Research Article
BibTex RIS Cite

Isıl işlem koşullarının nitinolün faz dönüşüm karakteristikleri üzerindeki etkisi

Year 2024, , 621 - 630, 31.07.2024
https://doi.org/10.61112/jiens.1484623

Abstract

Nitinol medikal uygulamalarda en yaygın olarak kullanılan şekil hafızalı alaşımdır. Bu çalışmada farklı ısıl işlem koşullarının medikal-sınıf nitinolün faz dönüşüm karakteristikleri üzerindeki etkisi araştırılmıştır. Yapılan deneysel çalışmalarda 120 μm çapında ve %50,6 nikel içeren, nikel-zengin nitinol teller kullanılmıştır. Nitinol teller 540 °C ile 570 °C arasındaki ısıl işlem sıcaklıklarında 10 dakika boyunca ısıl işleme tabi tutuldu. Ardından, nitinol teller 550 °C ısıl işlem sıcaklığında 8 dakika ile 14 dakika arasında ısıl işleme tabi tutuldu. Bu numunelerin östenitik ve martenzitik geçiş sıcaklıkları diferansiyel taramalı kalorimetre (DSC) kullanılarak ölçüldü. 10 dakika boyunca ısıl işleme tabi tutulan numunelerde, ısıl işlem sıcaklığının artmasıyla faz geçiş sıcaklıklarında düşüş gerçekleşmiş, histerezis ise artış göstermiştir. Bu durum mikroyapıdaki çökeltilerin miktarı ile ilişkilidir. 550 °C’de ısıl işleme tabi tutulan numunelerde, ısıl işlem süresinin artışı ile birlikte faz geçiş sıcaklıkları düşmüş ve histerezis artış göstermiştir. Deneysel çalışmalar, kullanılan bütün ısıl işlem koşullarında nitinol tellerin östenit bitiş (Af) sıcaklığının 37 °C’nin altında olduğunu ve vücut içinde süperlastisite göstereceğini ortaya koymuştur.

References

  • Machado LG, Lagoudas DC (2008) Modeling of SMAs. Springer US, Boston
  • Buehler WJ, Gilfrich J V, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475-1477. https://doi.org/10.1063/1.1729603
  • Ziółkowski A (2015) Pseudoelasticity of Shape Memory Alloys. Elsevier, Oxford
  • Donkersloot HC, Van Vucht JHN (1970) Martensitic transformations in gold-titanium, palladium-titanium and platinum-titanium alloys near the equiatomic composition. J Less Common Met 20(2):83-91. https://doi.org/10.1016/0022-5088(70)90092-5
  • Melton KN, Mercier O (1978) Deformation behavior of NiTi-based alloys. Metall Trans A 9(10):1487-1488. https://doi.org/10.1007/BF02661822
  • Sato A, Chishima E, Soma K, Mori T (1982) Shape memory effect in γ⇄ε transformation in Fe-30Mn-1Si alloy single crystals. Acta Metall 30(6):1177-1183. https://doi.org/10.1016/0001-6160(82)90011-6
  • Maki T, Kobayashi K, Minato M, Tamura I (1984) Thermoelastic martensite in an ausaged FeNiTiCo alloy. Scr Metall 18(10):1105-1109. https://doi.org/10.1016/0036-9748(84)90187-X
  • Miyazaki S, Ohmi Y, Otsuka K, Suzuki Y (1982) Characteristics of Deformation and Transformation Pseudoelasticity in Ti-Ni Alloys. J Phys (Paris), Colloq. 43(12):C4255. https://doi.org/10.1051/jphyscol:1982434
  • Yamauchi K, Ohkata I, Tsuchiya K, Miyazaki S (2011) Shape Memory and Superelastic Alloys. Woodhead Publishing Limited, Cambridge
  • Es-Souni M, Es-Souni M, Fischer-Brandies H (2005) Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem 381(3):557-567. https://doi.org/10.1007/s00216-004-2888-3
  • Dasgupta R (2014) A look into Cu-based shape memory alloys: Present scenario and future prospects. J Mater Res 29(16):1681-1698. https://doi.org/10.1557/jmr.2014.189
  • Otsuka K, Kakeshita T (2002) Science and technology of shape-memory alloys: New developments. MRS Bull 27(2):91-100. https://doi.org/10.1557/mrs2002.43
  • Duerig TW, Melton KN (1990) Engineering Aspects of Shape Memory Alloys. Elsevier, London
  • Ōtsuka K, Wayman CM (1998) Shape Memory Materials. Cambridge University Press, Cambridge
  • Lexcellent C (2013) Shape-Memory Alloys Handbook. Hoboken, John Wiley & Sons, Inc, New Jersey
  • Yoneyama T, Miyazaki S (2008) Shape Memory Alloys for Biomedical Applications. Woodhead Publishing, Cambridge
  • Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50(5):511-678. https://doi.org/10.1016/j.pmatsci.2004.10.001

Effect of heat treatment conditions on the phase transformation characteristics of nitinol

Year 2024, , 621 - 630, 31.07.2024
https://doi.org/10.61112/jiens.1484623

Abstract

Nitinol is the most widely used shape memory alloy in medical applications. In this study, the effect of different heat treatment conditions on the phase transformation characteristics of medical-grade nitinol was investigated. Nickel-rich nitinol wires containing 50.6% nickel with a diameter of 120 μm were used in the experimental studies. The nitinol wires were heat treated for 10 minutes at heat treatment temperatures between 540 and 570 °C. Then, nitinol wires were heat treated at a heat treatment temperature of 550 °C between 8 and 14 minutes. The austenitic and martensitic transition temperatures of these samples were measured using differential scanning calorimetry (DSC). In the experiments with 10 minutes of heat treatment time, transition temperatures decreased, and hysteresis increased with the increase in heat treatment temperature. This is related to the amount of precipitates in the structure. In the experiments carried out at 550 °C, transition temperatures decreased, and hysteresis increased with increasing heat treatment time. Experimental studies showed that the austenite finish (Af) temperature of all nitinol wire samples was below 37 °C, and they will exhibit superelasticity in the human body.

References

  • Machado LG, Lagoudas DC (2008) Modeling of SMAs. Springer US, Boston
  • Buehler WJ, Gilfrich J V, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475-1477. https://doi.org/10.1063/1.1729603
  • Ziółkowski A (2015) Pseudoelasticity of Shape Memory Alloys. Elsevier, Oxford
  • Donkersloot HC, Van Vucht JHN (1970) Martensitic transformations in gold-titanium, palladium-titanium and platinum-titanium alloys near the equiatomic composition. J Less Common Met 20(2):83-91. https://doi.org/10.1016/0022-5088(70)90092-5
  • Melton KN, Mercier O (1978) Deformation behavior of NiTi-based alloys. Metall Trans A 9(10):1487-1488. https://doi.org/10.1007/BF02661822
  • Sato A, Chishima E, Soma K, Mori T (1982) Shape memory effect in γ⇄ε transformation in Fe-30Mn-1Si alloy single crystals. Acta Metall 30(6):1177-1183. https://doi.org/10.1016/0001-6160(82)90011-6
  • Maki T, Kobayashi K, Minato M, Tamura I (1984) Thermoelastic martensite in an ausaged FeNiTiCo alloy. Scr Metall 18(10):1105-1109. https://doi.org/10.1016/0036-9748(84)90187-X
  • Miyazaki S, Ohmi Y, Otsuka K, Suzuki Y (1982) Characteristics of Deformation and Transformation Pseudoelasticity in Ti-Ni Alloys. J Phys (Paris), Colloq. 43(12):C4255. https://doi.org/10.1051/jphyscol:1982434
  • Yamauchi K, Ohkata I, Tsuchiya K, Miyazaki S (2011) Shape Memory and Superelastic Alloys. Woodhead Publishing Limited, Cambridge
  • Es-Souni M, Es-Souni M, Fischer-Brandies H (2005) Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem 381(3):557-567. https://doi.org/10.1007/s00216-004-2888-3
  • Dasgupta R (2014) A look into Cu-based shape memory alloys: Present scenario and future prospects. J Mater Res 29(16):1681-1698. https://doi.org/10.1557/jmr.2014.189
  • Otsuka K, Kakeshita T (2002) Science and technology of shape-memory alloys: New developments. MRS Bull 27(2):91-100. https://doi.org/10.1557/mrs2002.43
  • Duerig TW, Melton KN (1990) Engineering Aspects of Shape Memory Alloys. Elsevier, London
  • Ōtsuka K, Wayman CM (1998) Shape Memory Materials. Cambridge University Press, Cambridge
  • Lexcellent C (2013) Shape-Memory Alloys Handbook. Hoboken, John Wiley & Sons, Inc, New Jersey
  • Yoneyama T, Miyazaki S (2008) Shape Memory Alloys for Biomedical Applications. Woodhead Publishing, Cambridge
  • Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50(5):511-678. https://doi.org/10.1016/j.pmatsci.2004.10.001
There are 17 citations in total.

Details

Primary Language English
Subjects Metals and Alloy Materials
Journal Section Research Articles
Authors

Levent Öncel 0000-0002-6018-8741

Mahmut Açma 0000-0003-1315-2030

Publication Date July 31, 2024
Submission Date May 15, 2024
Acceptance Date July 18, 2024
Published in Issue Year 2024

Cite

APA Öncel, L., & Açma, M. (2024). Effect of heat treatment conditions on the phase transformation characteristics of nitinol. Journal of Innovative Engineering and Natural Science, 4(2), 621-630. https://doi.org/10.61112/jiens.1484623


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0