A novel approach for determining the local buckling coefficients of box sections with unequal wall thicknesses under axial compression
Year 2025,
Volume: 5 Issue: 2, 635 - 651, 31.07.2025
Mirali Nuraliyev
,
Osman Özenç
,
Mehmet Akif Dundar
,
Hamza Kemal Akyıldız
Abstract
Currently, there is no analytical method developed to determine the local buckling coefficients of box sections with varying wall thicknesses. Addressing this significant gap in the relevant literature, this study proposes a novel approach called the "Reference Section" buckling model to evaluate the local buckling coefficients of such sections under axial compression. In this model, the buckling analysis of an original box section with unequal wall thicknesses is performed establishing a special geometric correlation with two reference box sections possessing the identical main dimensions of original section but uniform wall thicknesses equal to the flange and web thicknesses of the original section. According to the proposed calculation model, all possible critical buckling stresses that may occur in the original box section must fall within the range defined based on the critical buckling stresses determined for reference sections. To evaluate the buckling coefficients of the original box section, a comparative analysis of local buckling stresses in all three sections was conducted. Based on the results of these analyses, necessary boundary conditions that enable the accurate and reliable determination of buckling behaviour were specified. Utilizing these boundary conditions, analytical expressions were derived for the first time to calculate the buckling coefficients of box sections with unequal wall thicknesses under axial compression. These derived analytical expressions have been made available in this study for use in practical engineering applications.
References
-
Billingham J, Sharp JV, Spurrier J, Kilgallon PJ (2003) Review of the performance of high strength steels used offshore. United Kingdom.
-
Pocock G (2006) High strength steel use in Australia, Japan & the US. Structural Engineer. 84(21):27–31.
-
Cornelissen R, Maljaars J, Hofmeyer H (2021) Buckling and wrinkling of rectangular hollow sections curved in three-point-roll bending. Int J Adv Manuf Technol 112:2091–2107. https://doi.org/10.1007/s00170-020-06443-y
-
Rincón-Dávila D, Alcalá E, Martín Á (2022) Theoretical–experimental study of the bending behavior of thin-walled rectangular tubes. Thin-Walled Struct 173:109009. https://doi.org/10.1016/j.tws.2022.109009
-
Kim TH, Reid SR (2001) Bending collapse of thin-walled rectangular section columns. Comput Struct 79:1897–1911. https://doi.org/10.1016/S0045-7949(01)00089-X
-
Gardner L, Chan T, Law K (2010) Structural design of elliptical hollow sections: A review. Proc Inst Civ Eng Struct Build 63:391–402. https://doi.org/10.1680/stbu.2010.163.6.391
-
Gardner L, Saari N, Wang F (2010) Comparative experimental study of hot-rolled and cold-formed rectangular hollow sections. Thin-Walled Struct 48:495–507. https://doi.org/10.1016/j.tws.2010.02.003
-
Dundar MA, Nuraliyev M (2024) Determination of optimal cross-section dimensions of rectangular hollow sections under oblique bending: analytical and numerical study. J Innovative Eng Nat Sci 4(1):198–219. https://doi.org/10.61112/jiens.1383887
-
Yusof NSB, Sapuan SM, Sultan MTH, Jawaid M, Maleque MA (2017) Design and materials development of automotive crash box: a review. Ciência & Tecnologia Dos Materiais 29:129–144. https://doi.org/10.1016/j.ctmat.2017.09.003
-
Huang B, Xing K, Rameezdeen R (2023) Exploring Embodied Carbon Comparison in Lightweight Building Structure Frames: A Case Study. Sustainability 15(20):15167. https://doi.org/10.3390/su152015167
-
Jones RM (1975) Buckling of bars, plates, and shells, Virginia, USA.
-
Vieira L, Gonçalves R, Camotim D (2018) On the local buckling of RHS members under axial force and biaxial bending. Thin-Walled Struct 129:10–19. https://doi.org/10.1016/j.tws.2018.03.022
-
Dundar MA, Nuraliyev M (2024) Parametric study on the assessment of the local buckling behavior of perforated square hollow sections with non-uniform wall thickness under axial compression. J Innovative Eng Nat Sci 4(2):326–353. https://doi.org/10.61112/jiens.1397391
-
Seif M, Schafer BW (2010) Local buckling of structural steel shapes. J Constr Steel Res 66(10):1232–1247. https://doi.org/10.1016/j.jcsr.2010.03.015
-
Nuraliyev M, Dundar MA, Sahin DE (2022) Determination of optimal dimensions of polymer-based rectangular hollow sections based on both adequate-strength and local buckling criteria: Analytical and numerical studies. Mech Based Des Struct Mach 52(2):1159–1189. https://doi.org/10.1080/15397734.2022.2139720
-
Gardner L, Fieber A, Macorini L (2019) Formulae for Calculating Elastic Local Buckling Stresses of Full Structural Cross-sections. Structures 17:2–20. https://doi.org/10.1016/j.istruc.2019.01.012
-
Gardner L, Young B (2016) Buckling of ferritic stainless steel members under combined axial compression and bending. J Constr Steel Res 117:35–48. https://doi.org/10.1016/j.jcsr.2015.10.003
-
Timoshenko S, Gere JG, Gere JM (1961) Theory of Elastic Stability. McGraw-Hill.
-
Nuraliyev M, Dundar MA, Akyildiz HK (2024) A novel analytical method for local buckling check of box sections with unequal wall thicknesses subjected to bending. Mech Adv Mater Struct 32(8):1683-1706. https://doi.org/10.1080/15376494.2024.2369262
-
Stowell EZ, Lundquist EE (1936) Local instability of columns with I-, Z-, channel, and rectangular-tube sections.
-
Kroll WD, Fisher GP, Heimerl GJ (1943) Charts for calculation of the critical stress for local instability of columns with I-, Z-, channel, and rectangular-tube section. National Advisory Committee for Aeronautics.
Farklı et kalınlıklarına sahip eksenel basınç altındaki kutu kesitlerin yerel burkulma katsayılarının belirlenmesi için yeni bir yaklaşım
Year 2025,
Volume: 5 Issue: 2, 635 - 651, 31.07.2025
Mirali Nuraliyev
,
Osman Özenç
,
Mehmet Akif Dundar
,
Hamza Kemal Akyıldız
Abstract
Hâlihazırda farklı et kalınlıklarına sahip kutu kesitlerin yerel burkulma katsayılarını belirlemek için geliştirilmiş analitik bir yöntem bulunmamaktadır; ilgili literatürdeki bu önemli eksikliğe bir yanıt olarak, bu çalışmada eksenel basınç altındaki bu tür kesitlerin yerel burkulma katsayılarını belirleyebilmek için 'Referans Kesit' burkulma modeli olarak adlandırılan yeni bir yaklaşım geliştirilmiştir. Bu modelde, farklı et kalınlıklarına sahip orijinal bir kutu kesitin burkulma analizi, aynı ana boyutlara sahip ancak duvar kalınlıkları sabit olan ve orijinal kesitin üst duvar ile yan duvar et kalınlıklarına eşit iki referans kutu kesit ile özel bir geometrik ilişkilendirme yapılarak gerçekleştirilmiştir. Önerilen hesap modeline göre, farklı et kalınlıklarına sahip orijinal kutu kesitte meydana gelebilecek tüm kritik burkulma gerilmesi değerleri, belirlenen referans kesitlerdeki kritik burkulma gerilmelerinin tanımladığı aralık içinde kalmak zorundadır. Orijinal kutu kesitin burkulma katsayılarının değerlendirilmesi için, her üç kesitteki yerel burkulma gerilmelerinin karşılaştırmalı analizi yapılmış ve bu analizler sonucunda burkulma davranışının doğru ve güvenilir bir şekilde belirlenebilmesine olanak tanıyan gerekli sınır şartları tanımlanmıştır. Bu sınır şartları kullanılarak, farklı et kalınlıklarına sahip eksenel basınç altındaki kutu kesitlerin burkulma katsayılarını hesaplamak için ilk defa analitik ifadeler türetilmiş ve türetilen bu analitik ifadeler, pratik mühendislik uygulamalarında kullanılmak üzere bu çalışmada erişilebilir hale getirilmiştir.
References
-
Billingham J, Sharp JV, Spurrier J, Kilgallon PJ (2003) Review of the performance of high strength steels used offshore. United Kingdom.
-
Pocock G (2006) High strength steel use in Australia, Japan & the US. Structural Engineer. 84(21):27–31.
-
Cornelissen R, Maljaars J, Hofmeyer H (2021) Buckling and wrinkling of rectangular hollow sections curved in three-point-roll bending. Int J Adv Manuf Technol 112:2091–2107. https://doi.org/10.1007/s00170-020-06443-y
-
Rincón-Dávila D, Alcalá E, Martín Á (2022) Theoretical–experimental study of the bending behavior of thin-walled rectangular tubes. Thin-Walled Struct 173:109009. https://doi.org/10.1016/j.tws.2022.109009
-
Kim TH, Reid SR (2001) Bending collapse of thin-walled rectangular section columns. Comput Struct 79:1897–1911. https://doi.org/10.1016/S0045-7949(01)00089-X
-
Gardner L, Chan T, Law K (2010) Structural design of elliptical hollow sections: A review. Proc Inst Civ Eng Struct Build 63:391–402. https://doi.org/10.1680/stbu.2010.163.6.391
-
Gardner L, Saari N, Wang F (2010) Comparative experimental study of hot-rolled and cold-formed rectangular hollow sections. Thin-Walled Struct 48:495–507. https://doi.org/10.1016/j.tws.2010.02.003
-
Dundar MA, Nuraliyev M (2024) Determination of optimal cross-section dimensions of rectangular hollow sections under oblique bending: analytical and numerical study. J Innovative Eng Nat Sci 4(1):198–219. https://doi.org/10.61112/jiens.1383887
-
Yusof NSB, Sapuan SM, Sultan MTH, Jawaid M, Maleque MA (2017) Design and materials development of automotive crash box: a review. Ciência & Tecnologia Dos Materiais 29:129–144. https://doi.org/10.1016/j.ctmat.2017.09.003
-
Huang B, Xing K, Rameezdeen R (2023) Exploring Embodied Carbon Comparison in Lightweight Building Structure Frames: A Case Study. Sustainability 15(20):15167. https://doi.org/10.3390/su152015167
-
Jones RM (1975) Buckling of bars, plates, and shells, Virginia, USA.
-
Vieira L, Gonçalves R, Camotim D (2018) On the local buckling of RHS members under axial force and biaxial bending. Thin-Walled Struct 129:10–19. https://doi.org/10.1016/j.tws.2018.03.022
-
Dundar MA, Nuraliyev M (2024) Parametric study on the assessment of the local buckling behavior of perforated square hollow sections with non-uniform wall thickness under axial compression. J Innovative Eng Nat Sci 4(2):326–353. https://doi.org/10.61112/jiens.1397391
-
Seif M, Schafer BW (2010) Local buckling of structural steel shapes. J Constr Steel Res 66(10):1232–1247. https://doi.org/10.1016/j.jcsr.2010.03.015
-
Nuraliyev M, Dundar MA, Sahin DE (2022) Determination of optimal dimensions of polymer-based rectangular hollow sections based on both adequate-strength and local buckling criteria: Analytical and numerical studies. Mech Based Des Struct Mach 52(2):1159–1189. https://doi.org/10.1080/15397734.2022.2139720
-
Gardner L, Fieber A, Macorini L (2019) Formulae for Calculating Elastic Local Buckling Stresses of Full Structural Cross-sections. Structures 17:2–20. https://doi.org/10.1016/j.istruc.2019.01.012
-
Gardner L, Young B (2016) Buckling of ferritic stainless steel members under combined axial compression and bending. J Constr Steel Res 117:35–48. https://doi.org/10.1016/j.jcsr.2015.10.003
-
Timoshenko S, Gere JG, Gere JM (1961) Theory of Elastic Stability. McGraw-Hill.
-
Nuraliyev M, Dundar MA, Akyildiz HK (2024) A novel analytical method for local buckling check of box sections with unequal wall thicknesses subjected to bending. Mech Adv Mater Struct 32(8):1683-1706. https://doi.org/10.1080/15376494.2024.2369262
-
Stowell EZ, Lundquist EE (1936) Local instability of columns with I-, Z-, channel, and rectangular-tube sections.
-
Kroll WD, Fisher GP, Heimerl GJ (1943) Charts for calculation of the critical stress for local instability of columns with I-, Z-, channel, and rectangular-tube section. National Advisory Committee for Aeronautics.