Research Article
BibTex RIS Cite

Carbon nanotube reinforced LDPE/SAN thermoplastic nanocomposites: thermo-mechanical and electromagnetic interference shielding properties

Year 2024, , 126 - 137, 31.01.2024
https://doi.org/10.61112/jiens.1374375

Abstract

A prevalent area of research is the development of structural polymer composites with diverse functions. An ingenious material solution is two-phased nanocomposites with distinctive structural and electrical characteristics. This study produced a nanocomposite structure with carbon nanotube-reinforced low-density polyethylene (LDPE) and styrene acrylonitrile (SAN) as a thermoplastic matrix. The injection molding method was used in the production of nanocomposites. Thermo-dynamic and electromagnetic shielding properties of the nanocomposites were investigated. As the LDPE/MWCNT ratio added to pure SAN increased, the storage modulus decreased as expected, and the storage modulus for the MB50 sample was determined as 1.24 GPa with a 50% decrease. The percolation threshold for the two-phase thermoplastic composite was obtained for the MB50 sample containing 10 wt% carbon nanotubes. In addition, the MB75 sample containing 15 wt% carbon nanotubes reached an EMSE value of 37 dB.

Project Number

FYL-2022-3841

Thanks

This work was supported by Çanakkale Onsekiz Mart University the Scientific Research Coordination Unit, Project number: FYL-2022-3841.

References

  • Park SH, Thielemann P, Asbeck P, Bandaru PR (2009) Enhanced dielectric constants and shielding effectiveness of, uniformly dispersed, functionalized carbon nanotube composites. Appl Phys Lett 94:243-111. https://doi.org/10.1063/1.3156032
  • Şahin Eİ, Emek M (2023) Properties of GdMnO3/PANI/Ba(Zn1/3Nb2/3)O3 Composites For Electromagnetic Shielding Applications. Journal of the Institute of Science and Technology (JIST) 13(3): 2143-2154. https://doi.org/10.21597/jist.1268835
  • Jia X, Li Y, Shen B, Zheng W (2022) Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: A review. Composites, Part B 233:109652. https://doi.org/10.1016/j.compositesb.2022.109652
  • Zachariah SM, Grohens Y, Kalarikkal N, Thomas S, (2022) Hybrid materials for electromagnetic shielding: A review Polym. Compos. 43(5):2507. https://doi.org/10.1002/pc.26595
  • Ravindren R, Mondal S, Nath K, Das NC (2019) Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites. Compos Part A Appl Sci Manuf 118:75–89. https://doi.org/10.1016/j.compositesa.2018.12.012
  • Yıldırım F (2023) Effect of low-velocity impact damage on the electromagnetic interference shielding effectiveness of CFRP composites, Konya journal of Engineering Science (KONJES) 11(4):958–972. https://doi.org/10.36306/konjes.1302313
  • Chen Z, Yi D, Shen B, Zhang L, Ma X, Pang Y, Liu L, Wei X, Zheng W (2018) Semi-transparent biomass-derived macroscopic carbon grids for efficient and tunable electromagnetic shielding. Carbon 139:271-278. https://doi.org/10.1016/j.carbon.2018.06.070
  • Ravindren R, Mondal S, Nath K, Das NC (2019) Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites. Compos B Eng 16:559-569. https://doi.org/10.1016/j.compositesb.2019.01.066
  • Morita J, Goto T, Kanehashi S, Shimomura T (2020) Electrical double percolation of polybutadiene/ polyethylene glycol blends loaded with conducting polymer nanofibers. Polymers 12(11):2658. https://doi.org/10.3390/polym12112658
  • Praveen M, Karthikeya GS, Krishna RH, Mamatha GM, Manjunatha C, Khosla A, Nagabhushana BM (2022) The role of magnetic nano CoFe2O4 and conductive MWCNT/graphene in LDPE-based composites for electromagnetic interference shielding in X-band. Diamond Relat. Mater. 130:109501. https://doi.org/10.1016/j.diamond.2022.109501 Bizhani H, Nayyeri V, Katbab AA, Arani AJ, Nazockdast H (2018) Double percolated MWCNTs loaded PC/SAN nanocomposites as an absorbing electromagnetic shield. Eur. Polym. J. 100:209-218. https://doi.org/10.1016/j.eurpolymj.2018.01.016
  • Bhawal P, Ganguly S, Das TK, Mondal S, Choudhury S, Das NC (2018) Superior electromagnetic interference shielding effectiveness and electro-mechanical properties of EMA-IRGO nanocomposites through the in-situ reduction of GO from melt blended EMA-GO composites. Composites, Part B 134:46-60. https://doi.org/10.1016/j.compositesb.2017.09.046
  • Liebscher M, Domurath J, Saphiannikova M, Müller MT, Heinrich G, Pötschke P (2020) Dispersion of graphite nanoplates in melt mixed PC/SAN polymer blends and its influence on rheological and electrical properties. Polymer 200:122577. https://doi.org/10.1016/j.polymer.2020.122577.
  • Liebscher, M, Domurath J, Krause B, Saphiannikova M, Heinrich G, Pötschke P (2018) Electrical and melt rheological characterization of PC and co-continuous PC/SAN blends filled with CNTs: Relationship between melt-mixing parameters, filler dispersion, and filler aspect ratio. J. Polym. Sci. Part B: Polym. Phys., 56:79-88. https://doi.org/10.1002/polb.24515
  • Darshan TG, Veluri S, Kartik B, Hsiang CY, Chyou CF (2019) Poly(butylene succinate)/high density polyethylene blend-based nanocomposites with enhanced physical properties – Selectively localized carbon nanotube in pseudo-double percolated structure. Polym. Degrad. Stab. 163:185-194. https://doi.org/10.1016/j.polymdegradstab.2019.03.009.
  • Clemente LA, Pernas AA, García X, Dopico S, Abad MJ (2016) Influence of polyamide ratio on the CNT dispersion in polyamide 66/6 blends by dilution of PA66 or PA6-MWCNT masterbatches. Synth. Met. 221:134-141. https://doi.org/10.1016/j.synthmet.2016.07.030
  • Périé T, Brosse AC, Girault ST, Leibler L (2012) Co-continuous nanostructured nanocomposites by reactive blending of carbon nanotube masterbatches. Polymer 53 (4):984-992. https://doi.org/10.1016/j.polymer.2012.01.007.
  • Niknejad AS, Bazgir S, Sadeghzadeh A, Shirazi MMA (2020) Styrene-acrylonitrile (SAN) nanofibrous membranes with unique properties for desalination by direct contact membrane distillation (DCMD) Process. Desalination 488:114502. https://doi.org/10.1016/j.desal.2020.114502.
  • Yıldırım F, Kabakçı E, Şaş HS, Eskizeybek V (2022) Multi-walled carbon nanotube grafted 3D spacer multi-scale composites for electromagnetic interference shielding. Polym Compos 43:5690–703. https://doi.org/10.1002/pc.26885
  • Shukla V (2019) Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv 1:1640–71. https://doi.org/10.1039/c9na00108e
  • Oraby H, Naeem I, Darwish M, Senna MH, Tantawy HR (2021) Effective electromagnetic interference shielding using foamy polyurethane composites. Polymer Compos 42:3077–88. https://doi.org/10.1002/pc.26040
  • Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–26. https://doi.org/10.1016/j.matchemphys.2008.08.065
  • Suzuki M, Wilkie CA (1995) The thermal degradation of acrylonitrile-butadiene-styrene terpolymei as studied by TGA/FTIR. Polym Degrad Stab 47:217–21. https://doi.org/10.1016/0141-3910(94)00122-O
  • Mutlu G, Yıldırım F, Ulus H, Eskizeybek V (2023) Coating graphene nanoplatelets onto carbon fabric with controlled thickness for improved mechanical performance and EMI shielding effectiveness of carbon/epoxy composites. Eng. Fract. Mech. 284:109271. https://doi.org/10.1016/j.engfracmech.2023.109271
  • Chen Y, Pang L, Li Y, Luo H, Duan G, Mei C, Xu W, Zhou W, Liu K, Jiang S. (2020) Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Compos Part A Appl Sci Manuf 135:105960. https://doi.org/10.1016/j.compositesa.2020.105960
  • Zeng Z, Chen M, Jin H, Li W, Xue X, Zhou L, Pei Y, Zhang H, Zhang Z (2016) Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon N Y 96:768–77. https://doi.org/10.1016/j.carbon.2015.10.004
  • Munalli D, Dimitrakis G, Chronopoulos D, Greedy S, Long A (2019) Electromagnetic shielding effectiveness of carbon fibre reinforced composites. Compos B Eng 173:106906. https://doi.org/10.1016/j.compositesb.2019.106906
  • Peng T, Wang S, Xu Z, Tang T, Zhao Y (2022) Multifunctional MXene/Aramid Nanofiber Composite Films for Efficient Electromagnetic Interference Shielding and Repeatable Early Fire Detection. ACS Omega 7:29161–70. https://doi.org/10.1021/acsomega.2c03219
  • Liang C, Hamidinejad M, Ma L, Wang Z, Park CB (2020) Lightweight and flexible graphene/SiC-nanowires/ poly(vinylidene fluoride) composites for electromagnetic interference shielding and thermal management. Carbon N Y 156:58–66. https://doi.org/10.1016/j.carbon.2019.09.044

Karbon nanotüp takviyeli AYPE/SAN termoplastik nanokompozitler: termo-mekanik ve elektromanyetik girişim kalkanlama özellikleri

Year 2024, , 126 - 137, 31.01.2024
https://doi.org/10.61112/jiens.1374375

Abstract

Farklı işlevlere sahip yapısal polimer kompozitlerin geliştirilmesi yaygın bir araştıma alanı haline gelmiştir. Yenilikçi bir malzeme çözümü, farklı yapısal ve elektriksel özelliklere sahip iki farklı yapılı nanokompozitlerdir. Bu çalışmada, karbon nanotüp takviyeli düşük yoğunluklu polietilen (LDPE) ve termoplastik matris olarak stiren akrilonitril (SAN) ile nanokompozit bir yapı üretilmiştir. Nanokompozitlerin üretiminde enjeksiyon kalıplama yöntemi kullanılmıştır. Nanokompozitlerin termo-dinamik ve elektromanyetik kalkanlama özellikleri incelenmiştir. Saf SAN'a eklenen AYPE/MWCNT oranı arttıkça, depolama modülü beklendiği gibi azalmış ve MB50 numunesi için depolama modülü %50'lik bir düşüşle 1,24 GPa olarak belirlenmiştir. İki fazlı termoplastik kompozit için perkolasyon eşiği ağırlıkça %10 karbon nanotüp içeren MB50 numunesi için elde edilmiştir. Ayrıca, ağırlıkça %15 karbon nanotüp içeren MB75 numunesi 37 dB'lik bir EMSE değerine ulaşmıştır.

Project Number

FYL-2022-3841

References

  • Park SH, Thielemann P, Asbeck P, Bandaru PR (2009) Enhanced dielectric constants and shielding effectiveness of, uniformly dispersed, functionalized carbon nanotube composites. Appl Phys Lett 94:243-111. https://doi.org/10.1063/1.3156032
  • Şahin Eİ, Emek M (2023) Properties of GdMnO3/PANI/Ba(Zn1/3Nb2/3)O3 Composites For Electromagnetic Shielding Applications. Journal of the Institute of Science and Technology (JIST) 13(3): 2143-2154. https://doi.org/10.21597/jist.1268835
  • Jia X, Li Y, Shen B, Zheng W (2022) Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: A review. Composites, Part B 233:109652. https://doi.org/10.1016/j.compositesb.2022.109652
  • Zachariah SM, Grohens Y, Kalarikkal N, Thomas S, (2022) Hybrid materials for electromagnetic shielding: A review Polym. Compos. 43(5):2507. https://doi.org/10.1002/pc.26595
  • Ravindren R, Mondal S, Nath K, Das NC (2019) Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites. Compos Part A Appl Sci Manuf 118:75–89. https://doi.org/10.1016/j.compositesa.2018.12.012
  • Yıldırım F (2023) Effect of low-velocity impact damage on the electromagnetic interference shielding effectiveness of CFRP composites, Konya journal of Engineering Science (KONJES) 11(4):958–972. https://doi.org/10.36306/konjes.1302313
  • Chen Z, Yi D, Shen B, Zhang L, Ma X, Pang Y, Liu L, Wei X, Zheng W (2018) Semi-transparent biomass-derived macroscopic carbon grids for efficient and tunable electromagnetic shielding. Carbon 139:271-278. https://doi.org/10.1016/j.carbon.2018.06.070
  • Ravindren R, Mondal S, Nath K, Das NC (2019) Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites. Compos B Eng 16:559-569. https://doi.org/10.1016/j.compositesb.2019.01.066
  • Morita J, Goto T, Kanehashi S, Shimomura T (2020) Electrical double percolation of polybutadiene/ polyethylene glycol blends loaded with conducting polymer nanofibers. Polymers 12(11):2658. https://doi.org/10.3390/polym12112658
  • Praveen M, Karthikeya GS, Krishna RH, Mamatha GM, Manjunatha C, Khosla A, Nagabhushana BM (2022) The role of magnetic nano CoFe2O4 and conductive MWCNT/graphene in LDPE-based composites for electromagnetic interference shielding in X-band. Diamond Relat. Mater. 130:109501. https://doi.org/10.1016/j.diamond.2022.109501 Bizhani H, Nayyeri V, Katbab AA, Arani AJ, Nazockdast H (2018) Double percolated MWCNTs loaded PC/SAN nanocomposites as an absorbing electromagnetic shield. Eur. Polym. J. 100:209-218. https://doi.org/10.1016/j.eurpolymj.2018.01.016
  • Bhawal P, Ganguly S, Das TK, Mondal S, Choudhury S, Das NC (2018) Superior electromagnetic interference shielding effectiveness and electro-mechanical properties of EMA-IRGO nanocomposites through the in-situ reduction of GO from melt blended EMA-GO composites. Composites, Part B 134:46-60. https://doi.org/10.1016/j.compositesb.2017.09.046
  • Liebscher M, Domurath J, Saphiannikova M, Müller MT, Heinrich G, Pötschke P (2020) Dispersion of graphite nanoplates in melt mixed PC/SAN polymer blends and its influence on rheological and electrical properties. Polymer 200:122577. https://doi.org/10.1016/j.polymer.2020.122577.
  • Liebscher, M, Domurath J, Krause B, Saphiannikova M, Heinrich G, Pötschke P (2018) Electrical and melt rheological characterization of PC and co-continuous PC/SAN blends filled with CNTs: Relationship between melt-mixing parameters, filler dispersion, and filler aspect ratio. J. Polym. Sci. Part B: Polym. Phys., 56:79-88. https://doi.org/10.1002/polb.24515
  • Darshan TG, Veluri S, Kartik B, Hsiang CY, Chyou CF (2019) Poly(butylene succinate)/high density polyethylene blend-based nanocomposites with enhanced physical properties – Selectively localized carbon nanotube in pseudo-double percolated structure. Polym. Degrad. Stab. 163:185-194. https://doi.org/10.1016/j.polymdegradstab.2019.03.009.
  • Clemente LA, Pernas AA, García X, Dopico S, Abad MJ (2016) Influence of polyamide ratio on the CNT dispersion in polyamide 66/6 blends by dilution of PA66 or PA6-MWCNT masterbatches. Synth. Met. 221:134-141. https://doi.org/10.1016/j.synthmet.2016.07.030
  • Périé T, Brosse AC, Girault ST, Leibler L (2012) Co-continuous nanostructured nanocomposites by reactive blending of carbon nanotube masterbatches. Polymer 53 (4):984-992. https://doi.org/10.1016/j.polymer.2012.01.007.
  • Niknejad AS, Bazgir S, Sadeghzadeh A, Shirazi MMA (2020) Styrene-acrylonitrile (SAN) nanofibrous membranes with unique properties for desalination by direct contact membrane distillation (DCMD) Process. Desalination 488:114502. https://doi.org/10.1016/j.desal.2020.114502.
  • Yıldırım F, Kabakçı E, Şaş HS, Eskizeybek V (2022) Multi-walled carbon nanotube grafted 3D spacer multi-scale composites for electromagnetic interference shielding. Polym Compos 43:5690–703. https://doi.org/10.1002/pc.26885
  • Shukla V (2019) Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv 1:1640–71. https://doi.org/10.1039/c9na00108e
  • Oraby H, Naeem I, Darwish M, Senna MH, Tantawy HR (2021) Effective electromagnetic interference shielding using foamy polyurethane composites. Polymer Compos 42:3077–88. https://doi.org/10.1002/pc.26040
  • Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–26. https://doi.org/10.1016/j.matchemphys.2008.08.065
  • Suzuki M, Wilkie CA (1995) The thermal degradation of acrylonitrile-butadiene-styrene terpolymei as studied by TGA/FTIR. Polym Degrad Stab 47:217–21. https://doi.org/10.1016/0141-3910(94)00122-O
  • Mutlu G, Yıldırım F, Ulus H, Eskizeybek V (2023) Coating graphene nanoplatelets onto carbon fabric with controlled thickness for improved mechanical performance and EMI shielding effectiveness of carbon/epoxy composites. Eng. Fract. Mech. 284:109271. https://doi.org/10.1016/j.engfracmech.2023.109271
  • Chen Y, Pang L, Li Y, Luo H, Duan G, Mei C, Xu W, Zhou W, Liu K, Jiang S. (2020) Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Compos Part A Appl Sci Manuf 135:105960. https://doi.org/10.1016/j.compositesa.2020.105960
  • Zeng Z, Chen M, Jin H, Li W, Xue X, Zhou L, Pei Y, Zhang H, Zhang Z (2016) Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon N Y 96:768–77. https://doi.org/10.1016/j.carbon.2015.10.004
  • Munalli D, Dimitrakis G, Chronopoulos D, Greedy S, Long A (2019) Electromagnetic shielding effectiveness of carbon fibre reinforced composites. Compos B Eng 173:106906. https://doi.org/10.1016/j.compositesb.2019.106906
  • Peng T, Wang S, Xu Z, Tang T, Zhao Y (2022) Multifunctional MXene/Aramid Nanofiber Composite Films for Efficient Electromagnetic Interference Shielding and Repeatable Early Fire Detection. ACS Omega 7:29161–70. https://doi.org/10.1021/acsomega.2c03219
  • Liang C, Hamidinejad M, Ma L, Wang Z, Park CB (2020) Lightweight and flexible graphene/SiC-nanowires/ poly(vinylidene fluoride) composites for electromagnetic interference shielding and thermal management. Carbon N Y 156:58–66. https://doi.org/10.1016/j.carbon.2019.09.044
There are 28 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Research Articles
Authors

Onur Divan 0009-0002-2041-3411

Ferhat Yıldırım 0000-0002-0524-4050

Volkan Eskizeybek 0000-0002-5373-0379

Project Number FYL-2022-3841
Publication Date January 31, 2024
Submission Date October 11, 2023
Acceptance Date December 22, 2023
Published in Issue Year 2024

Cite

APA Divan, O., Yıldırım, F., & Eskizeybek, V. (2024). Carbon nanotube reinforced LDPE/SAN thermoplastic nanocomposites: thermo-mechanical and electromagnetic interference shielding properties. Journal of Innovative Engineering and Natural Science, 4(1), 126-137. https://doi.org/10.61112/jiens.1374375


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0