Research Article
BibTex RIS Cite

Effects of chemical treatments on morphological, physical and chemical properties of okra bast fibers

Year 2024, , 380 - 390, 31.07.2024
https://doi.org/10.61112/jiens.1404509

Abstract

In this study, bast fibers have been obtained from okra (Abelmoschus esculentus) plant stems via biological degumming process. The obtained fibers were subjected to some textile pretreatment processes such as scouring, alkalizing, oxygen bleaching and chlorine bleaching which are also utilized in cellulose nanoparticle production. Effects of these processes on their physical and chemical characteristics have been investigated and statistically analyzed. Treatments have been found to statistically affect physical properties of the fibers. They led to decrease in fiber linear density but increase in moisture content and water absorption capacity. Linear density reduction took place by fibrillation and elimination of impurities. Fibrillation has been evidenced by microscopy images. Prolonged submerging resulted in increment in water absorption. FT-IR spectra, SEM images and mass loss analysis present evidence for removal of lignin, hemicelluloses and vaxes upon chemical treatments. The ranges of the linear density, moisture content and water absorption of okra bast fibers are 6.3-20.1 tex, 2.9-6.0%, and 5.80 g/g to 11.8 g/g, respectively. Properties of okra bast fibers show similarities to conventional bast fibers such as flax, hemp and jute.

Supporting Institution

TÜBİTAK

Project Number

TÜBİTAK BİDEB 2209 A

Thanks

Authors acknowledge TÜBİTAK (Scientific and Technological Research Council of Turkey) for funding the project “Production of Nanoparticles from okra plant” of Mahmut Ersoy through 2209-A University Students Research Projects Support Program.

References

  • Gupta K, Chauhan NR (2022) Comparative study of green composites using grewia optiva, Himalayan nettle and silk as fiber. Adv Mater Process Technol 1–10. https://doi.org/10.1080/2374068X.2022.2108579.
  • Ochi S, Takagi H, Niki R (2002), Mechanical Properties Of Heat-treated Natural Fibers. WIT Trans Built Environ 59: 653. https://doi.org/10.2495/HPS020121
  • Kocak ED, Merdan N, Mistik I, and Sahinbaskan BY (2018) Fiber Extraction from Okra Plant Agricultural Wastes, Their Characterizations and Surface Modifications by Environmental Methods. In: Sustainable Innovations in Textile Fibres. Textile Science and Clothing Technology. Springer, Singapore, ss 53–80. https://doi.org/10.1007/978-981-10-8578-9_3
  • Yılmaz S, Uzun A (2019), Keten tarımı. Karadeniz Tarım Araştırma Enstitüsü Müdürlüğü.
  • Yılmaz ND, Sulak M, Yılmaz K, Khan GMA (2017) Effect of chemical treatments on physico-chemical properties of fibers from banana fruit and bunch stems Indian J Fibre Text Res 42(1):111–117.
  • Sakthivel JC, Sivaraman SS, Sathish J, Venkatesh d (2021) Extraction and characterization of fibre from musa plant bract. Indian J Fibre Text Res 46(2):191–194. https://doi.org/10.56042/ijftr.v46i2.36575
  • Khan GMA, Yılmaz ND, Yılmaz K (2022) Effects of Alkalization on Physical and Mechanical Properties of Biologically Degummed Okra Bast and Corn Husk Fibers. J Nat Fibers 19(3):1126–1136 https://doi.org/10.1080/15440478.2020.1798840
  • Reddy N, Yang Y (2005) Properties and potential applications of natural cellulose fibers from cornhusks. Green Chem 7(4):190–195. https://doi.org/10.1016/j.carbpol.2009.03.013.
  • Yılmaz ND, Konak S, Yılmaz K, Kartal AA, Kayahan E (2016) Characterization, modification and use of biomass: okra fibers. Bioinspired Biomim Nanobiomaterials 5(3):85–95. https://doi.org/10.1680/jbibn.15.00014
  • Alam MS, Khan GMA (2007) Chemical analysis of okra bast fiber (Abelmoschus esculentus) and its physico-chemical properties. J Text Apparel Technol Manag 5(4): 1–9.
  • “Okra,” (2023) http://data.un.org/Search.aspx?q=okra+production+countries+2020. Accessed 20 September 2023.
  • Khan GMA, Yılmaz ND, Yılmaz K (2017) Okra bast fiber as potential reinforcement element of biocomposites: Can it be the flax of the future. In: Handbook of Composites from Renewable Materials, vol. 1–8, Wiley Scrivener, pp 379–405.
  • Khan GMA, Shaheruzzaman M, Rahman MH, Abdur Razzaque SM, Islam MS, Alam MS (2009) Surface modification of okra bast fiber and its physico-chemical characteristics. Fibers Polym 10(1):65–70 https://doi.org/10.1007/s12221-009-0065-1
  • Khan GMA, Yılmaz ND, Yılmaz K (2020) Effects of chemical treatments and degumming methods on physical and mechanical properties of okra bast and corn husk fibers. J Text Inst 111(10):1418–1435 https://doi.org/10.1080/00405000.2019.1702492
  • Amziane S, Collet F, Lawrence M, Magniont C, Picandet V, Sonebi M (2017) Recommendation of the RILEM TC 236-BBM: characterisation testing of hemp shiv to determine the initial water content, water absorption, dry density, particle size distribution and thermal conductivity. Mater Struct Constr 50(3):1–11 https://doi.org/10.1617/s11527-017-1029-3
  • Yılmaz ND (2014) Agro‐Residual Fibers as Potential Reinforcement Elements for Biocomposites. In: Lignocellulosic Polymer Composites, V. K. Thakur, Ed. Wiley, pp 231–270.
  • Yılmaz ND, Çılgı GK, Yılmaz K (2015) Natural Polysaccharides as Pharmaceutical Excipients. In: Handbook of Polymers for Pharmaceutical Technologies Wiley-Scrivener, pp 483–516 https://doi.org/10.1002/9781119041450.CH14
  • Kolte P, Vijay S (2022) Critical Investigation of Abelmoschus Esculentus (Indian Okra) Fiber Characteristics. Res Square 1–22 https://doi.org/10.21203/rs.3.rs-2210815/v1
  • Hossen MT et al. (2021) A comprehensive study on Physico-Mechanical characteristics of Okra fibre (Abelmoschus esculentus) for textile applications. Indian J Sci Technol 14(9):765–775 https://doi.org/10.17485/IJST/v14i9.2268

Kimyasal işlemlerin bamya sak liflerinin morfolojik, fiziksel ve kimyasal özellikleri üzerindeki etkileri

Year 2024, , 380 - 390, 31.07.2024
https://doi.org/10.61112/jiens.1404509

Abstract

Bu çalışmada, bamya bitkisinin saplarından biyolojik çürütme işlemiyle sak lifleri elde edilmiştir. Elde edilen lifler, selüloz nanopartikül üretiminde de kullanılan temizleme, alkalizasyon, oksijenli ağartma ve klorlu ağartma gibi tekstil ön terbiye işlemlerine tabi tutulmuş ve bu işlemlerin liflerin fiziksel ve kimyasal özelliklerine etkisi araştırılmıştır. İşlemler lifin doğrusal yoğunluğunun azalmasına, nem içeriğinin ve su emme kapasitesinin ise artmasına neden olmuştur. Doğrusal yoğunluk azalması, fibrilasyon ve safsızlıkların ortadan kaldırılması yoluyla gerçekleşmiştir. Uzun süreli suya daldırma, su emiliminin artmasına neden olmuştur. FT-IR spektrumları, kimyasal işlemler sonrasında lignin, hemiselüloz ve vaksların uzaklaştırıldığına dair kanıt sunmaktadır. Bamya sak liflerinin doğrusal yoğunluğu, nem içeriği ve su emme aralıkları sırasıyla 6,70-12,3 tex, %6,4-%8,6 ve 5,80 g/g ile 11,8 g/g arasındadır. Bamya sak liflerinin özellikleri keten, kenevir ve jüt gibi geleneksel sak lifleriyle benzerlik göstermektedir.

Project Number

TÜBİTAK BİDEB 2209 A

References

  • Gupta K, Chauhan NR (2022) Comparative study of green composites using grewia optiva, Himalayan nettle and silk as fiber. Adv Mater Process Technol 1–10. https://doi.org/10.1080/2374068X.2022.2108579.
  • Ochi S, Takagi H, Niki R (2002), Mechanical Properties Of Heat-treated Natural Fibers. WIT Trans Built Environ 59: 653. https://doi.org/10.2495/HPS020121
  • Kocak ED, Merdan N, Mistik I, and Sahinbaskan BY (2018) Fiber Extraction from Okra Plant Agricultural Wastes, Their Characterizations and Surface Modifications by Environmental Methods. In: Sustainable Innovations in Textile Fibres. Textile Science and Clothing Technology. Springer, Singapore, ss 53–80. https://doi.org/10.1007/978-981-10-8578-9_3
  • Yılmaz S, Uzun A (2019), Keten tarımı. Karadeniz Tarım Araştırma Enstitüsü Müdürlüğü.
  • Yılmaz ND, Sulak M, Yılmaz K, Khan GMA (2017) Effect of chemical treatments on physico-chemical properties of fibers from banana fruit and bunch stems Indian J Fibre Text Res 42(1):111–117.
  • Sakthivel JC, Sivaraman SS, Sathish J, Venkatesh d (2021) Extraction and characterization of fibre from musa plant bract. Indian J Fibre Text Res 46(2):191–194. https://doi.org/10.56042/ijftr.v46i2.36575
  • Khan GMA, Yılmaz ND, Yılmaz K (2022) Effects of Alkalization on Physical and Mechanical Properties of Biologically Degummed Okra Bast and Corn Husk Fibers. J Nat Fibers 19(3):1126–1136 https://doi.org/10.1080/15440478.2020.1798840
  • Reddy N, Yang Y (2005) Properties and potential applications of natural cellulose fibers from cornhusks. Green Chem 7(4):190–195. https://doi.org/10.1016/j.carbpol.2009.03.013.
  • Yılmaz ND, Konak S, Yılmaz K, Kartal AA, Kayahan E (2016) Characterization, modification and use of biomass: okra fibers. Bioinspired Biomim Nanobiomaterials 5(3):85–95. https://doi.org/10.1680/jbibn.15.00014
  • Alam MS, Khan GMA (2007) Chemical analysis of okra bast fiber (Abelmoschus esculentus) and its physico-chemical properties. J Text Apparel Technol Manag 5(4): 1–9.
  • “Okra,” (2023) http://data.un.org/Search.aspx?q=okra+production+countries+2020. Accessed 20 September 2023.
  • Khan GMA, Yılmaz ND, Yılmaz K (2017) Okra bast fiber as potential reinforcement element of biocomposites: Can it be the flax of the future. In: Handbook of Composites from Renewable Materials, vol. 1–8, Wiley Scrivener, pp 379–405.
  • Khan GMA, Shaheruzzaman M, Rahman MH, Abdur Razzaque SM, Islam MS, Alam MS (2009) Surface modification of okra bast fiber and its physico-chemical characteristics. Fibers Polym 10(1):65–70 https://doi.org/10.1007/s12221-009-0065-1
  • Khan GMA, Yılmaz ND, Yılmaz K (2020) Effects of chemical treatments and degumming methods on physical and mechanical properties of okra bast and corn husk fibers. J Text Inst 111(10):1418–1435 https://doi.org/10.1080/00405000.2019.1702492
  • Amziane S, Collet F, Lawrence M, Magniont C, Picandet V, Sonebi M (2017) Recommendation of the RILEM TC 236-BBM: characterisation testing of hemp shiv to determine the initial water content, water absorption, dry density, particle size distribution and thermal conductivity. Mater Struct Constr 50(3):1–11 https://doi.org/10.1617/s11527-017-1029-3
  • Yılmaz ND (2014) Agro‐Residual Fibers as Potential Reinforcement Elements for Biocomposites. In: Lignocellulosic Polymer Composites, V. K. Thakur, Ed. Wiley, pp 231–270.
  • Yılmaz ND, Çılgı GK, Yılmaz K (2015) Natural Polysaccharides as Pharmaceutical Excipients. In: Handbook of Polymers for Pharmaceutical Technologies Wiley-Scrivener, pp 483–516 https://doi.org/10.1002/9781119041450.CH14
  • Kolte P, Vijay S (2022) Critical Investigation of Abelmoschus Esculentus (Indian Okra) Fiber Characteristics. Res Square 1–22 https://doi.org/10.21203/rs.3.rs-2210815/v1
  • Hossen MT et al. (2021) A comprehensive study on Physico-Mechanical characteristics of Okra fibre (Abelmoschus esculentus) for textile applications. Indian J Sci Technol 14(9):765–775 https://doi.org/10.17485/IJST/v14i9.2268
There are 19 citations in total.

Details

Primary Language English
Subjects Fiber Technology
Journal Section Research Articles
Authors

Mahmut Ersoy 0009-0000-4754-5161

Nazire Deniz Yilmaz 0000-0002-8605-774X

Project Number TÜBİTAK BİDEB 2209 A
Publication Date July 31, 2024
Submission Date December 28, 2023
Acceptance Date April 24, 2024
Published in Issue Year 2024

Cite

APA Ersoy, M., & Yilmaz, N. D. (2024). Effects of chemical treatments on morphological, physical and chemical properties of okra bast fibers. Journal of Innovative Engineering and Natural Science, 4(2), 380-390. https://doi.org/10.61112/jiens.1404509


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0