Research Article
BibTex RIS Cite

SG2 düşük alaşımlı ilave metal kullanılarak tel ark eklemeli imalat yöntemi ile üretilen silindirik parçanın mekanik özelliklerinin araştırılması

Year 2024, , 175 - 187, 31.01.2024
https://doi.org/10.61112/jiens.1363552

Abstract

Bu çalışmada, son yıllarda kullanım alanları ve önemi giderek artan eklemeli imalat tekniklerinden tel ark eklemeli imalat yöntemi (TAEİ) kullanılmıştır. Çalışmada düşük alaşımlı çelik olan SG2 gazaltı kaynak teliyle silindir şeklinde parça üretimi yapılmıştır. Çalışmanın amacı standart olarak temin edilemeyen boruların istenilen ölçülerde tel ark eklemeli imalat yöntemiyle üretilmesidir. Üretim işlemlerinde MIG-MAG kaynak yöntemi kullanılmıştır. Üretilen parçadan alınan numunelere mekanik ve metalürjik testler uygulanmıştır. Mekanik özellikleri belirlemede çekme ve sertlik testleri, metalürjik özellikleri belirlemede ise makro/mikro yapı çalışmaları yapılmıştır. Çekme testi 3 farklı numune grubuna (direk alındığı haliyle, sadece frezelenmiş numune, frezelenmiş+standart çekme numunesi) uygulanmıştır. Çekme testinde numune grubuna göre değişen sonuçlar elde edilmiştir. Numunelerin mikroyapılarında ağırlıklı olarak poligonal ferrit yapısı gözlemlenmiştir. Üretilen numuneden ölçülen ortalama sertlik değerinin yaklaşık 166 HV olarak ölçülmüştür.

References

  • Bakdemir S.A, Bozkurt Y, Salman S (2021) Metal dust explosion risk in additive manufacturing and prevention methods. J Innovative Eng Nat Sci 1(1):41-60. http://dx.doi.org/10.29228/JIENS.51849
  • Yıldız A (2020) Tel beslemeli ark ergitmeli eklemeli imalat yöntemiyle üretilen parçaların ısıl davranış geometrik mekanik ve metalürjik özelliklerinin araştırılması. Doktora tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Dedeakayoğulları H, Kaçal A (2020) Eklemeli imalat teknolojileri ve kullanılan talaşlı imalat yöntemleri üzerine yapılan çalışmaların değerlendirilmesi. İmalat teknolojileri ve uygulamaları 1(1):1-12.
  • Ayan Y, Sarı E, Kahraman, N (2018) 3B Metal Yazıcı Kullanarak MIG-MAG Kaynak Yöntemi İle Tamir- Onarım Kaynak Uygulamasına Bir Örnek, Düzce Üniversitesi Bilim ve Teknoloji Dergisi 6:1190-1199
  • Kahraman N, Gülenç B (2020) Modern Kaynak Teknolojisi, 4. baskı. Epa-Mat Basım Yayın Ltd. Şti, Ankara, ss 102-119.
  • Huang L, Chen X, Konovalov S, Su C, Fan P, Wang Y, Xiaoming P, Panchenko I (2022) A review of challenges for wire and arc additive manufacturing (TAEI). Transactions of the Indian Institute of Metals https://doi.org/10.1007/s12666-022-02823-y
  • Turgut B, Gürol U, Önler R (2023) Düşük karbonlu düşük alaşımlı çelik bileşenlerin tel ark katkılı üretiminde katmanlar arası bekleme süresinin çıktı kalitesine etkisi. Uluslararası İleri Üretim Teknolojisi Dergisi (126):5277-5288. https://doi.org/10.1007/s00170-023-11481-3
  • Reisgen U, Sharma R, Mann S, Oster L (2020) Increasing the manufacturing efficiency of TAEİ by advanced cooling strategies. Welding in the World (64):1409–1416 https://doi.org/10.1007/s40194-020-00930-2.
  • Hölscher L V, Hassel T, Maier H J (2022) Detection of the contact tube to working distance in wire and arc additive manufacturing. The International Journal of Advanced Manufacturing Technology (120):989–999. https://doi.org/10.1007/s00170-022-08805-0
  • Taşdemir A, Nohut S (2021) An overview of wire arc additive manufacturing (TAEİ) in shipbuilding industry. Ships and Offshore Structures (16)7: 797–814. https://doi.org/10.1080/17445302.2020.1786232
  • Prado J L, Dieguez J L, Camacho A M (2017) Preliminary development of a wire and arc additive manufacturing system (TAEİ). Procedia Manufacturing (13):895–902.
  • Sydow B, Jhanji A, Hälsig A, Buhl J, Härtel S (2022) The benefit of the process combination of wire arc additive manufacturing (TAEI) and forming-a numerical and experimental study. Metals (12):988. https://doi.org/10.3390/met12060988
  • Dirisu P, Ganguly S, Mehmanparast A, Martina F, Williams S (2019) Analysis of fracture toughness properties of wire + arc additive manufactured high strength low alloy structural steel components. Materials Science & Engineering A (765):138285. https://doi.org/10.1016/j.msea.2019.138285
  • Li Y, Dong Z, Miao J (2022) Forming accuracy improvement in wire arc additive manufacturing (TAEİ): a review. Emerald Publishing Limited 1355-2546. https://doi.org/10.1108/RPJ-05-2022-0154
  • Jahns H, Unglaub J, Müller J, Hensel J, Thiele K (2023) Material behavior of high-strength low-alloy steel (HSLA) WAAM walls in construction. Metals 13(3):589. https://doi.org/10.3390/met13030589
  • Rodrigues T A, Duarve V R, Tomas D, Avila J A, Escobar J D, Rossinyol E, Schell N, Santos T G, Oliveira J P (2020) In-situ strengthening of a high strength low alloy steel during Wire and Arc Additive Manufacturing (WAAM). Additive Manufacturing (34) 101200. https://doi.org/10.1016/j.addma.2020.101200
  • Nagasai B, Malarvizhi S, Balasubramanian V (2022) A study on tensile properties and microstructural characteristics of wire arc additive manufactured low carbon steel cylindrical components. Welding International (8)36:443–454. https://doi.org/10.1080/09507116.2022.2097897
  • Yıldız A S, Davut K, Koç B, Yılmaz O (2020) Wire arc additive manufacturing of high-strength low alloy steels: study of process parameters and their influence on the bead geometry and mechanical characteristics. The International Journal of Advanced Manufacturing Technology (108):3391–3404. https://doi.org/10.1007/s00170-020-05482-9
  • He T, Yu S, Shi Y, Dai Y (2019) High-accuracy and high-performance TAEİ propeller manufacture by cylindrical surface slicing method. The International Journal of Advanced Manufacturing Technology (105):4773–4782. https://doi.org/10.1007/s00170-019-04558-5
  • Dağyıkan K, Gürol U, Koçak M (2023) Characterization and fracture toughness evaluation of the thick walled wire arc additively manufactured low alloy steels. Welding in the World 67:1009–1019. https://doi.org/10.1007/s40194-022-01424-z
  • Shukla V, Kumar V, Dixit A (2023) Microstructural characteristics and tensile properties of ER70S-6 manufactured by Robotic CMT wire-and-arc additive manufacturing. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.011 (Article in press).
  • The World Material (2023) 1.0037 Material St37-2 Steel Equivalent, Properties, Composition, DIN 17100. https://www.theworldmaterial.com/1-0037-material-st37-steel-din-17100/
  • Ayan Y, Kahraman N (2021) Wire arc additive manufacturing of low-carbon mild steel using two different 3D printers. Physics Of Metals and Metallography 122:1521-1529. https://doi.org/10.1134/S0031918X21140039
  • Ayan Y, Kahraman N (2022) Bending fatigue properties of structural steel fabricated through wire arc additive manufacturing (WAAM). Engineering Science and Technology an International Journal 35:101247. https://doi.org/10.1016/j.jestch.2022.101247
  • Fang Q, Zhao L, Chen C, Zhu Y, Peng Y, Yin F (2023) Effect of heat input on microstructural and mechanical properties of high strength low alloy steel block parts fabricated by wire arc additive manufacturing. Materials Today Communications (34):105146. https://doi.org/10.1016/j.mtcomm.2022.105146
  • Rafieazad M, Ghaffari M, Vahedi Nemani A, Nasiri A (2019) Microstructural evolution and mechanical properties of a low-carbon low-alloy steel produced by wire arc additive manufacturing. The International Journal Of Advanced Manufacturing Technology 105:2121–2134. https://doi.org/10.1007/s00170-019-04393-8
  • Waqas A, Qin X, Xiong J, Wang H, Zheng C (2019) Optimization of process parameters to improve the effective area of deposition in GMAW-based additive manufacturing and its mechanical and microstructural analysis. Metals, (9)7:775. https://doi.org/10.3390/met9070775

Investigation of the mechanical properties of cylindrical part produced by wire arc additive manufacturing method using SG2 low alloy feeding metal

Year 2024, , 175 - 187, 31.01.2024
https://doi.org/10.61112/jiens.1363552

Abstract

In this study, wire arc additive manufacturing method (TAEI), which is one of the additive manufacturing techniques whose usage areas and importance have increased in recent years, was used. In the study, low alloy steel SG2 arc welding wire was produced in the form of a cylindrical tube and in layers. The aim of this study is to produce the pipes that cannot be supplied as a standard in the desired size by wire arc additive manufacturing method. For this purpose, MIG-MAG welding was used in the study. Mechanical and metallurgical tests were applied to the samples taken from the produced part. Tensile and hardness tests were used to determine the mechanical properties, and macro/micro structure studies were performed to determine the metallurgical properties. Tensile test was applied to 3 different sample groups (as taken directly, milled sample only, milled + standard tensile sample). While 24.4% elongation was obtained in only milled samples, 24.5% elongation was observed in milling+drawing samples. Polygonal ferrite was observed predominantly in the microstructures of the samples. It was observed that the average hardness value measured from the manufactured sample was approximately 166HV.

References

  • Bakdemir S.A, Bozkurt Y, Salman S (2021) Metal dust explosion risk in additive manufacturing and prevention methods. J Innovative Eng Nat Sci 1(1):41-60. http://dx.doi.org/10.29228/JIENS.51849
  • Yıldız A (2020) Tel beslemeli ark ergitmeli eklemeli imalat yöntemiyle üretilen parçaların ısıl davranış geometrik mekanik ve metalürjik özelliklerinin araştırılması. Doktora tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Dedeakayoğulları H, Kaçal A (2020) Eklemeli imalat teknolojileri ve kullanılan talaşlı imalat yöntemleri üzerine yapılan çalışmaların değerlendirilmesi. İmalat teknolojileri ve uygulamaları 1(1):1-12.
  • Ayan Y, Sarı E, Kahraman, N (2018) 3B Metal Yazıcı Kullanarak MIG-MAG Kaynak Yöntemi İle Tamir- Onarım Kaynak Uygulamasına Bir Örnek, Düzce Üniversitesi Bilim ve Teknoloji Dergisi 6:1190-1199
  • Kahraman N, Gülenç B (2020) Modern Kaynak Teknolojisi, 4. baskı. Epa-Mat Basım Yayın Ltd. Şti, Ankara, ss 102-119.
  • Huang L, Chen X, Konovalov S, Su C, Fan P, Wang Y, Xiaoming P, Panchenko I (2022) A review of challenges for wire and arc additive manufacturing (TAEI). Transactions of the Indian Institute of Metals https://doi.org/10.1007/s12666-022-02823-y
  • Turgut B, Gürol U, Önler R (2023) Düşük karbonlu düşük alaşımlı çelik bileşenlerin tel ark katkılı üretiminde katmanlar arası bekleme süresinin çıktı kalitesine etkisi. Uluslararası İleri Üretim Teknolojisi Dergisi (126):5277-5288. https://doi.org/10.1007/s00170-023-11481-3
  • Reisgen U, Sharma R, Mann S, Oster L (2020) Increasing the manufacturing efficiency of TAEİ by advanced cooling strategies. Welding in the World (64):1409–1416 https://doi.org/10.1007/s40194-020-00930-2.
  • Hölscher L V, Hassel T, Maier H J (2022) Detection of the contact tube to working distance in wire and arc additive manufacturing. The International Journal of Advanced Manufacturing Technology (120):989–999. https://doi.org/10.1007/s00170-022-08805-0
  • Taşdemir A, Nohut S (2021) An overview of wire arc additive manufacturing (TAEİ) in shipbuilding industry. Ships and Offshore Structures (16)7: 797–814. https://doi.org/10.1080/17445302.2020.1786232
  • Prado J L, Dieguez J L, Camacho A M (2017) Preliminary development of a wire and arc additive manufacturing system (TAEİ). Procedia Manufacturing (13):895–902.
  • Sydow B, Jhanji A, Hälsig A, Buhl J, Härtel S (2022) The benefit of the process combination of wire arc additive manufacturing (TAEI) and forming-a numerical and experimental study. Metals (12):988. https://doi.org/10.3390/met12060988
  • Dirisu P, Ganguly S, Mehmanparast A, Martina F, Williams S (2019) Analysis of fracture toughness properties of wire + arc additive manufactured high strength low alloy structural steel components. Materials Science & Engineering A (765):138285. https://doi.org/10.1016/j.msea.2019.138285
  • Li Y, Dong Z, Miao J (2022) Forming accuracy improvement in wire arc additive manufacturing (TAEİ): a review. Emerald Publishing Limited 1355-2546. https://doi.org/10.1108/RPJ-05-2022-0154
  • Jahns H, Unglaub J, Müller J, Hensel J, Thiele K (2023) Material behavior of high-strength low-alloy steel (HSLA) WAAM walls in construction. Metals 13(3):589. https://doi.org/10.3390/met13030589
  • Rodrigues T A, Duarve V R, Tomas D, Avila J A, Escobar J D, Rossinyol E, Schell N, Santos T G, Oliveira J P (2020) In-situ strengthening of a high strength low alloy steel during Wire and Arc Additive Manufacturing (WAAM). Additive Manufacturing (34) 101200. https://doi.org/10.1016/j.addma.2020.101200
  • Nagasai B, Malarvizhi S, Balasubramanian V (2022) A study on tensile properties and microstructural characteristics of wire arc additive manufactured low carbon steel cylindrical components. Welding International (8)36:443–454. https://doi.org/10.1080/09507116.2022.2097897
  • Yıldız A S, Davut K, Koç B, Yılmaz O (2020) Wire arc additive manufacturing of high-strength low alloy steels: study of process parameters and their influence on the bead geometry and mechanical characteristics. The International Journal of Advanced Manufacturing Technology (108):3391–3404. https://doi.org/10.1007/s00170-020-05482-9
  • He T, Yu S, Shi Y, Dai Y (2019) High-accuracy and high-performance TAEİ propeller manufacture by cylindrical surface slicing method. The International Journal of Advanced Manufacturing Technology (105):4773–4782. https://doi.org/10.1007/s00170-019-04558-5
  • Dağyıkan K, Gürol U, Koçak M (2023) Characterization and fracture toughness evaluation of the thick walled wire arc additively manufactured low alloy steels. Welding in the World 67:1009–1019. https://doi.org/10.1007/s40194-022-01424-z
  • Shukla V, Kumar V, Dixit A (2023) Microstructural characteristics and tensile properties of ER70S-6 manufactured by Robotic CMT wire-and-arc additive manufacturing. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.011 (Article in press).
  • The World Material (2023) 1.0037 Material St37-2 Steel Equivalent, Properties, Composition, DIN 17100. https://www.theworldmaterial.com/1-0037-material-st37-steel-din-17100/
  • Ayan Y, Kahraman N (2021) Wire arc additive manufacturing of low-carbon mild steel using two different 3D printers. Physics Of Metals and Metallography 122:1521-1529. https://doi.org/10.1134/S0031918X21140039
  • Ayan Y, Kahraman N (2022) Bending fatigue properties of structural steel fabricated through wire arc additive manufacturing (WAAM). Engineering Science and Technology an International Journal 35:101247. https://doi.org/10.1016/j.jestch.2022.101247
  • Fang Q, Zhao L, Chen C, Zhu Y, Peng Y, Yin F (2023) Effect of heat input on microstructural and mechanical properties of high strength low alloy steel block parts fabricated by wire arc additive manufacturing. Materials Today Communications (34):105146. https://doi.org/10.1016/j.mtcomm.2022.105146
  • Rafieazad M, Ghaffari M, Vahedi Nemani A, Nasiri A (2019) Microstructural evolution and mechanical properties of a low-carbon low-alloy steel produced by wire arc additive manufacturing. The International Journal Of Advanced Manufacturing Technology 105:2121–2134. https://doi.org/10.1007/s00170-019-04393-8
  • Waqas A, Qin X, Xiong J, Wang H, Zheng C (2019) Optimization of process parameters to improve the effective area of deposition in GMAW-based additive manufacturing and its mechanical and microstructural analysis. Metals, (9)7:775. https://doi.org/10.3390/met9070775
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Kürşat Uygar Altun 0009-0004-4802-0243

Ercan Çağlar 0009-0007-8031-8981

Yusuf Ayan 0000-0002-0045-3777

Nizamettin Kahraman 0000-0002-7152-3795

Publication Date January 31, 2024
Submission Date September 20, 2023
Published in Issue Year 2024

Cite

APA Altun, K. U., Çağlar, E., Ayan, Y., Kahraman, N. (2024). SG2 düşük alaşımlı ilave metal kullanılarak tel ark eklemeli imalat yöntemi ile üretilen silindirik parçanın mekanik özelliklerinin araştırılması. Journal of Innovative Engineering and Natural Science, 4(1), 175-187. https://doi.org/10.61112/jiens.1363552


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0