Research Article
BibTex RIS Cite

Boşluk oranının TDR kullanılarak belirlenmesi

Year 2024, , 561 - 583, 31.07.2024
https://doi.org/10.61112/jiens.1470838

Abstract

Geoteknik mühendisliğinde boşluk oranı, geçirgenlik, sıkıştırılabilirlik, oturma ve taşıma kapasitesi dahil olmak üzere birçok temel zemin özelliği ile yakından ilişkili kritik bir parametre olarak öne çıkmaktadır. Bu nedenle bu kilit parametrenin doğru ve hızlı bir şekilde belirlenmesi çok önemlidir. Geleneksel yöntemler, sahadan alınan zemin numunelerinin özelliklerinin basit laboratuvar teknikleri kullanılarak değerlendirilmesini içerir. Ancak boşluk oranının belirlenmesi için su muhtevası ve özgül ağırlık gibi parametrelerin de belirlenmesini gerektirir. Bu parametreler basit yöntemler kullanılarak belirlenebilirken, inşaat mühendisliğinde bu parametrelerin belirlenmesi tipik olarak uzun bir zaman diliminde gerçekleşir. Sonuç olarak, zeminlerin belirli fiziksel özelliklerini tanımlamak için alternatif yöntemler keşfetme eğilimi vardır. Nükleer yöntemler gibi bazı yöntemler doğrudan sonuç verirken, sondaj gibi teknikler korelasyon yoluyla dolaylı olarak sonuç vermektedir. Teknolojik ilerlemeler ve zamanın kritik bir ekonomik parametre olarak artan önemi nedeniyle, hızlı ve güvenilir yöntemlere olan talep artmaktadır. Bu doğrultuda, elektrik mühendisliğinde yaygın olarak kullanılan Time Domain Reflectometry (TDR), inşaat mühendisliğinde de uygulama alanı bulmaya başlamıştır. Bu çalışmada, zemin mekaniğinde önemli bir parametre olan boşluk oranının TDR yöntemi kullanılarak belirlenmesine yönelik bir araştırma gerçekleştirilmiştir. Bu nedenle, laboratuvarda farklı boşluk oranlarında hazırlanan numuneler üzerinde deneyler gerçekleştirilmiş ve daha sonra zeminlerin boşluk oranları TDR yöntemi kullanılarak belirlenmiştir. Bu çalışmanın sonuçları, TDR yönteminin zeminlerin boşluk oranını belirlemek için alternatif bir yaklaşım olarak hizmet edebileceğini göstermektedir.

References

  • Vaughan PR, Maccarini M, Mokhtar SM (1988) Indexing the engineering properties of residual soil. Quarterly journal of engineering geology and hydrogeology 21(1):69-84 https://doi.org/10.1144/GSL.QJEG.1988.021.01.05
  • Olofinyo OO, Olabode OF, Fatoyinbo IO (2019) Engineering properties of residual soils in part of Southwestern Nigeria: implication for road foundation. SN Applied Sciences 1:1-10. https://doi.org/10.1007/s42452-019-0515-3
  • Pham BT, Nguyen MD, Al-Ansari N, Tran QA, Ho LS, Le HV, Prakash I (2021). A comparative study of soft computing models for prediction of permeability coefficient of soil. Mathematical Problems in Engineering 1-11. https://doi.org/10.1155/2021/7631493
  • Wroth CP (1984) The interpretation of in situ soil tests. Geotechnique, 34(4):449-489. https://doi.org/10.1680/geot.1984.34.4.449
  • Katterbach, M, Poretti S (2019) Microwave Technology for In Situ Determination of Void Ratio and Compactness in Saturated Soils. Journal of Testing and Evaluation 47(3):2044-2060. https://doi.org/10.1520/JTE20170764
  • Fonseca AVD, Carvalho J, Ferreira C, Santos JA, Almeida F, Pereira E, Oliveira A (2006) Characterization of a profile of residual soil from granite combining geological, geophysical and mechanical testing techniques. Geotechnical & Geological Engineering 24:1307-1348. https://doi.org/10.1007/s10706-005-2023-z
  • Mayne PW, Christopher BR, DeJong J (2002) Subsurface Investigations--Geotechnical Site Characterization: Reference Manual (No. FHWA-NHI-01-031). United States Federal Highway Administration.
  • Hussien MN, Karray M (2015) Shear wave velocity as a geotechnical parameter: an overview. Canadian Geotechnical Journal 53(2):252-272. https://doi.org/10.1139/cgj-2014-0524
  • L’Heureux JS, Long, M (2017) Relationship between shear-wave velocity and geotechnical parameters for Norwegian clays. Journal of geotechnical and Geoenvironmental engineering 143(6):04017013. https://doi.org/10.1061/(ASCE)GT.1943-5606.00016
  • Elbeggo D, Ethier Y, Karray M, Dubé JS (2023). Assessment of existing Vs-Lab correlations regarding Eastern Canadian clays. Soil Dynamics and Earthquake Engineering 164:107607. https://doi.org/10.1016/j.soildyn.2022.107607
  • Cha M, Cho GC (2007). Shear strength estimation of sandy soils using shear wave velocity. Geotechnical Testing Journal 30(6):484-495. https://doi.org/10.1520/GTJ100011
  • Uyanık O (2019). Estimation of the porosity of clay soils using seismic P-and S-wave velocities. Journal of Applied Geophysics 170:103832. https://doi.org/10.1016/j.jappgeo.2019.103832
  • Góis MS, Bezerra da Costa KRC, Cavalcante ALB (2023). Prediction of hydraulic and petrophysical parameters from indirect measurements of electrical resistivity to determine soil-water retention curve–studies in granular soils. Soils and Rocks 46:e2023013822. https://doi.org/10.28927/SR.2023.013822
  • Cerny R (2009) Time-domain reflectometry method and its application for measuring moisture content in porous materials: a review. Measurement 42:329-336. https://doi.org/10.1016/j.measurement.2008.08.011
  • Hartebrodt M, Kabitzsch K (2004) Fault detection in fieldbuses with time domain reflectometry. 7th AFRICON Conference in Africa Bostwana. https://doi.org/10.1109/AFRICON.2004.1406701
  • Chung CC, Lin CP (2019). A comprehensive framework of TDR landslide monitoring and early warning substantiated by field examples. Engineering geology 262:105330. https://doi.org/10.1016/j.enggeo.2019.105330
  • Chung CC, Lin CP, Ngui YJ, Lin WC, Yang CS (2022). Improved technical guide from physical model tests for TDR landslide monitoring. Engineering Geology 296:106417. https://doi.org/10.1016/j.enggeo.2021.106417
  • Yu X, Zabilansky LJ (2006). Time domain reflectometry for automatic bridge scour monitoring. In Site and Geomaterial Characterization 152-159.
  • Wang K, Lin CP, Jheng WH (2020). A new TDR-based sensing cable for improving performance of bridge scour monitoring. Sensors 20(22):6665. https://doi.org/10.3390/s20226665
  • Chung CC, Lin CP, Wu IL, Chen PH, Tsay TK (2013). New TDR waveguides and data reduction method for monitoring of stream and drainage stage. Journal of Hydrology 505:346-351. https://doi.org/10.1016/j.jhydrol.2013.09.050
  • Alsabhan A, Fratta D, Warren BJ, Tinjum JM, Edil TB (2019). Using Time Domain Reflectometry to determine depth of fouling and fouling type in railway track substructure. Geotechnical Testing Journal 42(1):156-179. https://doi.org/10.1520/GTJ20170305
  • Ozgur M (2024). Demiryolu Taban Zemini Su İçeriğinin TDR Yöntemi ile Ölçümü için Dielektrik Karışım Modeli Yardımıyla Kalibrasyon Geliştirilmesi. Demiryolu Mühendisliği (19):67-82. https://doi.org/10.47072/demiryolu.1366737
  • Ozgur M (2023). Development and validation of a degree of saturation prediction model using time domain reflectometry for compaction control. Transportation Geotechnics, 42:101062. https://doi.org/10.1016/j.trgeo.2023.101062
  • Qin P, Deng Y, Cui Y, Ye W (2023). Development and application of TDR mini-probes for monitoring moisture in small-scale laboratory tests. International Journal of Civil Engineering 21(6):905-914. https://doi.org/10.1007/s40999-022-00772-7
  • Mukhlisin M, Astuti HW, Wardihani ED, Matlan SJ (2021). Techniques for ground-based soil moisture measurement: a detailed overview. Arabian Journal of Geosciences 14:1-34. https://doi.org/10.1007/s12517-021-08263-0
  • Leidenberger P, Oswald B, Roth K. (2006) Efficient reconstruction of dispersive dielectric profiles using time domain reflectometry (TDR). Hydrology and Earth System Sciences 10(2):209-232. https://doi.org/10.5194/hess-10-209-2006
  • He H, Aogu K, Li M, Xu J, Sheng W, Jones SB, Lv J. (2021) A review of time domain reflectometry (TDR) applications in porous media. Advances in agronomy 168:83-155. https://doi.org/10.1016/bs.agron.2021.02.003
  • Jones SB, Wraith JM, Or D (2002) Time domain reflectometry measurement principles and applications. Hydrological processes 16(1):141-153. https://doi.org/10.1002/hyp.513
  • Bhuyan H, Scheuermann A, Bodin D, Becker R (2020) Soil moisture and density monitoring methodology using TDR measurements. International Journal of Pavement Engineering, 21(10):1263-1274. https://doi.org/10.1080/10298436.2018.1537491
  • Bittelli M, Tomei F, Anbazhagan P, Pallapati RR, Mahajan P, Meisina, C, Valentino R (2021) Measurement of soil bulk density and water content with time domain reflectometry: Algorithm implementation and method analysis. Journal of Hydrology 598:126389. https://doi.org/10.1016/j.jhydrol.2021.126389
  • Fu Y, Horton R, Heitman J (2021) Estimation of soil water retention curves from soil bulk electrical conductivity and water content measurements. Soil and Tillage Research 209:104948. https://doi.org/10.1016/j.still.2021.104948
  • Yu X., Drnevich VP (2004) Soil water content and dry density by time domain reflectometry. Journal of Geotechnical and Geoenvironmental Engineering 130(9):922-934. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(922)
  • Zhang M, Tian Z, Zhu Q, Chen J. (2023) In-situ assessment of soil shrinkage and swelling behavior and hydro-thermal regimes with a thermo-time domain reflectometry technique. Soil and Tillage Research 227:105617. https://doi.org/10.1016/j.still.2022.105617
  • Leão TP, da Costa BFD, Bufon VB, Aragón FFH (2020) Using time domain reflectometry to estimate water content of three soil orders under savanna in Brazil. Geoderma regional, 21:e00280. https://doi.org/10.1016/j.geodrs.2020.e00280
  • Lee S, Yoon HK (2020) Hydraulic conductivity of saturated soil medium through Time-Domain Reflectometry. Sensors 20:7001. https://doi.org/10.3390/s20237001
  • Yoon HK, Lee JS (2010) Field velocity resistivity probe for estimating stiffness and void ratio. Soil Dynamics and Earthquake Engineering 30(12):1540-1549. https://doi.org/10.3390/s20237001
  • Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resource Research 16:574-582. https://doi.org/10.1029/WR016i003p00574
  • Baker JM, Allmaras RR (1990) System for automating and multiplexing soil moisture measurement by time domain reflectometry. Soil Science Society of America Journal 54:1-6. https://doi.org/10.2136/sssaj1990.03615995005400010001x
  • Topp GC, Davis JL, Annan AP (1982) Electromagnetic determination of soil water content using TDR: II. evaluation of installation and configuration of paralel transmission lines. Soil Science Society of America Journal 3:107-127. https://doi.org/10.2136/sssaj1982.03615995004600040003x
  • Patterson DE, Smith MW (1980) The use of time domain reflectometery for the measurement of unfrozen water content in frozen soils. Cold Regions Science and Technology 3:205-210. https://doi.org/10.1016/0165-232X(80)90026-9
  • Davis JL, Annan AP (1977) Electromagnetic detection of soil moisture: progress report I. Canadian Journal Remote Sens 3:76-86. https://doi.org/10.1080/07038992.1977.10854959
  • Dasberg S, Dalton FN (1985) Field measurement of soil water content and bulk electrical conductivity with time domain reflectometry. Soil Science Society America Journal 49:293-297. https://doi.org/10.2136/sssaj1985.03615995004900020003x
  • Heimovaara TJ (1994) Frequency domain analysis of time domain reflectometry waveforms: 1. measurement of the complex dielectric permittivity of soils. Water Resources Research 30(2):189–199. https://doi.org/10.1029/93WR02948
  • Roth CH, Malicki MA, Plagge R (1992) Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR. Journal of Soil Science 43:1–13. https://doi.org/10.1111/j.1365-2389.1992.tb00115.x
  • Zegelin SJ, White I, Jenkins DR (1989) Improved field probes for soil water content and electrical conductivity measurements using time domain reflectometry. Water Resources Research 25(11):2367–2376. https://doi.org/10.1029/WR025i011p02367
  • Dobson MC, Ulaby FT, Hallikainen MT, El-Rayes MA (1985) Microwave dielectric behavior of wet soil—part II: dielectric mixing models. IEEE Transaction on Geoscience and Remote Sensing 23(1):35–46. https://doi.org/10.1109/TGRS.1985.289498
  • Dirksen C, Dasberg S (1993) Improved calibration of time domain reflectometry soil water content measurements. Soil Science Society America Journal 57: 660-667. https://doi.org/10.2136/sssaj1993.03615995005700030005x
  • Ledieu JP, Ridder De, Dautrebande AA (1986) Method for measuring soil moisture content by time domain reflectometry. Journal of Hydrology 88:319-328. https://doi.org/10.1016/0022-1694(86)90097-1
  • Alharthi A, Lange J (1987) Soil water saturation: dielectric determination. Water Resources Research 23(4):591-595. https://doi.org/10.1029/WR023i004p00591
  • Ferre PA, Rudolph DL, Kachanoski RG (1996) Spatial averaging of water content by time domain reflectometry; implications for twin rod probes with and without dielectric coatings. Water Resources Research 32:271-279. https://doi.org/10.1029/95WR02576
  • Malicki MA, Walczak RT (1999). Evaluating soil salinity status from bulk electrical conductivity and permittivity. Europen Journal of Soil Science 50:505-514. https://doi.org/10.1046/j.1365-2389.1999.00245.x
  • Yu C, Warrick A, Conklin M, Young M, Zreda M (1997) Two and three parameter calibrations of time domain reflectometry for soil moisture measurement. Water Resources Research 33(10):2417-2421. https://doi.org/10.1029/97WR01699
  • Arsoy S, Özgür M, Keskin E, Yılmaz C (2013) Enhacing TDR based water content measurements by ANN in sandy soils. Geoderma 195-196:133-144. https://doi.org/10.1016/j.geoderma.2012.11.019

Void ratio determination in soil using time domain reflectometry

Year 2024, , 561 - 583, 31.07.2024
https://doi.org/10.61112/jiens.1470838

Abstract

In geotechnical engineering, the void ratio stands out as a critical parameter that is closely related to several essential soil properties, including permeability, compressibility, settlement and bearing capacity. Accurate and rapid determination of this key parameter is therefore essential. Traditional methods involve assessing the properties of soil samples taken from the field using simple laboratory techniques. However, determining the void ratio requires the determination of parameters such as soil water content and specific gravity. Whilst these parameters can be determined using straightforward methods, their determination in civil engineering typically takes place over an extended period. Consequently, there is a tendency to explore alternative methods for delineating specific physical properties of soils. While some methods provide direct results, such as nuclear methods, others provide results indirectly through correlations using techniques such as drilling. Due to technological advances and the increased importance of time as a critical economic parameter, there is an increasing demand for fast and reliable methods. Accordingly, Time Domain Reflectometry (TDR), which is widely used in electrical engineering, has begun to find application in civil engineering. In this study, research is carried out to determine the void ratio, a key parameter in soil mechanics, using the TDR method. Experiments were therefore carried out on samples prepared in the laboratory with different void ratios, and the void ratios of the soils were then determined using the TDR method. The results of this study suggest that the TDR method could serve as an alternative approach for determining the void ratio of soils.

References

  • Vaughan PR, Maccarini M, Mokhtar SM (1988) Indexing the engineering properties of residual soil. Quarterly journal of engineering geology and hydrogeology 21(1):69-84 https://doi.org/10.1144/GSL.QJEG.1988.021.01.05
  • Olofinyo OO, Olabode OF, Fatoyinbo IO (2019) Engineering properties of residual soils in part of Southwestern Nigeria: implication for road foundation. SN Applied Sciences 1:1-10. https://doi.org/10.1007/s42452-019-0515-3
  • Pham BT, Nguyen MD, Al-Ansari N, Tran QA, Ho LS, Le HV, Prakash I (2021). A comparative study of soft computing models for prediction of permeability coefficient of soil. Mathematical Problems in Engineering 1-11. https://doi.org/10.1155/2021/7631493
  • Wroth CP (1984) The interpretation of in situ soil tests. Geotechnique, 34(4):449-489. https://doi.org/10.1680/geot.1984.34.4.449
  • Katterbach, M, Poretti S (2019) Microwave Technology for In Situ Determination of Void Ratio and Compactness in Saturated Soils. Journal of Testing and Evaluation 47(3):2044-2060. https://doi.org/10.1520/JTE20170764
  • Fonseca AVD, Carvalho J, Ferreira C, Santos JA, Almeida F, Pereira E, Oliveira A (2006) Characterization of a profile of residual soil from granite combining geological, geophysical and mechanical testing techniques. Geotechnical & Geological Engineering 24:1307-1348. https://doi.org/10.1007/s10706-005-2023-z
  • Mayne PW, Christopher BR, DeJong J (2002) Subsurface Investigations--Geotechnical Site Characterization: Reference Manual (No. FHWA-NHI-01-031). United States Federal Highway Administration.
  • Hussien MN, Karray M (2015) Shear wave velocity as a geotechnical parameter: an overview. Canadian Geotechnical Journal 53(2):252-272. https://doi.org/10.1139/cgj-2014-0524
  • L’Heureux JS, Long, M (2017) Relationship between shear-wave velocity and geotechnical parameters for Norwegian clays. Journal of geotechnical and Geoenvironmental engineering 143(6):04017013. https://doi.org/10.1061/(ASCE)GT.1943-5606.00016
  • Elbeggo D, Ethier Y, Karray M, Dubé JS (2023). Assessment of existing Vs-Lab correlations regarding Eastern Canadian clays. Soil Dynamics and Earthquake Engineering 164:107607. https://doi.org/10.1016/j.soildyn.2022.107607
  • Cha M, Cho GC (2007). Shear strength estimation of sandy soils using shear wave velocity. Geotechnical Testing Journal 30(6):484-495. https://doi.org/10.1520/GTJ100011
  • Uyanık O (2019). Estimation of the porosity of clay soils using seismic P-and S-wave velocities. Journal of Applied Geophysics 170:103832. https://doi.org/10.1016/j.jappgeo.2019.103832
  • Góis MS, Bezerra da Costa KRC, Cavalcante ALB (2023). Prediction of hydraulic and petrophysical parameters from indirect measurements of electrical resistivity to determine soil-water retention curve–studies in granular soils. Soils and Rocks 46:e2023013822. https://doi.org/10.28927/SR.2023.013822
  • Cerny R (2009) Time-domain reflectometry method and its application for measuring moisture content in porous materials: a review. Measurement 42:329-336. https://doi.org/10.1016/j.measurement.2008.08.011
  • Hartebrodt M, Kabitzsch K (2004) Fault detection in fieldbuses with time domain reflectometry. 7th AFRICON Conference in Africa Bostwana. https://doi.org/10.1109/AFRICON.2004.1406701
  • Chung CC, Lin CP (2019). A comprehensive framework of TDR landslide monitoring and early warning substantiated by field examples. Engineering geology 262:105330. https://doi.org/10.1016/j.enggeo.2019.105330
  • Chung CC, Lin CP, Ngui YJ, Lin WC, Yang CS (2022). Improved technical guide from physical model tests for TDR landslide monitoring. Engineering Geology 296:106417. https://doi.org/10.1016/j.enggeo.2021.106417
  • Yu X, Zabilansky LJ (2006). Time domain reflectometry for automatic bridge scour monitoring. In Site and Geomaterial Characterization 152-159.
  • Wang K, Lin CP, Jheng WH (2020). A new TDR-based sensing cable for improving performance of bridge scour monitoring. Sensors 20(22):6665. https://doi.org/10.3390/s20226665
  • Chung CC, Lin CP, Wu IL, Chen PH, Tsay TK (2013). New TDR waveguides and data reduction method for monitoring of stream and drainage stage. Journal of Hydrology 505:346-351. https://doi.org/10.1016/j.jhydrol.2013.09.050
  • Alsabhan A, Fratta D, Warren BJ, Tinjum JM, Edil TB (2019). Using Time Domain Reflectometry to determine depth of fouling and fouling type in railway track substructure. Geotechnical Testing Journal 42(1):156-179. https://doi.org/10.1520/GTJ20170305
  • Ozgur M (2024). Demiryolu Taban Zemini Su İçeriğinin TDR Yöntemi ile Ölçümü için Dielektrik Karışım Modeli Yardımıyla Kalibrasyon Geliştirilmesi. Demiryolu Mühendisliği (19):67-82. https://doi.org/10.47072/demiryolu.1366737
  • Ozgur M (2023). Development and validation of a degree of saturation prediction model using time domain reflectometry for compaction control. Transportation Geotechnics, 42:101062. https://doi.org/10.1016/j.trgeo.2023.101062
  • Qin P, Deng Y, Cui Y, Ye W (2023). Development and application of TDR mini-probes for monitoring moisture in small-scale laboratory tests. International Journal of Civil Engineering 21(6):905-914. https://doi.org/10.1007/s40999-022-00772-7
  • Mukhlisin M, Astuti HW, Wardihani ED, Matlan SJ (2021). Techniques for ground-based soil moisture measurement: a detailed overview. Arabian Journal of Geosciences 14:1-34. https://doi.org/10.1007/s12517-021-08263-0
  • Leidenberger P, Oswald B, Roth K. (2006) Efficient reconstruction of dispersive dielectric profiles using time domain reflectometry (TDR). Hydrology and Earth System Sciences 10(2):209-232. https://doi.org/10.5194/hess-10-209-2006
  • He H, Aogu K, Li M, Xu J, Sheng W, Jones SB, Lv J. (2021) A review of time domain reflectometry (TDR) applications in porous media. Advances in agronomy 168:83-155. https://doi.org/10.1016/bs.agron.2021.02.003
  • Jones SB, Wraith JM, Or D (2002) Time domain reflectometry measurement principles and applications. Hydrological processes 16(1):141-153. https://doi.org/10.1002/hyp.513
  • Bhuyan H, Scheuermann A, Bodin D, Becker R (2020) Soil moisture and density monitoring methodology using TDR measurements. International Journal of Pavement Engineering, 21(10):1263-1274. https://doi.org/10.1080/10298436.2018.1537491
  • Bittelli M, Tomei F, Anbazhagan P, Pallapati RR, Mahajan P, Meisina, C, Valentino R (2021) Measurement of soil bulk density and water content with time domain reflectometry: Algorithm implementation and method analysis. Journal of Hydrology 598:126389. https://doi.org/10.1016/j.jhydrol.2021.126389
  • Fu Y, Horton R, Heitman J (2021) Estimation of soil water retention curves from soil bulk electrical conductivity and water content measurements. Soil and Tillage Research 209:104948. https://doi.org/10.1016/j.still.2021.104948
  • Yu X., Drnevich VP (2004) Soil water content and dry density by time domain reflectometry. Journal of Geotechnical and Geoenvironmental Engineering 130(9):922-934. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(922)
  • Zhang M, Tian Z, Zhu Q, Chen J. (2023) In-situ assessment of soil shrinkage and swelling behavior and hydro-thermal regimes with a thermo-time domain reflectometry technique. Soil and Tillage Research 227:105617. https://doi.org/10.1016/j.still.2022.105617
  • Leão TP, da Costa BFD, Bufon VB, Aragón FFH (2020) Using time domain reflectometry to estimate water content of three soil orders under savanna in Brazil. Geoderma regional, 21:e00280. https://doi.org/10.1016/j.geodrs.2020.e00280
  • Lee S, Yoon HK (2020) Hydraulic conductivity of saturated soil medium through Time-Domain Reflectometry. Sensors 20:7001. https://doi.org/10.3390/s20237001
  • Yoon HK, Lee JS (2010) Field velocity resistivity probe for estimating stiffness and void ratio. Soil Dynamics and Earthquake Engineering 30(12):1540-1549. https://doi.org/10.3390/s20237001
  • Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resource Research 16:574-582. https://doi.org/10.1029/WR016i003p00574
  • Baker JM, Allmaras RR (1990) System for automating and multiplexing soil moisture measurement by time domain reflectometry. Soil Science Society of America Journal 54:1-6. https://doi.org/10.2136/sssaj1990.03615995005400010001x
  • Topp GC, Davis JL, Annan AP (1982) Electromagnetic determination of soil water content using TDR: II. evaluation of installation and configuration of paralel transmission lines. Soil Science Society of America Journal 3:107-127. https://doi.org/10.2136/sssaj1982.03615995004600040003x
  • Patterson DE, Smith MW (1980) The use of time domain reflectometery for the measurement of unfrozen water content in frozen soils. Cold Regions Science and Technology 3:205-210. https://doi.org/10.1016/0165-232X(80)90026-9
  • Davis JL, Annan AP (1977) Electromagnetic detection of soil moisture: progress report I. Canadian Journal Remote Sens 3:76-86. https://doi.org/10.1080/07038992.1977.10854959
  • Dasberg S, Dalton FN (1985) Field measurement of soil water content and bulk electrical conductivity with time domain reflectometry. Soil Science Society America Journal 49:293-297. https://doi.org/10.2136/sssaj1985.03615995004900020003x
  • Heimovaara TJ (1994) Frequency domain analysis of time domain reflectometry waveforms: 1. measurement of the complex dielectric permittivity of soils. Water Resources Research 30(2):189–199. https://doi.org/10.1029/93WR02948
  • Roth CH, Malicki MA, Plagge R (1992) Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR. Journal of Soil Science 43:1–13. https://doi.org/10.1111/j.1365-2389.1992.tb00115.x
  • Zegelin SJ, White I, Jenkins DR (1989) Improved field probes for soil water content and electrical conductivity measurements using time domain reflectometry. Water Resources Research 25(11):2367–2376. https://doi.org/10.1029/WR025i011p02367
  • Dobson MC, Ulaby FT, Hallikainen MT, El-Rayes MA (1985) Microwave dielectric behavior of wet soil—part II: dielectric mixing models. IEEE Transaction on Geoscience and Remote Sensing 23(1):35–46. https://doi.org/10.1109/TGRS.1985.289498
  • Dirksen C, Dasberg S (1993) Improved calibration of time domain reflectometry soil water content measurements. Soil Science Society America Journal 57: 660-667. https://doi.org/10.2136/sssaj1993.03615995005700030005x
  • Ledieu JP, Ridder De, Dautrebande AA (1986) Method for measuring soil moisture content by time domain reflectometry. Journal of Hydrology 88:319-328. https://doi.org/10.1016/0022-1694(86)90097-1
  • Alharthi A, Lange J (1987) Soil water saturation: dielectric determination. Water Resources Research 23(4):591-595. https://doi.org/10.1029/WR023i004p00591
  • Ferre PA, Rudolph DL, Kachanoski RG (1996) Spatial averaging of water content by time domain reflectometry; implications for twin rod probes with and without dielectric coatings. Water Resources Research 32:271-279. https://doi.org/10.1029/95WR02576
  • Malicki MA, Walczak RT (1999). Evaluating soil salinity status from bulk electrical conductivity and permittivity. Europen Journal of Soil Science 50:505-514. https://doi.org/10.1046/j.1365-2389.1999.00245.x
  • Yu C, Warrick A, Conklin M, Young M, Zreda M (1997) Two and three parameter calibrations of time domain reflectometry for soil moisture measurement. Water Resources Research 33(10):2417-2421. https://doi.org/10.1029/97WR01699
  • Arsoy S, Özgür M, Keskin E, Yılmaz C (2013) Enhacing TDR based water content measurements by ANN in sandy soils. Geoderma 195-196:133-144. https://doi.org/10.1016/j.geoderma.2012.11.019
There are 53 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering
Journal Section Research Articles
Authors

Erdinç Keskin 0000-0002-8728-2906

Sami Arsoy 0000-0003-0125-8612

Publication Date July 31, 2024
Submission Date April 20, 2024
Acceptance Date June 16, 2024
Published in Issue Year 2024

Cite

APA Keskin, E., & Arsoy, S. (2024). Void ratio determination in soil using time domain reflectometry. Journal of Innovative Engineering and Natural Science, 4(2), 561-583. https://doi.org/10.61112/jiens.1470838


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0