Research Article
BibTex RIS Cite

Gaziantep banliyö projesi (Gaziray) raylı sistem hattı tünellerinde olası tren yangını durumunda tünel acil durum havalandırma sisteminin simülasyonu

Year 2023, , 167 - 190, 31.07.2023
https://doi.org/10.29228/JIENS.70514

Abstract

Raylı sistemler, hızlı, güvenli ve çevre dostu bir toplu taşıma seçeneği olarak dünya genelinde aktif olarak kullanılmaktadırlar. Gaziantep banliyö projesi (Gaziray) Raylı Sistem Hattı, Türkiye’nin Gaziantep şehrinde, toplu taşıma ihtiyacını karşılamak amacıyla planlanan bir proje olarak büyük önem taşımaktadır. Raylı sistem hatlarında, tren yangınları gibi potansiyel olası tehlikelerin dikkate alınması ve yangının etkilerinin değerlendirilmesi çok önemlidir. Yangınlar, trenlerin elektrikli ve mekanik bileşenlerinde, örneğin; elektrik kablolarının aşırı ısınması, fren sistemlerinde arızalar, yakıt sızıntıları gibi sebeplerle çeşitli nedenlerle ortaya çıkabilmektedirler. Bu tür yangınlar, tünellerde, tünelin duvar, tavan, taban ve diğer yapısal elemanlara zarar verebilecek özellikte tehlikeli sonuçlara yol açabileceğinden, tünel yapısının yangından etkilenme seviyesi ve böylelikle yangının tünel yapısına verdiği zararın dikkatlice değerlendirilmesi gerekmektedir. Yangın sonrası, tünelin kullanılabilirliğini, güvenliğini ve yapısal bütünlüğünü etkileyen yapısal hasarlar, tünelin onarım maliyetlerini ve işletme süreçlerini de etkileyebilmektedir. Tünel yangınlarının etkilerini değerlendirmek için yangın testleri, modelleme ve benzetimler/simülasyonlar gibi yöntemler kullanılmaktadır. Yangın testleri, gerçek yangın senaryolarını taklit ederek tünel yapısının yangına karşı tepkisini belirleyebilmekte, modelleme ve simülasyonlar ise tünel yapısının yangından etkilenme seviyesini belirlemektedir. Bu çalışmanın amacı, Gaziray Raylı Sistem Hattında bulunan tünellerde meydana gelebilecek olası tren yangını durumunda, tünel yapısının yangından etkilenme seviyesi ve bu etkinin değerlendirilmesidir. Kritik hız; yangın esnasında ortaya çıkan duman ve yanma ürünü zehirli gazların ters katmanlaşmadan istenilen yöne itilmesi için gerekli olan minimum hava hızıdır. Çalışmada, yapısal bütünlüğün bozulmadan, çevresel kontrol sistemlerinin çalışmasına olanak sağlayarak ve insan tahliye yönünün ters yönünde kritik hava hızı sağlanarak; gerekli havalandırma stratejisi ve kapasitesinin belirlenmesi hedefi gerçekleştirilmiştir.

Thanks

Yazar, bu makale çalışmasının hazırlanmasında teknik desteği için Makine Mühendisi Davut Belkızoğlu’na teşekkür eder.

References

  • Tarada F, King M (2009) Structural fire protection of railway tunnels. Railway Engineering Conference, University of Westminster, UK, June 24-25.
  • Wang H, Binder E, Mang H, Yuan Y, Pichler B (2018) Multiscale structural analysis inspired by exceptional load cases concerning the immersed tunnel of the Hong Kong-Zhuhai-Macao Bridge. Underground Space 3(4):252–267. https://doi.org/10.1016/j.undsp.2018.02.001
  • Feist C, Aschaber M, Hofstetter G (2009) Numerical simulation of the load-carrying behavior of RC tunnel structures exposed to fire. Finite Elements in Analysis and Design 45(12):958–965. https://doi.org/10.1016/j.finel.2009.09.010
  • Long X, Guo H (2016) Fire Resistance study of concrete in the application of tunnel-like structures. 2nd International Symposium on Submerged Floating Tunnels and Underwater Tunnel Structures, Procedia Engineering 166:13–18.
  • Avcı-Karataş Ç (2022) Yalova il afet risk azaltma planının (İRAP) hazırlanması konusunda ön çalışmaların incelenmesi. 8. Uluslararası Mühendislik ve Teknoloji Yönetimi Kongresi, İstanbul, Türkiye, 8-9 Aralık.
  • Krausmann E, Mushtaq F (2008) A qualitative Natech damage scale for the impact of floods on selected industrial facilities. Nat Hazards 46:179–197. https://doi.org/10.1007/s11069-007-9203-5
  • Ingason H, Li YZ, Lönnermark A (2014) Tunnel Fire Dynamics. Springer, New York.
  • PIARC. (1999). Fire and Smoke Control in Road Tunnels. Technical Committee 5 Road Tunnels (C5). PIARC-World Road Association, France.
  • EI-Arabi IA, Duddeck H, Ahrens H (1992) Structural analysis for tunnels exposed to fire temperatures. Tunelling and Underground Space Technology 7(1):19–24. https://doi.org/10.1016/0886-7798(92)90109-U
  • Davidy A (2016) CFD studies of tunnel fire growth on composite lining materials. International Refereed Journal of Engineering and Science, 5(4):1-6.
  • Avci-Karatas C, Taşkin K (2023) Current modeling techniques for reviewing fire safety in road/highway tunnels. 5th International Congress on Engineering Sciences and Multidisciplinary approaches. Istanbul, Turkey, Feb. 25-26.
  • AASHTO-LRFD (2010). Bridge Design Specifications. American Association of State Highway and Transportation Officials. 5th Edition. ISBN: 978-1-56051-451-0. 444 North Capitol Street, Washington DC, USA.
  • Directive (EU) (2004). 2004/54/EC of the European Parliament and of the Council of 29 April 2004 on minimum safety requirements for tunnels in the Trans-European Road Network. Luxembourg, Belgium.
  • Directive (EU) (2019). 2019/1936 of the European Parliament and of the Council of 23 October 2019 amending Directive 2008/96/EC on road infrastructure safety management, OJ L 305, 26.11.2019, p.1. Luxembourg, Belgium.
  • ITA-Working Group No.6 (2004). Maintenance and Repair. Guidelines for Structural Fire Resistance for Road Tunnels. International Tunneling Association (ITA). Châtelaine, Switzerland.
  • EN 1991-1-2 (2002). (English): Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]. Plzen, Czech Republic.
  • EU (2021). Report - A9-0211/2021. REPORT on the EU Road Safety Policy Framework 2021-2030–Recommendations on next steps towards “Vision Zero”.
  • Channel Tunnel. https://en.wikipedia.org/wiki/Channel_Tunnel. Erişim tarihi: 16 Mayıs 2023.
  • Stucchi R, Amberg F (2020) A practical approach for tunnel fire verification. Structural Engineering International 30(4):515–529. https://doi.org/10.1080/10168664.2020.1772697
  • Tarada F (2007) Improving road tunnel safety. Eurotransport 5:35–39.
  • Seike M, Ejiri Y, Kawabata N, Hasegawa M (2014) Suggestion of estimation method of smoke generation rate by CFD simulation and fire experiments in full-scale tunnels. J Fluid Sci Technol 9:1–11. https://doi.org/10.1299/JFST.2014JFST0018
  • Seike M, Kawabata N, Hasegawa M (2016) Experiments of evacuation speed in smoke-filled tunnel. Tunn Undergr Space Technol 53:61–67. https://doi.org/10.1016/j.tust.2016.01.003
  • Thomas PH (1958) The movement of buoyant fluid against a stream and the venting of underground fires. Fire Safety Science 351:1–7.
  • Oka Y, Atkinson GT (1995) Control of smoke flow in tunnel fires. Fire Safety Journal 25(4):305–322. https://doi.org/10.1016/0379-7112(96)00007-0
  • Hwang CC, Edwards JC (2005) The critical ventilation velocity in tunnel fires—A computer simulation. Fire Safety Journal 40(3):213–244. https://doi.org/10.1016/j.firesaf.2004.11.001
  • Hu LH, Peng W, Huo R (2008) Critical wind velocity for arresting upwind gas and smoke dispersion induced by near-wall fire in a road tunnel. Journal of Hazardous Materials 150(1):68–75. https://doi.org/10.1016/j.jhazmat.2007.04.094
  • Ingason H, Lönnermark A (2004) Recent achievements regarding measuring of time-heat and time-temperature development in tunnels. In Proceedings of the 1st International Symposium on Safe & Reliable Tunnels, Innovative European Achievements, pp.87–96, Prague, Czech Republic, Feb 4–6.
  • Li YZ, Ingason H (2016) Influence of ventilation on road tunnel fires with and without water-based suppression systems. SP Technical Research Institute of Sweden: Boras, Sweden, 36:1–58.
  • Nakahori I, Sakaguchi T, Kohl B, Forster C, Vardy A (2015) Risk assessment of zero-flow ventilation strategy for fires in bidirectional tunnels with longitudinal ventilation. In Proceedings of the 16th International Symposium on Aerodynamics, Ventilation and Fire in Tunnels, Seattle, WA, USA, Sept. 15–17.
  • Kodur, Naser MZ (2021) Fire hazard in transportation infrastructure: Review, assessment, and mitigation strategies. Frontiers of Structural and Civil Engineering 15:46–60. https://doi.org/10.1007/s11709-020-0676-6
  • Isıkan MO, Kaya O (2019) Yüksek kamu binalarında duman tahliyesinin simülasyon metoduyla incelenmesi. International Journal of Advances in Engineering and Pure Sciences, 3:223–231. https://doi.org/10.7240/jeps.512479
  • Nishiki S (2013) Numerical study of the effect of water mist spray in tunnel fire using FDS. In Proceedings of the 5th Japan/Taiwan/Korea Joint Seminar for Tunnel Fire and Management, pp.42084–42087, Tokyo, Japan, Nov. 7.
  • Yamamoto K, Kokubo S, Nishinari K (2006) New approach for pedestrian dynamics by Real-Coded Cellular Automata (RCA). In Cellular Automata; Yacoubi, S.E., Chopard, B., Bandini, S., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany Vol. 4173, pp.728–731.
  • Yamamoto K, Kokubo S, Nishinari K (2007) Simulation for pedestrian dynamics by real-coded cellular automata (RCA). Physica A 379(2):654–660. https://doi.org/10.1016/j.physa.2007.02.040
  • Yamamoto K, Sawaguchi Y, Nishiki S (2018) Simulation of tunnel fire for evacuation safety assessment. Safety 4(2):12. https://doi.org/10.3390/safety4020012
  • McGRATTAN K (2010) Fire Dynamics Simulator (Version 5) - Technical Reference Guide. NIST Special Publication 1018, NIST.
  • McGrattan K, Forney GP (2010) Fire Dynamics Simulator (Version 5) - User’s Guide. NIST Special Publication 1019, NIST.
  • Wang HY, Sahraoui H (2014) Mathematical modelling of pool fire burning rates in a full-scale ventilated tunnel. Fire Saf Sci 11:361–375. http://dx.doi.org/10.3801/IAFSS.FSS.11-361
  • CFAST (2023). National Institute of Standards and Technology (NIST),The United States Department of Commerce. 17/105, Middletown, CT.
  • Gaziray. https://tr.wikipedia.org/wiki/Gaziray. Erişim tarihi: 16 Mayıs 2023.
  • National Fire Protection Association (NFPA) 130 (2023). Standard for Fixed Guideway Transit and Passenger Rail Systems. Avon, Massachusetts.
  • Subway Environmental Design Handbook, Volume II, Subway Environment Simulation Computer Program, Version 4, Part 1, User's Manual.
  • UNE EN 13848-1:2020. Railway applications - Track - Track geometry quality - Part 1: Characterization of track geometry.
  • Subway Environmental Design Handbook. (1976). Volume I. Principles and Applications. Second Edition. Technical rept. NTIS Issue Number: 197619.
  • Bakke A, Safety in Mines Research Establishment (Great Britain), Leach SJ (1960) Methane Roof Layers, Ministry of Power, Safety in Mines Research Establishment.
  • Marmaray Project – Detailed Design Report for Tunnel Ventilation Analysis and Design.

Simulation of the tunnel emergency ventilation system in the event of a potential train fire in the tunnels of the Gaziray Railway System Line

Year 2023, , 167 - 190, 31.07.2023
https://doi.org/10.29228/JIENS.70514

Abstract

Rail systems are actively used worldwide as a fast, safe, and environmentally friendly public transportation option. The Gaziray Rail System Line is a project of great importance planned to meet the public transportation needs in Gaziantep, Turkey. In rail system lines, it is crucial to consider potential hazards such as train fires and evaluate the effects of fire. Fires can occur for various reasons in the electrical and mechanical components of trains, such as overheating of electrical cables, malfunctions in braking systems, fuel leaks, and so on. Such fires can cause dangerous consequences that can damage the tunnel's walls, ceiling, floor, and other structural elements, so the level of the tunnel's susceptibility to fire and the damage it causes to the tunnel structure must be carefully evaluated. Structural damages that affect the tunnel's usability, safety, and integrity after a fire can also affect repair costs and operational processes. Methods such as fire tests, modelling, and simulations are used to assess the effects of tunnel fires. Fire tests can determine the tunnel structure's response to fire by simulating real fire scenarios, while modelling and simulations determine the level of the tunnel structure's susceptibility to fire. The purpose of this study is to evaluate the level of damage to the tunnel structure and its effects in the event of a possible train fire in the tunnels of the Gaziray Rail System Line. The critical speed is the minimum airspeed required to push smoke and toxic combustion products in the desired direction without stratification during a fire. The study aims to determine the necessary ventilation strategy and capacity to provide critical airspeed in the opposite direction of human evacuation while enabling the environmental control systems to operate without compromising the structural integrity.

References

  • Tarada F, King M (2009) Structural fire protection of railway tunnels. Railway Engineering Conference, University of Westminster, UK, June 24-25.
  • Wang H, Binder E, Mang H, Yuan Y, Pichler B (2018) Multiscale structural analysis inspired by exceptional load cases concerning the immersed tunnel of the Hong Kong-Zhuhai-Macao Bridge. Underground Space 3(4):252–267. https://doi.org/10.1016/j.undsp.2018.02.001
  • Feist C, Aschaber M, Hofstetter G (2009) Numerical simulation of the load-carrying behavior of RC tunnel structures exposed to fire. Finite Elements in Analysis and Design 45(12):958–965. https://doi.org/10.1016/j.finel.2009.09.010
  • Long X, Guo H (2016) Fire Resistance study of concrete in the application of tunnel-like structures. 2nd International Symposium on Submerged Floating Tunnels and Underwater Tunnel Structures, Procedia Engineering 166:13–18.
  • Avcı-Karataş Ç (2022) Yalova il afet risk azaltma planının (İRAP) hazırlanması konusunda ön çalışmaların incelenmesi. 8. Uluslararası Mühendislik ve Teknoloji Yönetimi Kongresi, İstanbul, Türkiye, 8-9 Aralık.
  • Krausmann E, Mushtaq F (2008) A qualitative Natech damage scale for the impact of floods on selected industrial facilities. Nat Hazards 46:179–197. https://doi.org/10.1007/s11069-007-9203-5
  • Ingason H, Li YZ, Lönnermark A (2014) Tunnel Fire Dynamics. Springer, New York.
  • PIARC. (1999). Fire and Smoke Control in Road Tunnels. Technical Committee 5 Road Tunnels (C5). PIARC-World Road Association, France.
  • EI-Arabi IA, Duddeck H, Ahrens H (1992) Structural analysis for tunnels exposed to fire temperatures. Tunelling and Underground Space Technology 7(1):19–24. https://doi.org/10.1016/0886-7798(92)90109-U
  • Davidy A (2016) CFD studies of tunnel fire growth on composite lining materials. International Refereed Journal of Engineering and Science, 5(4):1-6.
  • Avci-Karatas C, Taşkin K (2023) Current modeling techniques for reviewing fire safety in road/highway tunnels. 5th International Congress on Engineering Sciences and Multidisciplinary approaches. Istanbul, Turkey, Feb. 25-26.
  • AASHTO-LRFD (2010). Bridge Design Specifications. American Association of State Highway and Transportation Officials. 5th Edition. ISBN: 978-1-56051-451-0. 444 North Capitol Street, Washington DC, USA.
  • Directive (EU) (2004). 2004/54/EC of the European Parliament and of the Council of 29 April 2004 on minimum safety requirements for tunnels in the Trans-European Road Network. Luxembourg, Belgium.
  • Directive (EU) (2019). 2019/1936 of the European Parliament and of the Council of 23 October 2019 amending Directive 2008/96/EC on road infrastructure safety management, OJ L 305, 26.11.2019, p.1. Luxembourg, Belgium.
  • ITA-Working Group No.6 (2004). Maintenance and Repair. Guidelines for Structural Fire Resistance for Road Tunnels. International Tunneling Association (ITA). Châtelaine, Switzerland.
  • EN 1991-1-2 (2002). (English): Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]. Plzen, Czech Republic.
  • EU (2021). Report - A9-0211/2021. REPORT on the EU Road Safety Policy Framework 2021-2030–Recommendations on next steps towards “Vision Zero”.
  • Channel Tunnel. https://en.wikipedia.org/wiki/Channel_Tunnel. Erişim tarihi: 16 Mayıs 2023.
  • Stucchi R, Amberg F (2020) A practical approach for tunnel fire verification. Structural Engineering International 30(4):515–529. https://doi.org/10.1080/10168664.2020.1772697
  • Tarada F (2007) Improving road tunnel safety. Eurotransport 5:35–39.
  • Seike M, Ejiri Y, Kawabata N, Hasegawa M (2014) Suggestion of estimation method of smoke generation rate by CFD simulation and fire experiments in full-scale tunnels. J Fluid Sci Technol 9:1–11. https://doi.org/10.1299/JFST.2014JFST0018
  • Seike M, Kawabata N, Hasegawa M (2016) Experiments of evacuation speed in smoke-filled tunnel. Tunn Undergr Space Technol 53:61–67. https://doi.org/10.1016/j.tust.2016.01.003
  • Thomas PH (1958) The movement of buoyant fluid against a stream and the venting of underground fires. Fire Safety Science 351:1–7.
  • Oka Y, Atkinson GT (1995) Control of smoke flow in tunnel fires. Fire Safety Journal 25(4):305–322. https://doi.org/10.1016/0379-7112(96)00007-0
  • Hwang CC, Edwards JC (2005) The critical ventilation velocity in tunnel fires—A computer simulation. Fire Safety Journal 40(3):213–244. https://doi.org/10.1016/j.firesaf.2004.11.001
  • Hu LH, Peng W, Huo R (2008) Critical wind velocity for arresting upwind gas and smoke dispersion induced by near-wall fire in a road tunnel. Journal of Hazardous Materials 150(1):68–75. https://doi.org/10.1016/j.jhazmat.2007.04.094
  • Ingason H, Lönnermark A (2004) Recent achievements regarding measuring of time-heat and time-temperature development in tunnels. In Proceedings of the 1st International Symposium on Safe & Reliable Tunnels, Innovative European Achievements, pp.87–96, Prague, Czech Republic, Feb 4–6.
  • Li YZ, Ingason H (2016) Influence of ventilation on road tunnel fires with and without water-based suppression systems. SP Technical Research Institute of Sweden: Boras, Sweden, 36:1–58.
  • Nakahori I, Sakaguchi T, Kohl B, Forster C, Vardy A (2015) Risk assessment of zero-flow ventilation strategy for fires in bidirectional tunnels with longitudinal ventilation. In Proceedings of the 16th International Symposium on Aerodynamics, Ventilation and Fire in Tunnels, Seattle, WA, USA, Sept. 15–17.
  • Kodur, Naser MZ (2021) Fire hazard in transportation infrastructure: Review, assessment, and mitigation strategies. Frontiers of Structural and Civil Engineering 15:46–60. https://doi.org/10.1007/s11709-020-0676-6
  • Isıkan MO, Kaya O (2019) Yüksek kamu binalarında duman tahliyesinin simülasyon metoduyla incelenmesi. International Journal of Advances in Engineering and Pure Sciences, 3:223–231. https://doi.org/10.7240/jeps.512479
  • Nishiki S (2013) Numerical study of the effect of water mist spray in tunnel fire using FDS. In Proceedings of the 5th Japan/Taiwan/Korea Joint Seminar for Tunnel Fire and Management, pp.42084–42087, Tokyo, Japan, Nov. 7.
  • Yamamoto K, Kokubo S, Nishinari K (2006) New approach for pedestrian dynamics by Real-Coded Cellular Automata (RCA). In Cellular Automata; Yacoubi, S.E., Chopard, B., Bandini, S., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany Vol. 4173, pp.728–731.
  • Yamamoto K, Kokubo S, Nishinari K (2007) Simulation for pedestrian dynamics by real-coded cellular automata (RCA). Physica A 379(2):654–660. https://doi.org/10.1016/j.physa.2007.02.040
  • Yamamoto K, Sawaguchi Y, Nishiki S (2018) Simulation of tunnel fire for evacuation safety assessment. Safety 4(2):12. https://doi.org/10.3390/safety4020012
  • McGRATTAN K (2010) Fire Dynamics Simulator (Version 5) - Technical Reference Guide. NIST Special Publication 1018, NIST.
  • McGrattan K, Forney GP (2010) Fire Dynamics Simulator (Version 5) - User’s Guide. NIST Special Publication 1019, NIST.
  • Wang HY, Sahraoui H (2014) Mathematical modelling of pool fire burning rates in a full-scale ventilated tunnel. Fire Saf Sci 11:361–375. http://dx.doi.org/10.3801/IAFSS.FSS.11-361
  • CFAST (2023). National Institute of Standards and Technology (NIST),The United States Department of Commerce. 17/105, Middletown, CT.
  • Gaziray. https://tr.wikipedia.org/wiki/Gaziray. Erişim tarihi: 16 Mayıs 2023.
  • National Fire Protection Association (NFPA) 130 (2023). Standard for Fixed Guideway Transit and Passenger Rail Systems. Avon, Massachusetts.
  • Subway Environmental Design Handbook, Volume II, Subway Environment Simulation Computer Program, Version 4, Part 1, User's Manual.
  • UNE EN 13848-1:2020. Railway applications - Track - Track geometry quality - Part 1: Characterization of track geometry.
  • Subway Environmental Design Handbook. (1976). Volume I. Principles and Applications. Second Edition. Technical rept. NTIS Issue Number: 197619.
  • Bakke A, Safety in Mines Research Establishment (Great Britain), Leach SJ (1960) Methane Roof Layers, Ministry of Power, Safety in Mines Research Establishment.
  • Marmaray Project – Detailed Design Report for Tunnel Ventilation Analysis and Design.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Transportation Engineering
Journal Section Research Articles
Authors

Çigdem Avcı-karataş 0000-0002-6383-1376

Publication Date July 31, 2023
Submission Date June 7, 2023
Published in Issue Year 2023

Cite

APA Avcı-karataş, Ç. (2023). Gaziantep banliyö projesi (Gaziray) raylı sistem hattı tünellerinde olası tren yangını durumunda tünel acil durum havalandırma sisteminin simülasyonu. Journal of Innovative Engineering and Natural Science, 3(2), 167-190. https://doi.org/10.29228/JIENS.70514


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0