensley B, (1997) Removal of uranium from water using terrestrial plants. Environ Sci Technol 12,3468–3474. https://pubs.acs.org/doi/pdf/10.1021/es970220l Environmental Protection Agency, (2014) Human Health, http://www.epa.gov/hg/health.htm
  • Erkmen O, (2010) Gıda kaynaklı tehlikeler ve güvenli gıda üretimi, Çocuk Sağlığı ve Hastalıkları Dergisi. 53(3), 220-235. https://www.cshd.org.tr/uploads/pdf_CSH_390.pdf
  • Food Standart Agency (FSA), (2009) Survey on measurement of the concentrations of metals and other elements from the 2006 UK. http://multimedia.food.gov.uk/multimedia/pdfs/fsis0109metals
  • Formicki G, Stawarz R, Greń A, Muchacka R, (2012) ‘’Cadmium Copper Lead and Zinc concentrations in low quality wines and alcohol containing drinks from Italy, Bulgaria and Poland, J. Microbio. Biotech. & Food Sci., 1:753-768. https://office2.jmbfs.org/index.php/JMBFS/ article/view/7399/1622
  • Ghosh M, Singh S P, (2005) A review on phytoremediation of heavy metals and utilization of its by-products. App. Ecology and Environ. Res., 3, 1–18. DOI:10.15666/AEER/0301_001018
  • Gratao P L, Prasad M NV, Cardoso PF, Lea P J, Azevedo, RA, (2005) Phytoremediation: green technology for the clean-up of toxic metals in the environment. Brazilian Journal of Plant Physiology, vol. 17, pp. 53-64. https://doi.org/10.1590/S1677-04202005000100005
  • Hercer H, Wyszkowski M, Modrzewska B, (2016) Impact of traffic on the content of trace elements in soils along state road 53 (Poland). Fresn Environ Bull. 25(3),719–731. https://doi.org/10.5555/20163238058
  • Hołtra A, Zamorska-Wojdyła D, (2016) The environmental pollution with copper and zinc along the communication routes in Wrocław, Poland. Environ Prot Eng. 42(3),153–165. https://doi.org/10.5277/epe160312
  • Huang R, Dong M, Mao P, Zhuang P, Paz-Ferreiro J, Li Y, Li Z, (2020) Evaluation of phytoremediation potential of fve Cd (hyperaccumulators) in two Cd contaminated soils. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.137581
  • Imamul Huq SM, Joardar JC, Parvin S, (2005) Marigold (Tagetes patula) and ornamental arum (Syngonia sp.) as phytoremediators for arsenic in pot soil, Bang. J. Bot., 34 (2), 65-70.
  • https://www.researchgate.net/publication/289470867_Marigold_Tagetes_patula_and_ornamental_arum_Syngonia_sp_as_phytoremediators_for_arsenic_in_pot_soil#fullTextFileContent
  • Işık K, (2004) Bitki Biyolojisi, Palme Yayıncılık, 497. (ISBN: 975-8624-90) Ankara.
  • Jorge L, Gardea-Torresdeya B, Jose, R, Peralta-Videab G, De la Rosaa J G, (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coordination Chemistry Reviews, vol. 249, pp. 1797–1810. https://doi.org/10.1016/j.ccr.2005.01.001
  • Kaushal A, Gupta, M, Malik J A, (2023) Potential of Ornamental Plants for Phytoremediation. In Bioremediation and Phytoremediation Technologies in Sustainable Soil Management (pp. 23-45). Apple Academic Press. https://doi.org/10.1016/j.ccr.2005.01.001
  • Khalilova H, Mammadov V, (2016) Assessing the anthropogenic impact on heavy metal pollution of soils and sediments in Urban areas of Azerbaijan’s oil industrial region. Pol J Environ Stud. 25(1),159–166. https://doi.org/10.15244/pjoes/60723
  • Khan AHA, Kiyani A, Mirza CR, Butt TA, Barros R, Ali B, Iqbal M, Yousaf S, (2021) Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. Environ Res. 195,110780. https://doi.org/10.1016/j.envres.2021.110780
  • Kompała-Bąba A, Bierza W, Sierka E, Błońska A, Besenyei L, Woźniak G, (2021) The role of plants and soil properties in the enzyme activities of substrates on hard coal mine spoil heaps. Sci Rep. 11(1),5155. https://doi.org/10.1038/s41598-021-84673-0
  • Kristanti RA, Hadibarata T, (2023) Phytoremediation of Contaminated Water using Aquatic Plants, Its Mechanism and Enhancement. Curr. Op. Environ. Sci.e & Health, 100451. https://doi.org/10.1016/j.coesh.2023.100451
  • Lasat M M, (2002) Phytoextraction of toxic metals – A review of biological mechanisms. Journal of Environmental Quality, vol. 31, pp. 109–120. https://doi.org/10.2134/jeq2002.1090
  • Lee J, (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18,431–439. https://doi.org/10.1007/s12257-013-0193-8
  • Liu JN, Zhou QX, Sun T, Ma L Q, Wang S, (2008a) Identification and chemical enhancement of two ornamental plants for phytoremediation, Bull. Environ. Cont. & Toxi., 80, 260-265. https://www.scimagojr.com/journalsearch.php?q=24624&tip=sid&clean=0
  • Liu JN, Zhou QX., Sun T, Ma LQ, Wang S, (2008b) Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics, J. Hazar. Mat., 151(1), 261-267. https://doi.org/10.1016/j.jhazmat.2007.08.016
  • Liu W, Zhou Q, Zhang Z, Hua T, Cai Z, (2011) Evaluation of cadmium phytoremediation potential in chinese cabbage cultivars. J Agric Food Chem. 59:8324–8330. https://doi.org/10.1021/jf201454w.
  • Liu X, Song Q, Tang Y, Li W, Xu J, Wu J, (2013) Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis, Sci. Total Environ., 463,530-40. https://doi.org/10.1016/j.scitotenv.2013.06.064
  • Majer B J, Tscherko D, Paschke A, (2002) Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutation Res. vol. 515, pp. 111-124. https://doi.org/10.1016/S1383-5718(02)00004-9
  • Manios T, Stentiford EI, Millner PA, (2003) The Effect of Heavy Metals Accumulation on the Chlorophyll Concentration of Typha Latifolia L. Plants, Growing in A Substrate Containing Sewage Sludge Compost and Watered with Metaliferus Water. Ecologicalengineering, 20(1), pp: 65-74. https://doi.org/10.1016/S0925-8574(03)00004-1
  • Manzoor M, Gul I, Silvestre J, Kallerhof, J, Arshad M, (2018) Screening of indigenous ornamental species from diferent plant families for Pb accumulation potential exposed to metal gradient in spiked soils. Soil Sed. Contam 27(5):439–453. https://doi.org/10.1080/15320383.2018.1488238.
  • Meers E, Ruttens A, Hopgood M J, Samson D, Tack FMK, (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals, Chemos. 58 pp.1011–1022. https://doi.org/10.1016/j.chemosphere.2004.09.047
  • Moffat AS, (1995) Plants proving their worth in toxic metal cleanup. Science, vol. 269, pp. 302-303. https://doi.org/10.1126/science.269.5222.302
  • Mulligan CN, Yong RN, Gibbs BF, (2001) Remediation technologies for metal contaminated soils and groundwater: an evaluation, Engin. Geol., 60, 193-207. https://doi.org/10.1016/S0013-7952(00)00101-0
  • Önder S, Dursun S, Gezgin S, Demirbas A, (2007) Determination of heavy metal pollution in grass and soil of city centre green areas (Konya, Turkey). Int J Ecosyst Ecol Sci. 16(1),145–154. https://www.researchgate.net/profile/Serpil-Oender/publication/285707934
  • Pilon-Smits, E A H, (2005) Phytoremediation. Annual Review of Plant Biology, vol. 56, pp. 15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214
  • Poddar AK, (2023) Phytoremediatıon for Greener and Cleaner Planet. Eur. Chem. Bull. 2023, 12 (1), 2254 – 2260
  • Prasad MNV, (2007) Sunflower (Helinathus annuus L.)-A Potentıal Crop for Envıronmental Industry/Gırasol (Helianthus Annuus L.)-Cultıvo Potencıal Para La Industrıa Ecológıca/Le Tournesol (Helianthus Annuus L.) Culture Potentıelle Dans L’ındustrıe Écologıque. Helia, 30(46), 167-174. https: //doi.org/10.2298/hel0746167p/html
  • Prasad M N V, Freitas H, (2003) Metal hyperaccumulation in plants – Biodiversity prospecting for phytoremediation technology. Elec. J. Biotech., 6, pp. 275– 321. https://www.scielo.cl/scielo.php?pid=S0717-34582003000300012&script=sci_arttext
  • Rolka E, Żołnowski AC, Sadowska M M, (2020) Assessment of heavy metal content in soils adjacent to the DK16-Route in Olsztyn (North-Eastern Poland). Pol J Environ Stud. 29 (6),4303–4311. https://doi.org/10.15244/pjoes/118384
  • Sezen İ., Akpınar Külekçi, E, (2020) Süs Bitkilerinin Gelişim Parametreleri Üzerine Bitki Gelişimini Teşvik Eden Bakterilerin Etkisi. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 34 (Özel Sayı), 9-20.
  • Schnoor JL, Light LA, Mc Cutcheon SC, Wolfe NL, Carreia LH, (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol, 29(7),318A-323A. https://doi.org/10.1021/es000 07a002
  • Siddique NA, Al-Samman AMMA, (2022) Silver nanoparticles synthesized via green chemistry with the aid of Delphinium denudatum Wall. root extract modulated gentamicin nephrotoxicity activity with respect to oxidative potential. Adv. Natural Sci.: Nanoscience & Nanotechnology, 13 (1), 015003. https://doi.org/10.1088/2043-6262/ac5497
  • Siddique NA, Mujeeb M, Ahmad S, Panda B P, Makhmoor M, (2013) Determination of aflatoxins in medicinal plants by high-performance liquid chromatography–tandem mass spectrometry. J. Phar. & Pharm. Sci., 16 (2), 321-330. https://doi.org/10.18433/J3MK6P
  • Sheoran V, Sheoran AS, Poonia P, (2016) Factors affecting phytoextraction: a review. Pedosphere. 26(2), 148–166. https://doi.org/10.1016/S1002-0160(15)60032-7
  • Stresty TVS, Madhava Rao KV, (1999) Ultrastructural alterations in response to zinc and nickel stress in the root cell of pigeonpea, Environ Exp Bot., 41, 3-13. https://doi.org/10.1016/S0098-8472(98)00034-3
  • Sykes M, Yang V, Blankenburg J, Abu Bakr S, (1999). Biotechnology: working with nature to improve forest resources and products. Int. Conf. Environ., 29, 631-637.
  • Tayfur M, (2009) Zehirli Ağır Metallerin Gıda Kaynaklı Enfeksiyonlar ve Zehirlenmeler, 1. s.243-77, Baskı, Kuban Matbaacılık, Ankara.
  • Tordoff G M, Baker A JM, Willis A J, (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemos., vol. 41, pp. 219–228. https://doi.org/10.1016/S0045-6535(99)00414-2
  • Umer S, Hussain M, (2023) Adaptation of ornamental species for phytoremediation to minimize lead pollution in urban areas. Int. J. Environ. Sci. & Tech., 1-10. https://doi.org/10.1007/s13762-023-04855-3
  • United Nations, (2019) World Urbanization Prospects: The 2018 Revision. United Nations, Department of Economic and Social Affairs, Population Division, New York, USA. 52. https://doi.org/10.1007/s10680-008-9165-7
  • Vural H, (1993) Ağır metal iyonlarının gıdalarda oluşturduğu kirlilikle. Çevre Dergisi 8, 3-8.
  • Wei S, Silva J, Zhou Q, (2008) Agro-improving method of phytoextracting heavy metal contaminated soil. J. Hazard. Mater. 150, 662–668. https://doi.org/10.1016/j.jhazmat.2007.05.014
  • Wu M, Luo Q, Liu S, Zhao Y, Long Y, Pan Y, (2018) Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation. Ecotoxicol. Environ. Saf. 162,35–41. https://doi.org/10.1016/j.ecoenv.2018.06.049
  • Wu X, Cobbina SJ, Mao G, Xu H, Zhnag, (2016) A review of toxicity and mechanismsof individual and mixtures of heavy metals in the environment. Environ. Sci Pollut. Res. 23,8244–8259. https://doi.org/10.1007/s11356-016-6333-x
  • Yap CK, Yaacob A, Tan WS, Al-Mutairi KA, Cheng WH, Wong KW, Berandah Edward F, Ismail MS, You CF, Chew W, (2022) Potentially toxic metals in the high-biomass non-hyperaccumulating plant Amaranthus viridis: human health risks and phytoremediation potentials. Biol. 11(3),389. https://doi:10.3390/biology11030389
  • Yasin G, Rahman SU, Yousaf MTB, Azhar MF, Zahid DM, Imtiaz M, Hussain B, (2021) Phytoremediation potential of E. camaldulensis and M. alba for copper, cadmium, and lead absorption in urban areas of Faisalabad City, Pakistan. Int J Environ Res. 15(4),597–612. https://doi:10.1007/s41742-021-00330-4

An Investigation on the Removal of Heavy Metals from Contaminated Soils with Ornamental Plants

Year 2024, Volume: 19 Issue: 1, 1 - 12, 31.03.2024

Abstract

Today, pollution caused by heavy metals is one of the important issues that spread rapidly in urban and industrial areas and have great environmental impacts. Although it is possible to rehabilitate heavy metal-contaminated soils using chemical, physical, or biological techniques, physical and chemical methods of remediating heavy metal-contaminated soils are costly, time-consuming, and environmentally damaging. Therefore, in recent years, scientists and engineers have tried to design and develop biological techniques that can clean and replace heavy metal-contaminated places without adverse effects on soil fertility and biodiversity, and as a result they have come up with "Phytoremediation Systems". Many ornamental plants can extract a few toxic metals from the soil and store them in their organs in large quantities, and at the same time survive without showing signs of toxicity. Plant breeding is the natural abilities of these plants, including some ornamental plants used in landscape architecture. The determination of the usability of these plants constitutes an important basis for the purification of environmental pollution in landscaping studies. This article aims to explain the potential use of ornamental plants for phytoremediation of polluted environments and their impact on the landscape. This study is expected to provide a guiding way for future researchers to explore the scope of phytoremediation using ornamental plants.

Supporting Institution

-

Project Number

-

References

  • Acar RU, Özkul C, (2020) Investigation of heavy metal pollution in roadside soils and road dusts along the Kütahya–Eskişehir highway. Arab J Geosci. 13(5),1–11. https://link.springer.com/article/10.1007/s12517-020-5206-2
  • Akpınar Külekçi A, (2019) Usability of Tulipa sp. in phytoremediation, among improvement techniques using plants, its role in the mitigation of environmental pollution in urban areas, the sample of Erzurum City, Turkey. Int J Ecosyst Ecol Sci. 9(1),141–154.
  • Al-samman AM, Imran M, Bakht M A, Siddique N A, (2020) GC-MS/MS based metabolite profiling and evaluation of antimicrobial properties of emblica officinalis leaves extract. Jordan J. Bio. Sci., 13.
  • Ärup L, (2003) “Hazards of heavy metal contamination” British medical bulletin, 68(1),167-82. https://doi.org/10.1093/bmb/ldg032
  • Athanasopoulo, A, Kollaros G, (2016) Heavy metal contamination of soil due to road traffic. Am J Eng Res. 5(12):354–363. https://www.sciencedirect.com/science/article/pii/S1319610311000846
  • Baba A, Gündüz O, Save D, Gürdal G, Sülün S, Bozcu M, Özcan H, (2009) Madencilik faaliyetlerinin tıbbı jeoloji açısından değerlendirilmesi, 62. Türkiye Jeoloji Kurultayı, 514-515. Ankara.
  • Bizily SP, Rugh C L, Summers AO, Meagher R B, (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proceedings of the National Academy of Sciences of the United States of America, vol. 96, pp. 6808-6813. https://www.pnas.org/doi/abs/10.1073/pnas.96.12.6808
  • Boros-Lajszner E, Wyszkowska J, Kucharski J, (2021) Phytoremediation of soil contaminated with nickel, cadmium, and cobalt. Int J Phytoremediation. 23(3),252–262. https://doi.org/10.1080/15226514.2020.1807907
  • Brooks RP, O’Connell TJ, Wardrop DH, Laura EJ, (1998) Towards a regional index of biological integrity: The example of forested riparian systems. Environmental Monitoring and Assessment. 51,131-143. https://link.springer.com/chapter/10.1007/978-94-011-4976-1_10
  • Capuana M, (2020) A review of the performance of woody and herbaceous ornamental plants for phytoremediation in urban areas. iForest. 13(1),139–15. https://doi.org/10.3832/ifor3242-013
  • Clemens S, (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants, Biochimie, 88, 1707-1719. https://doi.org/10.1016/j.biochi.2006.07.003
  • Çağlarırmak N, Hepçimen AZ, (2010) Ağır metal toprak kirliliğinin gıda zinciri ve insan sağlığına etkisi. Akademik Gıda, 8(2), 31-35. https://dergipark.org.tr/en/pub/akademik-gida/issue/55834/764810
  • Deepika GP, Haritash AK, (2023) Phytoremediation potential of ornamental plants for heavy metal removal from contaminated soil: a critical review. Horticul., Environm., & Biotech., 1-26. https://cdnsciencepub.com/doi/full/10.1139/er-2017-0022
  • Dushenkov D, Kumar P, Motto H, Raskin I, (1995) Rhizoflteration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29,1239–1245. https://pubs.acs.org/doi/pdf/10.1021/es00005a015.
  • Dushenkov D, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting T, Ensley B, (1997) Removal of uranium from water using terrestrial plants. Environ Sci Technol 12,3468–3474. https://pubs.acs.org/doi/pdf/10.1021/es970220l Environmental Protection Agency, (2014) Human Health, http://www.epa.gov/hg/health.htm
  • Erkmen O, (2010) Gıda kaynaklı tehlikeler ve güvenli gıda üretimi, Çocuk Sağlığı ve Hastalıkları Dergisi. 53(3), 220-235. https://www.cshd.org.tr/uploads/pdf_CSH_390.pdf
  • Food Standart Agency (FSA), (2009) Survey on measurement of the concentrations of metals and other elements from the 2006 UK. http://multimedia.food.gov.uk/multimedia/pdfs/fsis0109metals
  • Formicki G, Stawarz R, Greń A, Muchacka R, (2012) ‘’Cadmium Copper Lead and Zinc concentrations in low quality wines and alcohol containing drinks from Italy, Bulgaria and Poland, J. Microbio. Biotech. & Food Sci., 1:753-768. https://office2.jmbfs.org/index.php/JMBFS/ article/view/7399/1622
  • Ghosh M, Singh S P, (2005) A review on phytoremediation of heavy metals and utilization of its by-products. App. Ecology and Environ. Res., 3, 1–18. DOI:10.15666/AEER/0301_001018
  • Gratao P L, Prasad M NV, Cardoso PF, Lea P J, Azevedo, RA, (2005) Phytoremediation: green technology for the clean-up of toxic metals in the environment. Brazilian Journal of Plant Physiology, vol. 17, pp. 53-64. https://doi.org/10.1590/S1677-04202005000100005
  • Hercer H, Wyszkowski M, Modrzewska B, (2016) Impact of traffic on the content of trace elements in soils along state road 53 (Poland). Fresn Environ Bull. 25(3),719–731. https://doi.org/10.5555/20163238058
  • Hołtra A, Zamorska-Wojdyła D, (2016) The environmental pollution with copper and zinc along the communication routes in Wrocław, Poland. Environ Prot Eng. 42(3),153–165. https://doi.org/10.5277/epe160312
  • Huang R, Dong M, Mao P, Zhuang P, Paz-Ferreiro J, Li Y, Li Z, (2020) Evaluation of phytoremediation potential of fve Cd (hyperaccumulators) in two Cd contaminated soils. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.137581
  • Imamul Huq SM, Joardar JC, Parvin S, (2005) Marigold (Tagetes patula) and ornamental arum (Syngonia sp.) as phytoremediators for arsenic in pot soil, Bang. J. Bot., 34 (2), 65-70.
  • https://www.researchgate.net/publication/289470867_Marigold_Tagetes_patula_and_ornamental_arum_Syngonia_sp_as_phytoremediators_for_arsenic_in_pot_soil#fullTextFileContent
  • Işık K, (2004) Bitki Biyolojisi, Palme Yayıncılık, 497. (ISBN: 975-8624-90) Ankara.
  • Jorge L, Gardea-Torresdeya B, Jose, R, Peralta-Videab G, De la Rosaa J G, (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coordination Chemistry Reviews, vol. 249, pp. 1797–1810. https://doi.org/10.1016/j.ccr.2005.01.001
  • Kaushal A, Gupta, M, Malik J A, (2023) Potential of Ornamental Plants for Phytoremediation. In Bioremediation and Phytoremediation Technologies in Sustainable Soil Management (pp. 23-45). Apple Academic Press. https://doi.org/10.1016/j.ccr.2005.01.001
  • Khalilova H, Mammadov V, (2016) Assessing the anthropogenic impact on heavy metal pollution of soils and sediments in Urban areas of Azerbaijan’s oil industrial region. Pol J Environ Stud. 25(1),159–166. https://doi.org/10.15244/pjoes/60723
  • Khan AHA, Kiyani A, Mirza CR, Butt TA, Barros R, Ali B, Iqbal M, Yousaf S, (2021) Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. Environ Res. 195,110780. https://doi.org/10.1016/j.envres.2021.110780
  • Kompała-Bąba A, Bierza W, Sierka E, Błońska A, Besenyei L, Woźniak G, (2021) The role of plants and soil properties in the enzyme activities of substrates on hard coal mine spoil heaps. Sci Rep. 11(1),5155. https://doi.org/10.1038/s41598-021-84673-0
  • Kristanti RA, Hadibarata T, (2023) Phytoremediation of Contaminated Water using Aquatic Plants, Its Mechanism and Enhancement. Curr. Op. Environ. Sci.e & Health, 100451. https://doi.org/10.1016/j.coesh.2023.100451
  • Lasat M M, (2002) Phytoextraction of toxic metals – A review of biological mechanisms. Journal of Environmental Quality, vol. 31, pp. 109–120. https://doi.org/10.2134/jeq2002.1090
  • Lee J, (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18,431–439. https://doi.org/10.1007/s12257-013-0193-8
  • Liu JN, Zhou QX, Sun T, Ma L Q, Wang S, (2008a) Identification and chemical enhancement of two ornamental plants for phytoremediation, Bull. Environ. Cont. & Toxi., 80, 260-265. https://www.scimagojr.com/journalsearch.php?q=24624&tip=sid&clean=0
  • Liu JN, Zhou QX., Sun T, Ma LQ, Wang S, (2008b) Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics, J. Hazar. Mat., 151(1), 261-267. https://doi.org/10.1016/j.jhazmat.2007.08.016
  • Liu W, Zhou Q, Zhang Z, Hua T, Cai Z, (2011) Evaluation of cadmium phytoremediation potential in chinese cabbage cultivars. J Agric Food Chem. 59:8324–8330. https://doi.org/10.1021/jf201454w.
  • Liu X, Song Q, Tang Y, Li W, Xu J, Wu J, (2013) Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis, Sci. Total Environ., 463,530-40. https://doi.org/10.1016/j.scitotenv.2013.06.064
  • Majer B J, Tscherko D, Paschke A, (2002) Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutation Res. vol. 515, pp. 111-124. https://doi.org/10.1016/S1383-5718(02)00004-9
  • Manios T, Stentiford EI, Millner PA, (2003) The Effect of Heavy Metals Accumulation on the Chlorophyll Concentration of Typha Latifolia L. Plants, Growing in A Substrate Containing Sewage Sludge Compost and Watered with Metaliferus Water. Ecologicalengineering, 20(1), pp: 65-74. https://doi.org/10.1016/S0925-8574(03)00004-1
  • Manzoor M, Gul I, Silvestre J, Kallerhof, J, Arshad M, (2018) Screening of indigenous ornamental species from diferent plant families for Pb accumulation potential exposed to metal gradient in spiked soils. Soil Sed. Contam 27(5):439–453. https://doi.org/10.1080/15320383.2018.1488238.
  • Meers E, Ruttens A, Hopgood M J, Samson D, Tack FMK, (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals, Chemos. 58 pp.1011–1022. https://doi.org/10.1016/j.chemosphere.2004.09.047
  • Moffat AS, (1995) Plants proving their worth in toxic metal cleanup. Science, vol. 269, pp. 302-303. https://doi.org/10.1126/science.269.5222.302
  • Mulligan CN, Yong RN, Gibbs BF, (2001) Remediation technologies for metal contaminated soils and groundwater: an evaluation, Engin. Geol., 60, 193-207. https://doi.org/10.1016/S0013-7952(00)00101-0
  • Önder S, Dursun S, Gezgin S, Demirbas A, (2007) Determination of heavy metal pollution in grass and soil of city centre green areas (Konya, Turkey). Int J Ecosyst Ecol Sci. 16(1),145–154. https://www.researchgate.net/profile/Serpil-Oender/publication/285707934
  • Pilon-Smits, E A H, (2005) Phytoremediation. Annual Review of Plant Biology, vol. 56, pp. 15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214
  • Poddar AK, (2023) Phytoremediatıon for Greener and Cleaner Planet. Eur. Chem. Bull. 2023, 12 (1), 2254 – 2260
  • Prasad MNV, (2007) Sunflower (Helinathus annuus L.)-A Potentıal Crop for Envıronmental Industry/Gırasol (Helianthus Annuus L.)-Cultıvo Potencıal Para La Industrıa Ecológıca/Le Tournesol (Helianthus Annuus L.) Culture Potentıelle Dans L’ındustrıe Écologıque. Helia, 30(46), 167-174. https: //doi.org/10.2298/hel0746167p/html
  • Prasad M N V, Freitas H, (2003) Metal hyperaccumulation in plants – Biodiversity prospecting for phytoremediation technology. Elec. J. Biotech., 6, pp. 275– 321. https://www.scielo.cl/scielo.php?pid=S0717-34582003000300012&script=sci_arttext
  • Rolka E, Żołnowski AC, Sadowska M M, (2020) Assessment of heavy metal content in soils adjacent to the DK16-Route in Olsztyn (North-Eastern Poland). Pol J Environ Stud. 29 (6),4303–4311. https://doi.org/10.15244/pjoes/118384
  • Sezen İ., Akpınar Külekçi, E, (2020) Süs Bitkilerinin Gelişim Parametreleri Üzerine Bitki Gelişimini Teşvik Eden Bakterilerin Etkisi. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 34 (Özel Sayı), 9-20.
  • Schnoor JL, Light LA, Mc Cutcheon SC, Wolfe NL, Carreia LH, (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol, 29(7),318A-323A. https://doi.org/10.1021/es000 07a002
  • Siddique NA, Al-Samman AMMA, (2022) Silver nanoparticles synthesized via green chemistry with the aid of Delphinium denudatum Wall. root extract modulated gentamicin nephrotoxicity activity with respect to oxidative potential. Adv. Natural Sci.: Nanoscience & Nanotechnology, 13 (1), 015003. https://doi.org/10.1088/2043-6262/ac5497
  • Siddique NA, Mujeeb M, Ahmad S, Panda B P, Makhmoor M, (2013) Determination of aflatoxins in medicinal plants by high-performance liquid chromatography–tandem mass spectrometry. J. Phar. & Pharm. Sci., 16 (2), 321-330. https://doi.org/10.18433/J3MK6P
  • Sheoran V, Sheoran AS, Poonia P, (2016) Factors affecting phytoextraction: a review. Pedosphere. 26(2), 148–166. https://doi.org/10.1016/S1002-0160(15)60032-7
  • Stresty TVS, Madhava Rao KV, (1999) Ultrastructural alterations in response to zinc and nickel stress in the root cell of pigeonpea, Environ Exp Bot., 41, 3-13. https://doi.org/10.1016/S0098-8472(98)00034-3
  • Sykes M, Yang V, Blankenburg J, Abu Bakr S, (1999). Biotechnology: working with nature to improve forest resources and products. Int. Conf. Environ., 29, 631-637.
  • Tayfur M, (2009) Zehirli Ağır Metallerin Gıda Kaynaklı Enfeksiyonlar ve Zehirlenmeler, 1. s.243-77, Baskı, Kuban Matbaacılık, Ankara.
  • Tordoff G M, Baker A JM, Willis A J, (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemos., vol. 41, pp. 219–228. https://doi.org/10.1016/S0045-6535(99)00414-2
  • Umer S, Hussain M, (2023) Adaptation of ornamental species for phytoremediation to minimize lead pollution in urban areas. Int. J. Environ. Sci. & Tech., 1-10. https://doi.org/10.1007/s13762-023-04855-3
  • United Nations, (2019) World Urbanization Prospects: The 2018 Revision. United Nations, Department of Economic and Social Affairs, Population Division, New York, USA. 52. https://doi.org/10.1007/s10680-008-9165-7
  • Vural H, (1993) Ağır metal iyonlarının gıdalarda oluşturduğu kirlilikle. Çevre Dergisi 8, 3-8.
  • Wei S, Silva J, Zhou Q, (2008) Agro-improving method of phytoextracting heavy metal contaminated soil. J. Hazard. Mater. 150, 662–668. https://doi.org/10.1016/j.jhazmat.2007.05.014
  • Wu M, Luo Q, Liu S, Zhao Y, Long Y, Pan Y, (2018) Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation. Ecotoxicol. Environ. Saf. 162,35–41. https://doi.org/10.1016/j.ecoenv.2018.06.049
  • Wu X, Cobbina SJ, Mao G, Xu H, Zhnag, (2016) A review of toxicity and mechanismsof individual and mixtures of heavy metals in the environment. Environ. Sci Pollut. Res. 23,8244–8259. https://doi.org/10.1007/s11356-016-6333-x
  • Yap CK, Yaacob A, Tan WS, Al-Mutairi KA, Cheng WH, Wong KW, Berandah Edward F, Ismail MS, You CF, Chew W, (2022) Potentially toxic metals in the high-biomass non-hyperaccumulating plant Amaranthus viridis: human health risks and phytoremediation potentials. Biol. 11(3),389. https://doi:10.3390/biology11030389
  • Yasin G, Rahman SU, Yousaf MTB, Azhar MF, Zahid DM, Imtiaz M, Hussain B, (2021) Phytoremediation potential of E. camaldulensis and M. alba for copper, cadmium, and lead absorption in urban areas of Faisalabad City, Pakistan. Int J Environ Res. 15(4),597–612. https://doi:10.1007/s41742-021-00330-4
There are 67 citations in total.

Details

Primary Language English
Subjects Environmental Rehabilitation and Restoration
Journal Section Articles
Authors

Feran Aşur 0000-0001-9480-5536

Suzan Karagöz 0009-0008-3001-9243

Project Number -
Publication Date March 31, 2024
Submission Date December 4, 2023
Acceptance Date February 27, 2024
Published in Issue Year 2024 Volume: 19 Issue: 1

Cite

APA Aşur, F., & Karagöz, S. (2024). An Investigation on the Removal of Heavy Metals from Contaminated Soils with Ornamental Plants. Journal of International Environmental Application and Science, 19(1), 1-12.
AMA Aşur F, Karagöz S. An Investigation on the Removal of Heavy Metals from Contaminated Soils with Ornamental Plants. J. Int. Environmental Application & Science. March 2024;19(1):1-12.
Chicago Aşur, Feran, and Suzan Karagöz. “An Investigation on the Removal of Heavy Metals from Contaminated Soils With Ornamental Plants”. Journal of International Environmental Application and Science 19, no. 1 (March 2024): 1-12.
EndNote Aşur F, Karagöz S (March 1, 2024) An Investigation on the Removal of Heavy Metals from Contaminated Soils with Ornamental Plants. Journal of International Environmental Application and Science 19 1 1–12.
IEEE F. Aşur and S. Karagöz, “An Investigation on the Removal of Heavy Metals from Contaminated Soils with Ornamental Plants”, J. Int. Environmental Application & Science, vol. 19, no. 1, pp. 1–12, 2024.
ISNAD Aşur, Feran - Karagöz, Suzan. “An Investigation on the Removal of Heavy Metals from Contaminated Soils With Ornamental Plants”. Journal of International Environmental Application and Science 19/1 (March 2024), 1-12.
JAMA Aşur F, Karagöz S. An Investigation on the Removal of Heavy Metals from Contaminated Soils with Ornamental Plants. J. Int. Environmental Application & Science. 2024;19:1–12.
MLA Aşur, Feran and Suzan Karagöz. “An Investigation on the Removal of Heavy Metals from Contaminated Soils With Ornamental Plants”. Journal of International Environmental Application and Science, vol. 19, no. 1, 2024, pp. 1-12.
Vancouver Aşur F, Karagöz S. An Investigation on the Removal of Heavy Metals from Contaminated Soils with Ornamental Plants. J. Int. Environmental Application & Science. 2024;19(1):1-12.

“Journal of International Environmental Application and Science”